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A universal velocity transformation for boundary
layers with pressure gradients

By Xiang I. A. Yang, 7 Peng E. S. Chen, 1 Wen Wu § AND Kevin P. Griffin

The canonical law of the wall does not capture the scaling of the mean flow when a
boundary layer is subjected to a strong pressure gradient. In such a boundary layer, the
mean flow is affected by the spatio-temporal history of the imposed pressure gradient,
and accounting for history effects remains a challenge. This work aims to address this
challenge. We derive a velocity transformation that accounts for the history effects and
maps the mean flow to the canonical law of the wall. The transformation is tested against
channel flow with a suddenly imposed adverse or favorable pressure gradient and bound-
ary layer flow subjected to an adverse pressure gradient. We find that the transformed
velocity profiles closely follow the equilibrium law of the wall.

1. Introduction

Boundary layers with adverse pressure gradients (APGs) are common in fluid engineer-
ing. We begin our discussion by estimating the APG encountered in engineering flows.
Consider, e.g., the boundary layer on the suction side of an airfoil (a control surface on a
vehicle, a turbine blade, etc.). At large angles of attack, the pressure gradient causes an
appreciable change in the fluid velocity. An order-of-magnitude estimate of the pressure
gradient is dP/dx = apUg /¢, where Uy is the velocity of the incoming fluid, ¢ is the chord
length, and « is a function of chord length, the radius of the leading edge, the attack
angle, etc., and is ~ 0(0.1). Define II = (§/7,) (dP/dz), where ¢ is the boundary layer
thickness, and 7, is the wall-shear stress. We have II = §/7, apUg/c = 2a(5/c)/Cy.
A rough estimate is: Cy ~ O(107* — 1073), ad/c ~ 0(0.001 — 0.01) (Anderson 2011),
which leads to II ~ O(1) to O(100). Following this estimate, we consider |II| between 1
and 100.

The focus of the paper is the scaling of the mean flow. The canonical law of the wall
(LoW) provides a good working approximation of the mean flow in a zero-pressure-
gradient (ZPG) boundary layer. The LoW asserts that for v/u, < y < 4,

Ut = Closly") + B, (1.1)

where v is the kinematic viscosity, u, is the friction velocity, y is the wall-normal coordi-
nate, ¢ is an outer length scale (boundary-layer height, half-channel height, pipe radius),
U is the mean flow, the superscript + denotes normalization by the wall units, x ~ 0.4
is the von Karman constant (keeping only one significant digit), and B ~ 5 is a constant
(Kim et al. 1987; Marusic et al. 2013). Equation (1.1) fails when the boundary layer is
subjected to a strong pressure gradient. For illustrative purposes, we consider the model
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FIGURE 1. (a) Schematic of the model problem. A fully developed channel is subjected to a
suddenly imposed APG and decelerates as a result. (b) Mean velocity profiles. The flow is
initially at a Reynolds number Re. = 1000. An APG IT = +100 is imposed. Shown here are
velocity profiles at turo/d = 0.005 (blue), 0.035 (red), and 0.065 (yellow). The dashed lines
correspond to Eq. (1.1), but we allow x and B in Eq. (1.1) to vary. Best fits yield k = 0.35,
0.23, 0.079, and B = 5.8, 5.48, 9.2 at tu,,0/d = 0.005, 0.035, and 0.065, respectively.

problem sketched in Figure 1(a), where a fully developed channel is subjected to a sud-
denly imposed APG. Figure 1(b) shows the velocity profiles at a few time instants after
an APG II = 100 is suddenly imposed on a Re,; = u,00/v = 1000 channel. Aside from a
significantly elevated velocity profile in the core region, the region where Ut = 4 also

retreats. Define

Apt = ’/3 E,andﬂz 52 E,
pu“r,O dz puT,O dz

(1.2)

which are common non-dimensional measures of the APG. Here, § is the Clauser pressure
gradient coefficient, §* is the displacement height, and p is the fluid density. Note that
the Clauser parameter is the ratio of the two quantities which cause the momentum
thickness to increase in a spatially developing boundary layer (in the momentum integral
equation). The momentum integral equation for the channel flow is different; therefore,
the Clauser parameter may not be the most relevant parameter to describe the strength
of a pressure gradient in a channel flow. As such, we report both Ap* (Lozano-Durdn
et al. 2020) and . For this model problem, Ap™ = 0.1, and 8 = 11.6. We see clear
history effects from Figure 1(b): The mean flow deviates further away from the canonical
LoW as time increases. Such history effects were also noted by Bobke et al. (2017), Volino
(2020), and Romero et al. (2022), among others. Equation (1.1) with k =0.4 and B=5
does not fit the data, not even the lower part of the velocity profiles (Galbraith et al.
1977; Perry 1966). Nonetheless, by varying the two constants, Eq. (1.1) fits the mean
flow in the inertial layer (Lee & Sung 2009; Knopp et al. 2021). Here, the inertial layer
is the layer within which the outer length scale does not play a role. Tuning x and B to
fit the data reduces the modeling task to a fitting exercise, which lacks universality. The
same can be said about the half-power law, where one must also adjust the constants to
fit the data (Knopp et al. 2021).

This work aims to establish a universal mean flow scaling for boundary-layer flows
subjected to streamwise pressure gradients. We do that by a velocity transformation.
The idea has received much attention in the high-Mach literature (Huang & Coleman
1994; Trettel & Larsson 2016; Griffin et al. 2021). The goal of these transformations is
to find U,, and L,,,

U+t ot

1 1
dauU, * = —d 1.3
T /0 7w (1.3)

such that the transformed velocity U* follows the LoW and is a function of y* only

U =
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irrespective of the density variation in the flow. We share a similar goal. We want to find
U,, and L,, such that the transformed velocity U* follows the LoW and is a function
of y* only irrespective of the pressure gradient, but in this context, deviations (in U™)
from the LoW are due to streamwise pressure gradients.

The rest of the paper is organized as follows. We derive the transformation in Section
2. We then test our scaling against direct numerical simulation (DNS) data. Details of the
DNS data are presented in Section 3, followed by test results in Section 4. We conclude
in Section 5.

2. Velocity transformation

In this section, we derive the velocity transformation from the Navier-Stokes equation
and discuss its properties.

2.1. Assumptions

The derivation assumes the following.

(a) Incompressibility: The flow is incompressible.

(b) Two-dimensional mean flow: Pressure gradients are applied in the streamwise di-
rection only, and the mean flow is two-dimensional.

(¢) Thin boundary layer: The velocity in the wall-normal direction is much smaller
than that in the streamwise direction. This assumption limits the discussion to attached
flows, i.e., before incipient separation.

(d) Equilibrium initial state: The mean flow initially conforms to the LoW.

(e) Universality: Define

au*

f= &y

Here, f is assumed to be only a function of y* in the inertial layer. Since U™ is a function

of y* only, it follows from this assumption that v;" is also a function of only »* in the

inertial layer. In addition, because f = 1 in the inertial layer of ZPG boundary-layer

flows (due to the constant stress layer assumption), the universality assumption implies
that f =1 in all flows—in the layer where the outer length scale does not play a role.

(1+v). (2.1)

2.2. Governing equation
The Reynolds-averaged streamwise momentum equation reads

oU OU _OU  OP  Orw Oy

E+U%+Va—y—f% E + By (2.2)
where
oU , oUu oV /o
TM:I/%7<uu , sz:y(a—y+%>7<uv>. (2.3)

The equation assumes incompressibility and two-dimensional mean flow. Here, uppercase
letters denote mean quantities, lowercase letters denote instantaneous quantities, ' de-
notes fluctuations, x, y, and z are the streamwise, wall-normal, and spanwise directions,
U,V, W oru, v, ware the velocity in the three Cartesian directions, 7 is the stress, and
(-) denotes ensemble averaging. Invoking the thin boundary-layer assumption leads to

(2.4)
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It follows from Egs. (2.2)-(2.4) that
oU oU oU oprP 87—zy

o Ve TV T T T ey (25)
where
ou '
Tey = l/a—y —(u'v). (2.6)
We take the y derivative of both sides of Eq. (2.5),
0 0 0\ oU dUIU OV oU P 0Py
(awawafy)a*y oy or T oy oy - owdy T oy 27)
Incompressiblity requires
oU oV
= 42 = 2.
a9 3y 0, (2.8)
and the thin boundary-layer assumption suggests
PP _ 91y
aeay < o (2.9)
Equations (2.7)-(2.9) lead to
D OU 07y
Didy = (2.10)
Invoking the eddy viscosity v, the shear stress term is
Toy = U (1+v). (2.11)

dy
Here, 1 is unspecified. Therefore, invoking 1, introduces no modeling error. Plugging
Eq. (1.3) into Eq. (2.11), we have

YUy (2.12)

Tay Lm

2.3. Transformation
Equation (2.1) directly leads to

*

U = /y I ay (2.13)
0 1+ V;L

Equation (2.13) is a velocity transformation, but it requires knowledge of y*. In the
following, we derive a transformation that maps y* to y*.
Integrating Eq. (2.10) in (Lagrangian) time, we have

ou ou L 02Ty
= =(=) + Dt, 2.14
Jy ( Oy )o o Oy? (214)

where the subscript 0 denotes quantities evaluated at ¢ = 0. Note that the integration
is with respect to the material differential. Invoking the assumed initial condition, the
mean flow at ¢ = 0 abides by the LoW; therefore,

(&), (V) @19

F(¢) =1+ ro (1 —exp(—¢/A))*, (2.16)

Here,
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is the damping function (Kawai & Larsson 2012), where ¢ is a dummy variable, and
A =17 is the van Driest damping coefficient (Cabot & Moin 2000). Invoking Eq. (2.12)
and considering that U* follows the LoW, the left-hand side of Eq. (2.14) is

oU Tz 1

—_— = . 2.17
oy = vf F) (217
Substituting Eq. (2.17) into Eq. (2.14) and rearranging, we have
1 T
F(y*) = = 2.18
) (aﬂ) T (219
8y 0 0 8y2

Here, F' is given in Eq. (2.16), f = 1 for y < ¢, its value in the outer layer can be
measured from an equilibrium flow (as a function of y/d), and the derivative (OU/9y)o
is known from the equilibrium LoW. Thus, y* can be solved iteratively from Eq. (2.18).

2.4. Discussion

The velocity and length scale transformations are given by Egs. (2.13) and (2.18). We
have the following remarks. First, the transformation accounts for history effects through
the time integral. It is interesting to note that the flow does not forget. In other words, an
event at t = 0 and an event at a later time instant contribute equally to the transforma-
tion. Second, the transformation is valid in and outside the inertial layer. The function f
is 1 in the inertial layer and varies as a function of y/§ outside. By measuring f from the
initial condition as a function of y/J, the transformation should collapse, at least in prin-
ciple. Therefore, the transformation avoids the constant stress layer assumption, at least
formally. Third, the transformation is descriptive rather than predictive. Closures for
Try and v; are needed for the transformation to be predictive, a topic we do not discuss
here. Fourthly, the transformation is not explicit, and one must solve F(y*) = Const to
get y*. This is rather straightforward and usually requires only a few Newton-Raphson
iterations.

In the following, we simplify and write the transformation for the log layer in a ZPG
boundary layer, a channel with a suddenly imposed streamwise pressure gradient, and
spatially developing boundary layers with streamwise pressure gradients. First, for the
log and the viscous layers in a ZPG boundary layer, we have

Tey = Const. (2.19)

We can easily verify that U* = Ut and y* = y+. Second, we consider Couette-Poiseuille
flow. The flow is subjected to an APG near one wall and a favorable pressure gradient
(FPG) near the other. The stress 7,, is a linear function of y. The function f can be
measured from the Couette flow, and f = 1. It follows that Eq. (2.18) becomes

F(y*) =1, F(y"). (2.20)

Third, for a channel with a suddenly imposed streamwise pressure gradient, the mean
advection is 0; therefore, the Lagrangian integration degenerates to an Eulerian one. That
is, Dt = dt. Furthermore, measuring f from the initial condition, we have f =1 — y/h.
It follows that Eq. (2.18) becomes

1 Tay
T o2 1—y/h)
<a£) N (97'_;ydtV( y/h)
ay 0 0 ay

Fourth, for a spatially developing turbulent boundary layer with streamwise pressure

P(y") = (2.21)




340 Yang et al.

Case Rero 1Tlp Lg X Ly XL, Ng X Ny X Ny Azt x AyJr X A:r
R5A1 544 1 4m X 2 X 27 576 x 243 x 540  11.8 x (0.048,7.23) x 6.32
R5A10 544 10 4m X 2 X 27 576 x 243 x 540  11.8 x (0.048,7.23) x 6.32
R5A100 544 100 47 X 2 X 27 576 x 243 x 540 11.8 x (0.048,7.23) x 6.32
R5F10 544 —10 4w x 2 X 2w 1024 x 512 x 1024 13.4 x (0.13,6.72) x 6.70
R5F100 544 —100 47 x 2 x 27w 1024 x 512 x 1024 12.6 x (0.12,6.32) x 6.29
R10A10 1000 10 8m X 2 X 3w 2048 x 512 x 1536 12.3 x (0.12,6.15) x 6.13
R10A100 1000 100 8m X 2 X 3w 2048 x 512 x 1536 12.3 x (0.12,6.15) x 6.13

W=D w2

TABLE 1. DNS details of channel flows subjected to a suddenly imposed adverse (II > 0) or
favorable (IT < 0) pressure gradient. Re; o is the initial Reynolds number. II is positive for APG
and negative for FPG. L, L,, and L. are the domain sizes in the streamwise, wall-normal,
and spanwise directions. Here, normalization is by the half-channel height. n., n,, and n. are
the number of grid points in the three Cartesian directions. Az™, Ay™, and Az" are the grid
spacings in the three directions. For Ay™, we list the resolution at the wall and the channel
center. Here, we list the grid resolution at the beginning or the end of the DNSs. For IT > 0, a
finer grid must be employed at the beginning than at the end, and we list the grid resolution at
the beginning of the DNS and vice versa. IV is the number of ensembles used to compute the
flow statistics.

gradients, Lagrangian integration is along the streamline, and Eq. (2.18) becomes

1 Tay
(50) + [ G
)y Jo 0Oy* [U]

F(y*) = (2.22)

where ds is along a streamline, and |U| is the velocity magnitude.

3. Data

To test the velocity transformation, we conduct DNSs of channel subjected to a sud-
denly imposed APG or FPG. The flow is sketched in Figure 1(a). Table 1 shows the DNS
details. The nomenclature is as follows: R[Re,/100]F/A[|II|], where F is for FPG, and
A is for APG. For APGs, IT is 1, 10, or 100, corresponding to a weak APG, a moderate
APG, and a strong APG. For FPGs, II = —10 or —100, corresponding to a moderate and
a strong FPG. Note that FPGs are not very challenging (or interesting) in this context
because the canonical LoW works fairly well for flows with FPGs (Townsend 1956; Mel-
lor & Gibson 1966). The initial Reynolds number is Re, o = 544 or 1000. The Reynolds
number increases when an FPG is applied and decreases when an APG is applied. The
size of the channel is (47 x 2 x 2m)d for the R5 (Re, = 544) cases and (87 x 2 X 3m)d
for the R10 (Re, = 1000) cases. The domain sizes are larger than that of the minimal
channel (Lozano-Durdn & Jiménez 2014). The grid resolution is comparable to that of
Mathur et al. (2018) and Yang et al. (2021) and is such that the flow is well resolved
from the beginning to the end. We employ statistically uncorrelated initial flow fields and
repeat the simulations multiple times to get converged statistics following Lozano-Duran
et al. (2020). The code we use is the same as the one used by Lee & Moser (2015). Details
of the code are presented by Graham et al. (2016) and Lee & Moser (2015) and are not
detailed here for brevity.

We also use the boundary-layer data from Bobke et al. (2017). The flows are sketched
in Figure 2. Flow parameters that are relevant to this analysis are listed in Table 2.
Further details are not shown for brevity.
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FIGURE 2. A sketch of a boundary layer subjected to APGs. The pressure gradient is imposed
by varying the freestream velocity. The reader is directed to Bobke et al. (2017) for more details.

Case Flow type Ref. Re, 11
m13 APG-BL  Bobke et al. (2017)  [190;896] [3.80;5.51]
ml16 APG-BL  Bobke et al. (2017)  [189;934] [5.82;8.67]
ml8 APG-BL  Bobke et al. (2017)  [192;973] [7.29;12.5]
bl APG-BL  Bobke et al. (2017)  [190:862] =~ 4.11
b2 APG-BL  Bobke et al. (2017)  [189;910] = 7.55
ZPG ZPG-BL Schlatter & Orlii (2010) [252;1271] 0

TABLE 2. Details of the boundary-layer flows. The nomenclature of the BL cases is the same
as that used by Bobke et al. (2017). We also include the ZPG-BL data from Schlatter & Orli
(2010) as the standard case.

4. Results

First, we present the channel flow results. Figures 3 and 4 show the mean velocity
profiles in the APG cases. Figure 3 shows the R5 results, and Figure 4 shows the R10
results. The results at other time instants are similar and are not shown for brevity. In
R5A1, a weak APG is applied, and the flow remains in a quasi-equilibrium state. As a
result, both U™ and U* follow the LoW. In R5A10 and R10A10, a moderate APG is
applied, and we see noticeable deviations in U™ from the LoW at ¢t = O(10). Nonetheless,
U™ follows the LoW closely at all time instants. In R5A100 and R10A100, a strong APG
is applied. The viscous units fail to collapse the velocity profiles, and only U* follows
the LoW. Figure 5 shows the mean velocity profiles in the two FPG cases. FPGs lead to
noticeable deviations from the LoW in case R5F100, but the transformed velocity profiles
collapse with the LoW. Last, Figure 6 shows the boundary-layer results. We see that the
transformation collapses all profiles, and the transformed velocity profiles follow the LoW.
However, the collapse is less convincing compared with the results in Figures 3 and 4.
This is largely because the boundary-layer data, particularly the 7., data, suffer from a
lack of statistical convergence (results not shown for brevity). Compared with channel
flow, where one can average in time and in the streamwise and the spanwise directions,
one can average a boundary-layer flow only in time and in the spanwise direction.

5. Conclusions

We derive a velocity transformation from the Navier-Stokes equation that maps the
mean velocity profiles in non-equilibrium boundary layers to the LoW. This is the first
time the velocity transformation idea has been applied to handle non-equilibrium effects.
History effects are accounted for in the transformation through a Lagrangian integral
originating in the equilibrium state. This integration weights all history events equally,
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FIGURE 3. Mean velocity profiles at a few time instants. (a, b, ¢) U as a function of y*. (d, e,
f) U* as a function of y*. (a, d) R5A1. (b, e) R5A10. (c, f) R5A100. Here, time ¢ is normalized
with 6/ur . CH is the velocity profile in a fully developed Re, = 544 channel.
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FIGURE 4. Mean velocity profiles at a few time instants. (a, b) UT as a function of y*. (c, d)
U* as a function of y*. (a, ¢) R10A10. (b, d) R10A100. CH is the velocity profile in a fully
developed Rer = 1000 channel.

and the flow does not forget unless the effects of one event are canceled by another. The
transformation is tested in channel flows subjected to suddenly imposed pressure gradi-
ents, Couette-Poiseuille flows, and spatially developing turbulent boundary layers with
streamwise pressure gradients. We show that while the wall-unit scaled velocity profiles
deviate from the LoW, the transformed profiles follow the LoW closely, irrespective of
the pressure gradients. A limitation of the present transformation is that it is descriptive
rather than predictive. Future work will focus on closing the term 7.
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FIGURE 5. Mean velocity profiles at a few time instants. (a, b) U™ as a function of y*. (c, d) U*
as a function of y*. (a, ¢) R5F10. (b, d) R5F100. CH is the velocity profile in a fully developed
Re; = 544 channel.
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FIGURE 6. Mean velocity profiles in boundary-layer flows at multiple streamwise locations: (a)
and (d) for Re; = 300; (b) and (e) for Re, = 500; (¢) and (f) for Re, = 700. ZPG is the velocity
profile in a ZPG boundary layer at Re, = 1272.

Acknowledgments

Yang thanks Parviz Moin, Ahmed Elnahhas, Rahul Agrawal, Adrian Lozano-Duran, Jane
Bae, Olaf Marxen, Michael Cui, and Mostafa Momen for their generous help during his
stay at Stanford.

REFERENCES
ANDERSON, J. 2011 Fundamentals of Aerodynamics. McGraw Hill.



344 Yang et al.

BOBKE, A., VINUESA, R., ORLU, R. & SCHLATTER, P. 2017 History effects and near
equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech.
820, 667-692.

CaBoT, W. & MoIN, P. 2000 Approximate wall boundary conditions in the large-eddy
simulation of high Reynolds number flow. Flow Turbul. Combust. 63, 269-291.
GALBRAITH, R. M., SJOLANDER, S. & HEAD, M. 1977 Mixing length in the wall region

of turbulent boundary layers. Aeronaut. Quart. 28, 97-110.

GraHAM, J., Kanov, K., YanG, X. I. A., LEg, M., Marava, N., LaLescu, C.,
Burns, R., EYINK, G., SZALAY, A., MOSER, R. et al. 2016 A web services acces-
sible database of turbulent channel flow and its use for testing a new integral wall
model for LES. J. Turbul. 17, 181-215.

GrrIrFrFIN, K. P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-
bounded turbulent flows with and without heat transfer. PNAS 118, ¢2111144118.

Huang, P. & CoLEMAN, G. N. 1994 Van Driest transformation and compressible wall-
bounded flows. ATAA J 32, 2110-2113.

Kawal, S. & LARSSON, J. 2012 Wall-modeling in large eddy simulation: length scales,
grid resolution, and accuracy. Phys. Fluids 24, 015105.

Kim, J., Moin, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel
flow at low Reynolds number. J. Fluid Mech. 177, 133-166.

KNorp, T., REUTHER, N., NOVARA, M., SCHANZ, D., SCHULEIN, E., SCHRODER,
A. & KAHLER, C. 2021 Experimental analysis of the log law at adverse pressure
gradient. J. Fluid Mech. 918, A17.

LeE, J.-H. & Sunc, H. J. 2009 Structures in turbulent boundary layers subjected to
adverse pressure gradients. J. Fluid Mech. 639, 101-131.

LEE, M. & MOSER, R. D. 2015 Direct numerical simulation of turbulent channel flow
up to Re, =~ 5200. J. Fluid Mech. 774, 395-415.

LozaNo-DURAN, A., GiomeTTO, M. G., PARK, G. I. & MoOIN, P. 2020 Non-
equilibrium three-dimensional boundary layers at moderate Reynolds numbers. J.
Fluid Mech. 883, A20.

LozANO-DURAN, A. & JIMENEZ, J. 2014 Effect of the computational domain on direct
simulations of turbulent channels up to Re,= 4200. Phys. Fluids 26, 011702.

MARrusic, 1., MoNTY, J. P., HULTMARK, M. & SMmiTs, A. J. 2013 On the logarithmic
region in wall turbulence. J. Fluid Mech. 716, R3.

MATHUR, A., GORJI, S., HE, S., SEDDIGHI, M., VARDY, A., ODONOGHUE, T. &
PokraJAC, D. 2018 Temporal acceleration of a turbulent channel flow. J. Fluid
Mech. 835, 471-490.

MELLOR, G. & GIBSON, D. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech.
24, 225-253.

PERRY, A. 1966 Turbulent boundary layers in decreasing adverse pressure gradients. J.
Fluid Mech. 26, 481-506.

ROMERO, S., ZIMMERMAN, S., PHILIP, J., WHITE, C. & KLEWICKI, J. 2022 Properties
of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. J.
Fluid Mech. 937, A30.

SCHLATTER, P. & ORLU, R. 2010 Assessment of direct numerical simulation data of
turbulent boundary layers. J. Fluid Mech. 659, 116-126.

TOWNSEND, A. 1956 The properties of equilibrium boundary layers. J. Fluid Mech. 1,
561-573.



A universal velocity transformation for boundary layers with pressure gradients 345

TRETTEL, A. & LARSSON, J. 2016 Mean velocity scaling for compressible wall turbulence
with heat transfer. Phys. Fluids 28, 026102.

Vorino, R. J. 2020 Non-equilibrium development in turbulent boundary layers with
changing pressure gradients. J. Fluid Mech. 897, A2.

Yang, X. I. A., HoNG, J., LEE, M. & HuaNg, X. L. D. 2021 Grid resolution require-
ment for resolving rare and high intensity wall-shear stress events in direct numerical
simulations. Phys. Rev. Fluids 6, 054603.





