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adjoint-based gradients for efficient control of flow

instabilities
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T. L. Kaiser†, S. J. Knechtel† AND K. Oberleithner†

This work presents an efficient framework for shape optimization to control flow insta-
bilities and coherent structures in laminar and turbulent flows by combining a Bayesian
optimization approach with adjoint-based gradient information (BOA). Linear stability
and resolvent analyses are used to yield physically meaningful cost functions. In addition,
adjoint methods are employed to compute the sensitivity of the cost functions to shape
parameter changes. These physics-based function and gradient information are embed-
ded into a global Bayesian optimization framework, which also handles uncertainties that
may arise from the provided data or linear model. The BOA framework is tested on the
task of designing a hydrofoil to control the wake instability and it is compared against a
gradient-free Bayesian optimizer and a purely gradient-based method.

1. Introduction

In order to control unsteadiness of coherent structures in turbulent flows, one can
pursue various strategies to optimize flow devices. One approach is the use of surrogate
models, which approximate an objective function, in this case the strength of flow un-
steadiness, and identify potential minima. These models are informed by measurements
of the objective function value within a predefined parameter space via simulations or ex-
periments. A sample-efficient method for achieving this is Bayesian optimization (BO),
which makes probabilistic predictions about the objective function from the available
test data and uses these predictions to guide the selection of new samples. Although
BO is particularly sample efficient compared with other global optimization strategies,
design tasks that can be handled in this physics-agnostic manner are usually strongly
constrained by the number of free parameters. Otherwise, a prohibitively large number
of tests would be required for convergence.

A second approach to controlling flow unsteadiness is through gradient-based opti-
mization methods such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
These techniques modify an initial design based on gradient information to obtain an
improved configuration. In the case of addressing flow unsteadiness, an efficient way to
obtain physics-based gradient information is through linear methods such as linear sta-
bility analysis (LSA) and resolvent analysis (RA), which are powerful tools to model
flow dynamics in both laminar and turbulent flows (Sipp et al. 2010; Taira et al. 2017).
The corresponding adjoint sets of equations allow for the calculation of sensitivity in
predicted dynamics to changes in shape parameters with very little computational effort.
Gradient-based techniques usually appeal through fast convergence, but they tend to
converge to local minima of the optimization landscape. In order to identify the global
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Figure 1. Parameterization of the hydrofoil with (a) two parameters in Blake-foil-type configu-
ration, (b) four parameters in Blake-foil-type configuration, and (c) two parameters in extremal
configurations. The red curve indicates the variable shape that is to be optimized, and the red
dots indicate the B-spline control knots of the variable shape.

optimum, multiple runs can be initiated from disparate initial designs. However, this
typically results in a considerable increase in the number of required tests.

In this work, we propose to augment BO with gradient information obtained through
linearized and adjoint methods to overcome the limitations of each individual method.
The framework integrates physically meaningful cost functions from LSA and RA quanti-
ties, growth rate and resolvent gain, respectively, along with the computational efficiency
of adjoint-based gradient information that barely increases computation time. Simultane-
ously, it maintains the global optimization capabilities and uncertainty handling inherent
in BO. Our proposed approach, combining BO with adjoint-based gradient information
(BOA), thus represents a synthesis of these methodologies.

2. Toy problem for optimization

As a demonstrator case, BOA is tested and compared against other classical opti-
mization methods on a laminar flow past a generic Blake-type hydrofoil with a variable
trailing edge shape, similar to the study of Marsden et al. (2004). In our setup, the hy-
drofoil features a round leading edge, a chord length of 0.1 m, a chord-to-height ratio of
c/h = 12, no camber and a fairly blunt trailing edge in its original baseline design, as
shown in Figure 1(a,b). We consider an inflow velocity of U = 1.5 m/s with a Reynolds
number of Re = 3300 and an angle of attack of α = 0◦. In the following, all quantities
are nondimensionalized with the chord length c and the inflow velocity U , if not specified
otherwise.

In the present configuration, the hydrofoil wake exhibits a vortex shedding mode as a
result of a global instability in the flow field. For shape optimization, the downstream half
of the suction side up to the trailing edge is parameterized with a B-spline consisting of d
control knots, which can be varied in y direction while the rest of the shape is maintained.
Each candidate design is thus specified by a parameter vector a = [a1, a2, . . . , ad]

T , which
defines the d y positions of the control knots. This allows us to vary the dimension of the
problem d by changing the number of control knots. Figure 1(a,b) shows the hydrofoil
with two and four parameters. The numbers given in the figure for each parameter
correspond to the baseline Blake-foil-type configuration as considered in Marsden et al.
(2004). The parameters of a are normalized so that they are bounded between 0 and 1
for each parameter. Figure 1(c) shows the extremal configurations that result from the
predefined parameter bounds of the two-parameter case.
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3. Linearized methods and shape sensitivity

In the following, we briefly introduce the mathematical fundamentals for the LSA
and RA and their corresponding shape sensitivities. We start by considering the 2D
incompressible Navier–Stokes equations

Bdq

dt
+N (q) = 0 , B =

(
I 0
0 0

)
, N =

(
(u · ∇)u+∇p− 1

Re∇2u
∇ · u

)
, (3.1)

with the state vector q = (u, p)T consisting of the velocity field u = (u, v)T and the
pressure field p, and I being an identity operator. Linearization of N around q0 =
(u0, p0)T yields the operator

A(q0) q′ :=
∂N
∂q

∣∣∣∣
q=q0

q′ =

(
(u′ · ∇)u0 + (u0 · ∇)u′ +∇p′ − 1

Re∇2u′

∇ · u′

)
, (3.2)

where q0 is either a base flow or a mean flow. The base flow represents a steady flow
state and is obtained by directly solving Eq. (3.1) with dq/dt = 0. The mean flow is a
statistical quantity and represents the time average of an unsteady flow. It is determined
by time-averaging flow snapshots from simulations, such as large-eddy simulations, or ex-
periments. Moreover, the mean flow can be obtained by performing Reynolds-averaged
Navier–Stokes simulations. Base and mean flows differ due to the fluctuating field mod-
ifying the base flow.

For LSA, a normal-mode ansatz is assumed for q′, leading to the linear direct and
adjoint eigenproblem (Sipp et al. 2010)

(A(q0) + λB)q̂ = 0, (q̂†)T (A(q0) + λB) = 0 , (3.3)

with the direct eigenmode q̂ (representing the vortex shedding mode in the hydrofoil case)
and the adjoint eigenmode q̂†. λ is the corresponding eigenvalue, of which the real part
is the growth rate σ (which will serve as a cost function for the LSA-based optimization)
and the imaginary part is the angular frequency ω. Here, A and B correspond to the
discretized linear operators A and B, respectively.

The sensitivity of the eigenvalue λ with respect to geometry-related parameters a, in
our case the control knots of the B-spline, is calculated as described in Knechtel et al.
(2024). First, the sensitivities of q0 with respect to each parameter ai are computed by
solving the linear equation system

A(q0)
dq0
dai

= − ∂N(q)

∂ai

∣∣∣∣
q=q0

. (3.4)

With this, the calculation of the adjoint base flow is omitted. Then, with the operator
sensitivity

dA(q0)

dai
=
∂A(q0)

∂ai
+ABL(

dq0
dai

) , ABL(
dq0
dai

) q̂ :=

(
(û · ∇)du0

dai
+ (du0

dai
· ∇)û

0

)

(3.5)
the sensitivity of the eigenvalue can be written as (Luchini & Bottaro 2014)

dλ

dai
=

(q̂†)T
(

dA(q0)
dai

+ λ ∂B∂ai

)
q̂

(q̂†)TBq̂
. (3.6)

For RA, a linear input-output system is considered for each frequency ω, represented
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by the resolvent operator R, which acts on the forcing f̂ and generates the response û

û = Rf̂ . (3.7)

The forcing and response modes are normalized with their respective norms (||û||2 :=

ûHQuû and ||f̂ ||2 := f̂HQf f̂), and µ2 is the gain of the input-output system (which
will serve as a cost function for the RA-based optimization). The discretized resolvent
operator R is defined as

R := P (A+ jωB)−1 WP T , P :=
(
I 0

)
, (3.8)

where j is the imaginary unit, A and B are defined as above, P is a rectangular matrix
containing the (discrete) identity matrix I, and W represents the discretization weights
of the whole system. We are interested in the optimal gains

µ2 = sup
f̂

||û||2
||f̂ ||2

= sup
f̂

f̂HR̃f̂

||f̂ ||2
, R̃ := RHQuR (3.9)

and thus can formulate an eigenproblem (Sipp et al. 2010). Since R̃ andQf are Hermitian
matrices, the direct and the adjoint modes are the same,

(R̃− µ2Qf )f̂ = 0 = f̂H(R̃− µ2Qf ). (3.10)

As the flow can be unstable in some parts of the parameter space, we perform a discounted
RA that effectively shifts the complex plane (Rolandi et al. 2024).

Analogous to the sensitivity from Eq. (3.6), here the sensitivity can be written as

dµ2

dai
=
f̂H

(
dR̃
dai
− µ2 ∂Qf

∂ai

)
f̂

f̂HQf f̂
. (3.11)

The operator sensitivity is computed similar to Poulain et al. (2024) with

f̂H
dR̃

dai
f̂ = µ2ûH

∂Qu

∂ai
û+ 2µℜ

{
f̂H

(
dR

dai

)H
Quû

}
(3.12)

and

dR

dai
= P (A+ jωB)−1 ∂W

∂ai
P T − P (A+ jωB)−1

(
dA

dai
+ ω

∂B

∂ai

)
(A+ jωB)−1WP T .

(3.13)
The base flow computations and the linearized methods are conducted using the finite-

element-based FELiCS software (Kaiser et al. 2023). The analytically derived linear op-
erators are built explicitly as finite-element-weighted matrices, which are then used to
solve the linear equation systems described above. The partial derivatives of vectors and
matrices, which appear in the sensitivities of Eqs. (3.6) and (3.11), are calculated with
a finite difference of first order. The unsteady numerical simulations to obtain the mean
flow fields are conducted with the finite-volume code OpenFOAM.

4. Bayesian optimization with derivatives

Consider an unknown cost function f : Rd → R (here the LSA growth rate σ or the
resolvent gain µ2 as a function of shape parameters a ∈ Rd), which we aim to approximate
to find the minimum. In Bayesian optimization with derivatives (d-BO) this is carried
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out in two steps. First, a surrogate model of f is built from available data consisting of n
inputs, function value observations and gradient observations D = {ai, fi,∇fi}ni=1. This
is done using Gaussian process regression (GPR), which yields a probabilistic prediction
of function values across the optimization domain Ω. Second, the prediction is used to
identify regions in Ω in which optima are likely to be found. To do so, a sampling policy
in the form of an acquisition function is used to guide sampling within the domain. The
sampled configurations are subsequently added to the training data set and the surrogate
model is recalibrated. By iteratively repeating these steps, optima on Ω are identified.
Both GPR and the acquisition-function-based sampling are described in the following.

GPR begins with a prior belief about the latent function f(a) that describes the data.
This prior is represented by a Gaussian process (GP), which is the continuous equivalent
to a multivariate Gaussian distribution. A GP is an infinite collection of random variables
for inputs a (infinite due to the continuous nature of Ω). The GP assumption about f is
denoted f(a) ∼ GP(m(a), k(a,a∗)) and is characterized by a mean function m(a) that
determines the expected function value of f at a and a covariance function k(a,a∗) that
characterizes the probability of deviations from the mean,

m(a) = E[f(a)], k(a,a∗) = E[(f(a)−m(a)) (f(a∗)−m(a∗))]. (4.1)

Here, E marks the expectation operator and a = [a1, a2, . . . , ad]
T ,a∗ = [a∗1, a

∗
2, . . . , a

∗
d]
T

are variables in Ω. Throughout this work, a constant prior mean function is used. Further-
more, a kernel function of squared exponential type is chosen, for which the covariance
function reads

k(a,a∗) = exp

(
−

d∑

i=1

(ai − a∗i )2
2θ2i

)
, (4.2)

where θ1 through θd are hyperparameters that are tuned to available data by maximiza-
tion of the log marginal likelihood (Rasmussen & Williams 2006).

The prior assumption about f implies a covariance between function values and gra-
dients, such that the function and its gradient follow a multi-output GP of the following
form (Rasmussen & Williams 2006)

[
f
∇f

]
∼ GP(m∇,K∇), m∇ =

[
m(a)
∇m(a)

]
,K∇ =

[
k(a,a∗) j(a,a∗)T

j(a∗,a) H(a,a∗)

]
. (4.3)

Here, j(a,a∗)T = [∂k(a,a∗)/∂a∗1, ∂k(a,a∗)/∂a∗2, . . . ] is a vector of size d×1 andH(a,a∗)
is a symmetric d× d matrix with entries Hi,j = ∂2k/∂a∗i ∂aj .

When function observations are available, the prior assumption can be updated to a
posterior distribution, which is also a GP. Bayes’s rule on conditional probability is used
to derive the posterior, which describes the conditional probability of observing function
values and gradients, given observations D = {ai, fi,∇fi}ni=1. For closed-form equations,
see, e.g., Wu et al. (2017). The posterior mean represents the most likely function and
gradient value at a, given the data, and serves as a prediction from GPR. The posterior
covariance function in turn quantifies prediction uncertainty. It results from the prior
covariance and an update term that depends on the proximity to the training samples.

Based on this posterior distribution, samples to be tested are selected from Ω sequen-
tially. Therefore, an acquisition function α(a) is used as a sampling criterion. Within this
work the expected improvement (EI) acquisition function is used (Mockus 1974), which
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Figure 2. Schematic of the BOA optimization workflow.

aims to minimize the objective value throughout the observed samples,

an+1 = argmax
a∈Ω

αEI(a), αEI(a) = E(max(f∗ − f(a), 0)), (4.4)

where f∗ is the best function value tested so far.
The proposed methodology for d-BO is set up using the Python package BoTorch (Ba-

landat et al. 2020). For the implemented GP with joint function and gradient output, the
provided modules ConstantMeanGrad and RBFKernelGrad for mean and kernel func-
tions and their respective gradients are combined into a multi-output GP model class.
Input parameters are scaled to a unit hypercube, and the output data set is normalized
to zero mean and unit variance in each iteration, in order to facilitate model fitting.

5. Optimization procedure

Figure 2 shows the workflow of the BOA optimizer. The cost function to be minimized
is selected to be either the largest eigenvalue growth rate or the leading resolvent gain
integrated over a frequency band, reading

argmin
a

f(a), f = max
σ∈{ℜ(λi)}

σ(a) or

∫

ω

µ2
1(a) dω. (5.1)

To evaluate this function for a candidate design an+1, selected in iteration n+ 1, a corre-
sponding base flow or mean flow is first determined. Next, the LSA or RA is conducted
(Eqs. (3.3) and (3.9)) to obtain the objective value, maximum growth rate or integral
leading gain, respectively. In addition to evaluating the function f(a) at each candidate
point, we leverage additional system knowledge by computing the gradient with regard
to the design parameters (Eqs. (3.6) and (3.11)) and computing the sensitivity of the
eigenvalue or the integral gain to shape parameters, ∇f(a).

Within the BOA method, the obtained data point consisting of design an+1, growth
rate/RA gain fn+1 = f(a = an+1) and gradient value ∇fn+1 = ∇f(a = an+1) is then
added to the training data set, D ← D∪{an+1, fn+1,∇fn+1}, on the basis of which a new
GP model is trained. The model prediction is used in an acquisition function to select
the subsequent design to be tested, Eq. (4.4). The procedure is repeated until a query
budget is exhausted, after which the best tested sample is then returned.
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Figure 3.Maximum LSA growth rate in the parameter space using (a) base flow field, σb(a1, a2),
and (b) mean flow field, σm(a1, a2); (c) RA integral leading gain

∫
ω
µ2
1(a1, a2)dω in the parameter

space using base flow field. Negative gradient with regard to shape is superposed as white arrows.
Region enclosed with white contour line indicates the stable basin of the base flow LSA.

6. Results

6.1. Growth rate and sensitivity maps obtained by base and mean flow LSA

As a reference solution for the two-parameter case, the growth rate of the wake mode
determined from LSA and its sensitivity are computed for the entire parameter space
by brute-force evaluation on a grid. The results from the analyses of the base and mean
flow fields are shown in Figure 3(a,b), respectively. The plots show growth rate maps,
superposed with arrows that indicate the growth rate sensitivity, pointing in the direction
of the negative gradient.

From the base flow growth rate, we observe a stable basin characterized by a single
minimum. It corresponds to a moderate thickness of the hydrofoil trailing edge and the
presence of a concave bump on the suction side of the airfoil (see inset in Figure 4(a)).
This bump is particularly notable, as it parallels similar geometric features predicted in
shape-optimized cylinder flows (Brewster & Juniper 2020). Conversely, the most unstable
configuration aligns with the most blunt and thickest trailing edge (see Figure 1(c)).

The growth rate determined from the mean-field LSA (Figure 3(b)) is approximately
zero throughout the parameter space. This is a classic result for mean-field-based LSA,
where the nonlinearly saturated wake mode is found as a global mode at zero growth
rate (Sipp & Lebedev 2007). The sensitivity gradients derived from mean flow LSA reflect
the change in the linear growth mechanism but do not account for changes in nonlinear
saturation. Consequently, they do not align with the actual growth rate distribution.
Interestingly, they closely resemble the sensitivity gradients obtained from the base flow
instead. Thus, the sensitivity gradients remain valuable in the mean flow LSA, while the
growth rate itself is not a useful cost function for optimization. To still proceed with the
optimization, we approximate the base flow growth rate σb from the nonlinear vortex
shedding amplitude using the following relation

σb ≈ η|A|2, (6.1)

which is determined from the Stuart–Landau equation (Sipp & Lebedev 2007) for a sta-
tistically stationary saturated state. Here, A represents the global saturation amplitude
determined from a single probe in the nonlinear simulations. The nonlinear damping
coefficient η is calibrated to a constant value for the entire parameter map using the true
base flow growth rate determined near the bifurcation point. The probing in the nonlin-
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Figure 4. Optimization curves using mean flow fields for (a) two parameters and (b) four pa-
rameters, comparing global optimization without gradient information (BO), global optimization
with gradient information (d-BO) and local optimization with gradient information (BFGS-B),
averaged over five runs. The respective optimized hydrofoils are shown as insets.

ear simulations at only one position to obtain A introduces uncertainty in the growth
rate predictions. Further uncertainty is associated with Eq. (6.1) of the Stuart–Landau
model, which is valid only in close proximity to the bifurcation point. This, however,
becomes uncritical with a progressing number of optimization steps, as the distance to
the bifurcation point reduces. All uncertainties are believed to be effectively absorbed by
the BO and d-BO frameworks with their inherent ability to incorporate uncertainties in
the surrogate modeling, ensuring a robust optimization process.

6.2. Shape optimization using base and mean flow LSA

In the following, shape optimization of the hydrofoil parameterized with both two and
four parameters is conducted. Three different methods are compared: Bayesian opti-
mization without gradient information (BO), Bayesian optimization with gradient infor-
mation (d-BO), and local gradient-based optimization, for which a bounded version of
BFGS (BFGS-B) is used. Their performance is evaluated by comparing the optimization
curves in Figure 4. It shows the relative error between the best configuration identified
by each method up to a certain iteration and the global optimum within the parameter
space. The latter is identified by considering all brute-force and optimization runs. Since
initial sampling is random for all three methods, five independent runs are performed for
each method to ensure statistically stationary results. The plots show the average and
plus/minus half a standard deviation as lines and shaded areas, respectively. For brevity,
only the mean flow results are presented here since very similar observations are made
for the base flow case.

For the two-parameter case shown in Figure 4(a), optimization methods that incor-
porate gradient information (BFGS-B and d-BO) outperform the global optimization
approach that lacks gradient information (BO). The local optimization method (BFGS-
B) exhibits a performance comparable to that of the global optimization approach with
gradient information (d-BO).

However, when the dimension of the parameter space is increased to four, the ad-
vantages of the d-BO method become more apparent (Figure 4(b)). The d-BO method
clearly outperforms both BO and BFGS-B, demonstrating faster convergence to the true
minimum. In contrast, the BFGS-B method appears to become trapped in local minima,
failing to identify the global optimum in most runs, while the d-BO method avoids this
pitfall due to its global approach of exploration and exploitation. For the present case,
these results clearly illustrate the superiority of d-BO over BFGS-B, attributed to its
global approach, and also underscore the advantage of d-BO over BO, stemming from
the incorporation of additional gradient information.
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6.3. Parameter space of gain and sensitivity obtained by base flow RA

In order to generate a reference solution for the resolvent gain and its sensitivity in
the two-parameter case, a brute-force evaluation is again employed across the entire
parameter space. Figure 3(c) shows the integral leading gain and its sensitivity using base
flow fields. As intended, the negative RA sensitivity points in the direction of steepest
descent of the RA gain. Compared to the LSA results in Figure 3(a), the regions with the
lowest gain correspond to the most stable configurations. This observation is consistent
with the nature of the wake dynamics, which is driven by an isolated eigenmode with
a relatively weak nonorthogonality to other modes. As a result, the resolvent gain is
inversely proportional to the distance of the eigenmode to the stability limit (Symon
et al. 2018).

The strong correlation between the distributions of gain and eigenvalue growth rate
associated with the wake mode reinforces the RA’s applicability to oscillator-type flows.
Furthermore, the agreement between the RA gain distribution and its sensitivity permits
its use for shape optimization in the BOA framework to flows with multiple modes and
flows with broadband coherent structures, in particular under fully turbulent conditions.

7. Conclusion and outlook

In this work, we demonstrate the integration of linear flow analysis methods (in the
form of linear stability analysis (LSA) and resolvent analysis (RA)) and their respec-
tive adjoint-based gradients with derivative-augmented Bayesian optimization to enable
efficient shape optimization of flow dynamics. LSA and RA provide physically meaning-
ful objective functions that are cost-effective to evaluate. The incorporation of gradient
information significantly enhances the otherwise gradient-agnostic Bayesian framework.
Particularly in large parameter spaces the speedup becomes increasingly pronounced.

Shape optimization was performed with respect to the growth rate of the vortex shed-
ding mode occurring in the wake of a Blake-type hydrofoil, employing both base and mean
flow LSA. Furthermore, the sensitivity of the resolvent gain was derived and computed,
showing trends consistent with the LSA results. This finding opens up the possibility for
future studies addressing fully turbulent flows at higher Reynolds numbers to target the
amplification of oscillations specifically (via the resolvent gain) instead of the stability (via
the growth rate). It will also enable us to conduct shape optimization in amplifier-type
flows that are globally stable. Optimizing flow dynamics based on the mean field allows
the use of cost-efficient Reynolds-averaged Navier–Stokes simulations. In future work,
these may be complemented with large-eddy simulations using multi-fidelity surrogate
methods or they could be improved through data assimilation. Open research questions
also arise from the implementation of additional meaningful constraints and the expan-
sion to more complex parameter spaces with multiple local minima, potentially requiring
the evaluation of (many) more designs to fully capture the optimization landscape. Over-
all, the integration of LSA and RA, adjoint-based methods, and Bayesian optimization
offers a powerful toolkit for the efficient and precise optimization of aerodynamic shapes
in unsteady flow regimes.
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