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Convolutional autoencoded echo state network for
the prediction of extreme events in turbulence

By N. A. K. Doan,† A. Racca‡ AND L. Magri¶‖††

Extreme events are sudden changes of a turbulent state or observable. The time-
accurate and statistical prediction of extreme events is difficult to achieve because their
dynamics are chaotic, and hence unpredictable. The goal of this paper is to propose a
methodology to learn the turbulent dynamics from data for the time-accurate predic-
tion of unseen extreme events. We break down the spatiotemporal turbulent problem
into spatial and temporal problems. First, we reduce the high-dimensional turbulent dy-
namics into a lower-dimensional latent space by using a nonlinear transformation based
on convolutional neural networks. Second, we compute the temporal dynamics in the
low-dimensional latent space by using a reservoir computer, which is a form of recurrent
neural network. We seamlessly assemble the two architectures into the convolutional au-
toencoded echo state network (CAE-ESN). The test case is a three-dimensional (3D)
turbulent flow (the minimal flow unit) in which quasi-relaminarization events with their
bursts in kinetic energy and dissipation rate are the extreme events. We show that the
CAE-ESN is (i) scalable to a 3D turbulent flow; (ii) efficient, requiring approximately one-
tenth as many degrees of freedom as proper orthogonal decomposition for compressing
the data; and (iii) accurate in time-accurately forecasting the occurrence of the quasi-
relaminarization events and their statistics. The proposed architecture opens opportuni-
ties for reduced-order modeling and time-accurate prediction of turbulent flow from data.

1. Introduction

Many fluid dynamics systems exhibit extreme events, which are sudden and violent
changes of the flow state. Examples are oceanic rogue waves (Dysthe et al. 2008), extreme
weather patters in atmospheric science (Majda 2012), and intermittency in turbulence
(Blonigan et al. 2019). The time-accurate prediction of such events remains a major
challenge because of the chaotic nature of turbulent flows, in which infinitesimal pertur-
bations in the initial conditions will exponentially amplify.
To tackle the time-accurate prediction of extreme events, recent techniques based on

deep learning have been developed. For example, Wan et al. (2018) used an architecture
based on long short-term memory (LSTM) networks combined with a reduced-order
model based on proper orthogonal decomposition (POD) to predict the occurrence of
extreme dissipation events in the two-dimensional Kolmogorov flow. Sapsis (2018) further
combined a data-driven reduced-order model with large deviation theory to efficiently
characterize heavy-tailed distribution in the Kolmogorov flow. Further development by
Doan et al. (2021b) and Racca & Magri (2022) focused on echo state networks (ESNs) to
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time-accurately predict extreme events in a nine-dimensional model of turbulence. One
of the main advantages of ESNs is that it is straightforward to train with just a matrix
inversion, in comparison to LSTM, which requires a gradient-based optimization process.
The works discussed above highlight the potential of deep learning for the time-accurate

prediction of extreme events in turbulent flows, but these studies were restricted to
small models of turbulence. Therefore, the applicability of these deep-learning-based
techniques, and specifically ESNs, to time-accurately predict extreme events in 3D flows
remains unknown. In this paper, we propose the 3D convolutional autoencoder echo state
network (CAE-ESN) to learn the dynamics of the 3D minimal flow unit (MFU) and time-
accurately predict the occurrence of extreme events in the flow. We will explore whether
the CAE-ESN can be scaled to a 3D flow, how it can represent the flow dynamics in
a latent space with a reduced number of degrees of freedom, and whether it can time-
accurately predict extreme events. Section 2 describes the MFU and its extreme events as
well as the numerical setup used to simulate it. Section 3 presents in detail the CAE-ESN
framework used to learn the dynamics of the MFU, and the accuracy of the CAE-ESN in
predicting the statistics and the time-accurate prediction of extreme events of the MFU
are discussed in Section 4. A summary of the main results and directions for future work
are provided in Section 5.

2. Minimal flow unit

The flow under consideration is the MFU (Jiménez & Moin 1991). This is a prototypical
flow of near-wall turbulence in channel flows, which consists of a turbulent channel flow
whose dimensions are smaller than conventional channel flow simulations. In this small
domain, the flow accurately reproduces the near-wall turbulent statistics of turbulent
channel flows. The MFU is governed by the incompressible Navier-Stokes equations,
which are equipped with initial conditions

∇ · u = 0,

∂tu+ u · ∇u =
1

ρ
f0 − 1

ρ
∇p+ ν∆u,

(2.1)

where u = (u, v, w) is the 3D velocity field and f0 = (f0, 0, 0) is the constant forcing in
the streamwise, x, direction. ρ, p, and ν are the density, pressure, and kinematic viscosity,
respectively. The geometrical domain of the MFU is composed of two walls, in the wall-
normal, y, direction with a no-slip boundary condition such that u(x,±δ, z, t) = 0,
where δ is half the channel width. Periodic boundary conditions are considered for the
streamwise, x, and spanwise, z, directions. For this study, a channel with dimension
πδ × 2δ × 0.34πδ is considered, as done by Blonigan et al. (2019) with δ = 1.0. The
Reynolds number of the flow, based on the bulk velocity and the half-channel width, is set
to Re = 3000, which corresponds to a friction Reynolds number Reτ ≈ 140. We employ
an in-house code based on work by Bernardini et al. (2014) to simulate the MFU.
The flow is discretized on a Cartesian grid with staggered central second-order finite-
difference approximations. Time marching is performed with a third-order low-storage
Runge-Kutta algorithm coupled with a second-order Crank-Nicolson scheme, which are
combined in a fractional-step procedure in which the convective and diffusive terms are
treated explicitly and implicitly, respectively (Bernardini et al. 2014). The solution of
the Poisson equation for the pressure is obtained with a direct solver based on the Fourier
transform (Kim & Moin 1985).
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(a) (b)

FIGURE 1. Time evolution of the kinetic energy (a) and dissipation rate (b) in the minimal
flow unit. Extreme events correspond to the peaks in k and D.
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x

y

z

FIGURE 2. Snapshots of the Q-criterion isosurface (with value Q = 0.1) during an extreme
event, where Q = 0.5(||ω||2 − ||S||2), ω is the vorticity vector, and S is the strain-rate tensor.

2.1. Extreme events

The extreme events in the MFU are quasi-relaminarization events, which take place close
to either wall, and are accompanied by bursts in the total kinetic energy, k(t), and its
dissipation rate, D(t). These are computed as

k(t) =

∫ ∫ ∫

Ω

1

2
u · udxdydz, D(t) =

∫ ∫ ∫

Ω

tr (τ∇u) dxdydz, (2.2)

where Ω is the computational domain and τ = µ
(
∇u +∇uT

)
is the stress tensor, with

µ being the dynamic viscosity.
Figure 1 shows the time evolution of k and D, in which the extreme events are related

to the peaks in their time series which correspond to quasi-relaminarization events close
to either or both walls, as shown in Figure 2. Time is normalized by the eddy turnover
time. During an extreme event, (i) the flow at either wall (the upper wall in Figure 2)
becomes laminar (Figure 2(a-c)); (ii) the flow remains laminar for some time (Figure
2(c-f)), which results in a larger axial velocity close to the centerline (and therefore
an increase in k(t)); (iii) the higher velocity close to the centerline makes the effective
Reynolds number of the flow larger, which in turn makes the flow prone to a turbulence
burst on the quasi-laminar wall; (iv) the turbulence burst occurs on the quasi-laminar
wall, which results in a large increase in the dissipation rate, D(t); and (v) the flow close
to that quasi-laminar wall becomes turbulent again, which leads to a decrease in the
kinetic energy, k(t) (Figure 2(g)).
Because an extreme event is localized at either wall, the total kinetic energy computed

over the whole domain makes the identification of specific extreme events difficult, and
only very strong extreme events where the flow near both walls simultaneously becomes
quasi-laminar are apparent in the time series of total kinetic energy. Those are the peaks
observed in Figure 1. Therefore, we define a near-wall kinetic energy deficit to identify
extreme events. This is defined as the deficit of kinetic energy in a layer at either wall,
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~

FIGURE 3. Schematic of the 3D convolutional autoencoded echo state network.

which occurs when it becomes quasi-laminar. Hence, we first define

ku =

∫ δ

0.75δ

∫ ∫
1

2
u · udxdzdy, kl =

∫ −0.75δ

−δ

∫ ∫
1

2
u · udxdzdy (2.3)

where ku and kl are the near-wall kinetic energy of the flow at the upper and lower wall,
respectively, and compute the normalized kinetic energy deficit as k̃·w = 1−k·w/max(k·w)
where · is l (u) for the lower (upper) wall. The symbol ·̃ indicates the normalization.
We define an extreme event as the event peak that occurs when either kuw or klw are
greater than 0.55. This threshold was chosen to ensure that only clear peaks of kinetic
energy are considered as extreme events. Such a value indeed indicates a large deficit in
kinetic energy near that wall, and thus a quasi-laminar flow state. The dataset of the
MFU contains 2000 eddy turnover time (i.e., 20000 snapshots) on a grid of 32×256×16,
which contains 50 extreme events. The first 200 eddy turnover times of the dataset (2000
snapshots) are employed for the training, which contains only 4 extreme events.

3. Methodology

We develop a hybrid architecture: the 3D convolutional autoencoded echo state net-
work (CAE-ESN). This is composed of (i) a 3D convolutional autoencoder, which learns
an appropriate reduced latent representation of the flow state, and (ii) an echo state net-
work, which learns the flow dynamics in the latent space. A schematic of the proposed
architecture is shown in Figure 3.

3.1. Convolutional autoencoder

The three dimensional convolution autoencoder (CAE) (boxes in blue and green in Figure
3) learns an efficient reduced-order representation of the original data, which represents
the flow state u ∈ RNx×Ny×Nz×Nu , where Nx, Ny and Nz are the number of gridpoints in
the streamwise, wall-normal and spanwise directions, respectively. The number of velocity
components is Nu = 3. On one hand, the encoder (blue box in Figure 3) reduces the
dimension of the data down to a latent state, c of a smaller dimension Nc. This operation
can be symbolically expressed as c = E(u;φE) where φE represents the weights of the
encoder. On the decoder side (green box in Figure 3), the CAE then reconstructs the data
from the latent state back to the original full flow state. This operation is expressed as
ũ = D(c;φD) where φD are the trainable weights of the decoder. We employ a multiscale
autoencoder, which was originally developed for image-based super-resolution analysis
(Hasegawa et al. 2020). It relies on the use of various scales of convolutional filters to
analyse the input information and allowing the reconstruction (Du et al. 2018). In this
work, two scales of filters (3×5×3) and (5×7×5) are employed (represented schematically
by the two parallel streams of encoder/decoder in the blue and green boxes in Figure
3). This choice ensures a trade-off between the size of the 3D multiscale autoencoder
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and the reconstruction accuracy (Section 4). To reduce the dimension of the input, the
convolution operation in each branch of the encoder is applied in a strided manner, which
means that the convolutional neural network (CNN) kernel is progressively applied to
the entire input by moving the CNN kernel by (sx, sy, sz) = (2, 4, 2) grid points. This
results in an output of a smaller dimension than the input. After each convolution layer,
to fulfill the boundary conditions of the MFU, periodic padding is applied in the x and
z directions, while zero padding is applied in the y direction. Three successive layers
of CNN/padding operations are applied to decrease the dimension of the original field
from (32, 256, 16, 3) to (2, 4, 2, Nf), where Nf is the specified number of filters in the
last encoding layer. As a result, the dimension of the latent space is Nc = 16×Nf . The
decoder mirrors the architecture of the encoder, where transpose CNN layers (Zeiler et al.
2010) are used, which allows for an increase in the dimension of the information from
the latent dimension up to the original flow dimension. The end-to-end autoencoder is
trained by minimizing the mean squared error (MSE) between the reconstructed velocity
field, ũ, and the original field, u.

3.2. Echo state network

An ESN is composed of (i) an input matrix, Win, (ii) a reservoir characterized by a state
matrix, W , and (iii) an output matrix, Wout (Figure 3). At a time ti, the input vector,
c(ti) ∈ RNc is mapped into the reservoir state by the input matrix. The reservoir state,
r(ti) ∈ RNr with Nr ≫ Nc, is updated at each time iteration as a function of the current
input and its previous value as

r(ti+1) = tanh (Win[c(ti); 0.1] +Wr(ti)) , (3.1)

where [·; ·] indicates a vertical concatenation to introduce a bias at the input. The pre-
dicted output, c̃(ti+1) ∈ RNc , is obtained from

c̃(ti+1) = r̂(ti+1)
TWout, (3.2)

where r̂(ti+1) = g(r(ti+1)) is the result of a nonlinear transformation of r(ti+1) through
the nonlinear operator g(·). Here, g is the vertical concatenation of r(ti) with the unit
scalar, i.e., r̂(ti) = [r(ti); 1], which is introduced following Racca & Magri (2021) to
break possible unphysical symmetric solution from the ESN. The input matrix, Win,
and state matrix, W , are (pseudo)randomly generated and fixed. Only the weights of
the output matrix, Wout, are computed by training the network. The input matrix and
state matrix are constructed as described by Racca & Magri (2021), which results in a
tunable input scaling σin, which describes the range of the distribution from which the
elements of Win are sampled, and a tunable spectral radius ρ of W . To train the output
matrix, Wout, first the ESN is run in an open-loop configuration, where the data is fed
to the ESN as input at each time step and the reservoir state, r(ti), is stored (except
the initial transient part, which is called the washout part). Subsequently, we minimize
the MSE between the output of the ESN, c̃(ti), and the data, c(ti), over a training set
of Ntr points. This can be done efficiently with ridge regression

(
RRT + βI

)
Wout = RCT , (3.3)

where R ∈ RNr×Ntr and C ∈ RNc×Ntr are the horizontal concatenation of the updated
reservoir states, r(ti), and the data, c(ti), respectively; I is the identity matrix; and
β is the user-defined Tikhonov regularization parameter. Because the cost functional
is quadratic, the training finds a global minimum with a solution of a linear system.
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(a) (b) (c)

FIGURE 4. Comparison of (a) the actual velocity magnitude (ground truth), (b) the CAE-
reconstructed velocity magnitude, (c) the root-squared difference between (a) and (b) in the
mid-y plane for a typical snapshot in the testing dataset.

For a given reservoir size, Nr, to identify appropriate hyperparameters of the ESN, i.e.,
the input scaling, σin, Tikhonov regularization parameter, β, and spectral radius ρ, a
Bayesian optimization approach based on the recycle validation in employed (Racca &
Magri 2022). The role of the ESN in the architecture we propose is to learn the dynamics
of the MFU in the latent space discovered by the autoencoder, thereby enabling the
forecast of the MFU in this latent space. Given a state of the MFU defined in the latent
space at a time ti, c(ti), the ESN time advances it to obtain c(ti+1) = F(c(ti);φF ), where
F represents the operation performed by the ESN and φF its tunable (hyper)parameters.

3.3. Convolutional autoencoded echo state network

We propose the CAE-ESN to time-accurately predict turbulent dynamics and extreme
events from data. First, the CAE is trained separately on the dataset of the MFU, using
a 60/20/20% split for training/validation/testing, selected randomly from the dataset
described in Section 2, {u(ti)}i=1,...,Nt

, where Nt is the number of snapshots used (here
2000). The ADAM optimizer is used to train the CAE (Kingma & Ba 2015). Second, once
the CAE has been trained, the encoder is employed to convert the original dataset from
the full-flow state to the latent space. Therefore, the dataset {c(ti)}i=1,...,Nt

is obtained
as {c(ti)}i=1,...,Nt

= {E(u(ti))}i=1,...,Nt
. The ESN is then trained separately using the

dataset {c(ti)}i=1,...,Nt
with a Bayesian optimization approach, as described in Section

3.2. Once this is done, the entire CAE-ESN is trained. Finally, to forecast the MFU
dynamics, all the parts of the CAE-ESN are seamlessly assembled as follows: (i) A given
input flow state u(ti) is fed to the encoder part of the autoencoder, (ii) the encoder
transforms the input, u(ti), in the latent space, c(ti) = E(u(ti);φE), (iii) the ESN time
advances the flow state in the latent space, c(ti+1) = F(c(ti);φF ), and (iv) the decoder
reconstructs the predicted time-advanced flow state as ũ(ti+1) = D(c(ti+1);φD). If the
CAE-ESN is used to perform autonomous prediction (and therefore is in a “close-loop”
format), this last prediction can then be fed back as the input of the encoder to obtain
multistep prediction of the CAE-ESN.

4. Results

We assess the proposed CAE-ESN with three tests.

4.1. Reconstruction error

We analyze the ability of the CAE to learn a latent space in which to encode the flow
state accurately. We train three CAEs with dimensions of latent space Nc = 384, 768, and
1536. We compute their reconstruction errors based on the MSE. A typical comparison
between a reconstructed velocity field obtained from the CAE with Nc = 1536 is shown
in Figure 4. The CAE is able to reconstruct accurately the features of the velocity field.
To provide a comparison with the CAE, we also compute the reconstruction error
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POD
CAE

FIGURE 5. Reconstruction error with POD-based method (blue) and autoencoder (yellow) for
different dimensions of the latent space, Nc, or number of retained POD modes, NPOD. The
reconstruction error is computed as the mean squared error between the reconstructed velocity
field and the exact one, averaged over the testing dataset.

(a) (b)

FIGURE 6. Profile of (a) mean streamwise and (b) fluctuating streamwise and spanwise velocity
profiles. Black line: true statistics. Red/blue dots: statistics from CAE-ESN.

obtained when using modes from POD with a given number of retained POD modes.
The POD modes are obtained with the method of snapshots on the same dataset. The
reconstruction error is calculated for a varying number of POD modes. Figure 5 shows
this comparison. POD decomposition requires more than 15000 POD modes to reach the
same level of accuracy as the CAE with a latent space of dimension 1536. This highlights
the advantage of learning a latent representation with nonlinear operations, as in the
autoencoder, compared with relying on a linear combination of modes, as in POD.

4.2. Turbulent statistics

We assess the ability of the CAE-ESN to accurately reproduce the dynamics of the MFU
in a statistical sense. In this section and the next, a CAE-ESN with Nc = 1536 and
Nr = 200000 is used. First, the statistics of the velocity are analyzed here. To do so,
the CAE-ESN is allowed to evolve autonomously; i.e., after a short washout time, the
prediction from the CAE-ESN is fed back as its input so that the CAE-ESN makes
a long-term prediction of the flow evolution. This has been performed for a duration
of 500 eddy turnover times, over which the velocity statistics are collected. Figure 6
shows the velocity statistics averaged in time and over the periodic directions (x and
z directions), which results in profiles along the wall-normal direction. The CAE-ESN
reproduces accurately the statistics of velocity, which means that the CAE-ESN is able
to make long-term predictions of the MFU while exhibiting the correct dynamics.

4.3. Extreme events forecasting

The ability of the CAE-ESN to forecast extreme events of the MFU is assessed. To do
so, from the full MFU dataset of 2000 eddy turnover times, all the instants at which an
extreme event occurs are extracted by identifying the time instants when the near-wall
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FIGURE 7. Typical evolution during an extreme event of the near-wall kinetic energy deficit
during (a) a true positive and (b) a false negative predicted by the CAE-ESN (orange) and the
true evolution (dark gray). The insets show the Q-criterion for the time instants indicated by
the dashed vertical lines. The vertical full line indicates the instant when the CAE-ESN starts
its autonomous prediction and the horizontal full line indicates the threshold for extreme events.

kinetic energy deficit crosses the specified threshold. From these data, 50 extreme events
are identified and the associated time instants are denoted tex,n, where n is the index
of the extreme event. For each extreme event, the CAE-ESN is initialized with the flow
state at time t = tex,n − tpred, where tpred is the prediction time. Subsequently, the
CAE-ESN is employed to perform a flow prediction. We determine whether CAE-ESN
has predicted the event by assessing whether the predicted normalized near-wall kinetic

energy deficit, k̃·w, reaches the threshold value defined in Section 2 in the time window
[tex,n−4τe, tex,n+4τe], where τe is the eddy turnover time. The prediction is considered a
true positive when such a prediction is made correctly. If the CAE-ESN has not predicted
the extreme event, i.e., the predicted value of the normalized near-wall kinetic energy
deficit does not cross the defined threshold, then the prediction is considered a false
negative.
Typical evolutions of the flow field and near-wall kinetic energy deficit during a true

positive and a false negative are shown in Figure 7, in which the time is normalized
by the eddy turnover time. For the true positive case, the CAE-ESN is able to predict
the occurrence of the relaminarization event that occurs on both walls. This is further
evidenced by the near-wall kinetic energy, which evolves as the true flow. For the false
negative, the CAE-ESN partially predicts a quasi-relaminarization event. However, the
duration during which the flow close to the upper wall exhibits a quasi-laminar state is
underestimated, and the flow returns to a fully turbulent state faster than the true flow
state. This suggests that the ESN may not have accurately predicted the flow in the
latent space. This could potentially be improved by combining the training of the CAE
with the ESN (Doan et al. 2021a) or by enforcing physical constraints within the latent
space (Doan et al. 2021b). Such explorations are left for future work.
The performance of the CAE-ESN in predicting the extreme events is shown in Figure

8. Figure 8(a) depicts the recall value, defined as TP/(TP + FN), where TP and FN
are the number of true positives and false negatives, respectively, for different values
of the threshold used to define an extreme event and different prediction times. For a
prediction time of one eddy turnover time, a recall value of 85% is found, which shows
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FIGURE 8. (a) Recall of the CAE-ESN for different thresholds for the definition of an extreme
event and different prediction times (expressed in eddy turnover time). (b) PDF of the near-wall
kinetic energy deficit.

that the CAE-ESN is able to forecast the short-term occurrence of extreme events. As
expected, the performance decreases when the prediction time increases. A decrease in
the threshold used to define an extreme event leads to an increase in the recall. This is
in agreement with the observations made in Figure 7, in which the CAE-ESN is able to
predict the main features of the MFU during an extreme event but where a lower peak
value of k̃·w was observed for the CAE-ESN. The latter was due to some inaccuracies in
how the CAE-ESN predicts the flow features and its dynamics. Finally, Figure 8(b) shows
the probability density function (PDF) of the near-wall kinetic energy deficit obtained
from performing a long-term prediction of 1000 eddy turnover times. The CAE-ESN
reproduces accurately the long-tailed PDF of the near-wall kinetic energy deficit up
to values larger than the extreme events threshold, indicating that the CAE-ESN can
reproduce the occurrence of extreme events in a statistical sense.

5. Conclusions and outlook

In this work, we develop a machine-learning method to time-accurately predict the
occurrence of extreme events in a turbulent flow. We propose the 3D CAE-ESN frame-
work to learn the dynamics of the MFU, which exhibits extreme events in the form of
near-wall quasi-relaminarization events. This framework is composed of a CAE, which
learns an efficient reduced latent representation of the flow state, and of an ESN, which
is able to learn the dynamics of the MFU in this latent space. We apply this framework
to the 3D MFU. First, we show that the CAE-ESN is able to compress the flow state
by three orders of magnitude to a lower-dimensional latent space of a few thousand vari-
ables to accurately reconstruct the flow state from this latent space. This constitutes a
significant improvement over a POD-based approach, which requires at least one order
of magnitude more POD modes to achieve a similar accuracy as the CAE. This is a
particularly important advantage when attempting to identify the dynamics in this la-
tent space, given that this latent space with CAE has a reduced number of degrees of
freedom to consider. Second, the combined CAE-ESN is used to learn and predict the
dynamics of the MFU. The CAE-ESN can reproduce autonomously the statistics of the
velocity field of the MFU, which demonstrates the ability of the proposed framework to
learn and make long-term predictions of the dynamics of the MFU. Finally, the ability of
the CAE-ESN to time-accurately forecast the occurrence of extreme events is analyzed.
The CAE-ESN has a high accuracy in predicting extreme events and in reproducing the
tail-end statistics of the wall kinetic energy deficit magnitude, which is associated with
the extreme events.
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The proposed method and results open up possibilities for using deep learning to learn
the dynamics of turbulent flows and predict extreme events. Future work will be devoted
to physically interpreting the latent space discovered by the CAE, and to exploiting the
latent representation to impose physical constraints such as the Navier-Stokes equations.
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