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Dynamic model with scale�dependent
coe�cients in the viscous range

By C� Meneveau� � T� S� Lund�

The standard dynamic procedure is based on the scale�invariance assumption
that the model coe�cient C is the same at the grid and test��lter levels� In many
applications this condition is not met� e�g� when the �lter�length� �� approaches
the Kolmogorov scale� and C�� � �� � �� Using a priori tests� we show that the
standard dynamic model yields the coe�cient corresponding to the test��lter scale
���� instead of the grid�scale ���� Several approaches to account for scale depen�
dence are examined and	or tested in large eddy simulation of isotropic turbulence

�a� Take the limit �� �� �b� Solve for two unknown coe�cients C��� and C����
in the least�square�error formulation� �c� The bi�dynamic model�� in which two
test��lters �e�g� at scales �� and ��� are employed to gain additional information
on possible scale�dependence of the coe�cient� and an improved estimate for the
grid�level coe�cient is obtained by extrapolation� �d� Use theoretical predictions
for the ratio C�����C��� and dynamically solve for C���� None of these options
is found to be entirely satisfactory� although the last approach appears applicable
to the viscous range�

�� Introduction

One of the underlying ideas of the dynamic procedure �Germano et al�� ����� for
large eddy simulation �LES� is scale�similarity� which allows information obtained
from the resolved �eld to be utilized for modeling the subgrid scales� Typically�
this information consists of a dimensionless model coe�cient �e�g� the Smagorinsky
coe�cient� which is assumed to have the same value at the grid�scale � and test�
�lter scale ��� where � � � in most applications� Concretely� within the context
of the Smagorinsky model� the Germano identity leads to

Lij � C����Aij � C���B�

ij� ���

where Aij � �������j��Sj��Sij � B�

ij � ����j �Sj �Sij� j �Sj �
p

� �Sij �Sij� and Lij � d�ui�uj �
��ui��uj is the resolved stress� The fundamental scale�similarity assumption of the
standard dynamic model is that the model coe�cients C��� � C���� � C� With
this assumption� C is obtained by minimizing the error in Eq� � averaged over
the independent tensor components �Lilly� ����� and� if it exists� over a region
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of statistical homogeneity �Germano et al�� ����� Ghosal et al�� ������ For fully
inhomogeneous �ows� averaging can be performed over pathlines �Meneveau et al��
������

As in other applications� it will be assumed here that the averaging operations
su�ciently diminish spatial variations of C� so that one can neglect the error in�
curred in extracting C from the test��lter operation �see Ghosal et al�� ������ Thus�

the second term in the rhs of Eq� ��� is replaced with C���Bij� where Bij � cB�
ij �

Also� in this work we will examine the dynamic procedure in conjunction with the
Smagorinsky model� While other base�models such as similarity models have been
proposed �Bardina et al�� ����� Liu et al�� ������ they typically require an additional
eddy�viscosity term �mixed model� Bardina ����� Zang et al� ����� Liu et al�� ������
Thus� it is of interest to continue to examine the Smagorinsky model in parallel to
other e�orts on improved base models�

Under the assumption of scale�invariance� the dynamic Smagorinsky model yields

C �
hMijLiji

hMijMiji
� ���

where
Mij � Aij �Bij � ��a�

and where hi denotes an average over directions of statistical homogeneity or over
pathlines�

When applied to the simple problem of either forced or decaying isotropic tur�
bulence at large Reynolds number� the resulting coe�cient is typically between
C � ���� and ����� independent of �� This agrees with the classical result by Lilly
������ which relates C to the universal Kolmogorov constant cK according to

C �

�
�

�cK

����

��� � ������ for cK � ���� ���

This result is obtained from balancing the rate of SGS dissipation with the total
dissipation� and evaluating moments of the resolved strain�rate tensor by requiring
the resolved portion of the �ow to display an inertial�range Kolmogorov spectrum�
When the �lter�scale is within the inertial range� this argument indeed yields a
��independent result�

While the above analysis is useful as a guide� it is not generally applicable to
LES of complex �ows� where the �lter �grid� scale � may not fall inside a pure
inertial range� For instance� in certain parts of the domain� � may approach the
�ow�s integral scale� or the �ow may be undergoing rapid distortions so that the
inertial range is perturbed� In other regions of the �ow� the grid scale may approach
the viscous scale� In such situations� the coe�cient may dependent on �� and the
assumption C��� � C���� used in the dynamic model is not strictly applicable�

The objective of this study is to examine the dynamic model when the coe��
cient depends on scale� A convenient application in which to examine this issue
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numerically is forced isotropic turbulence� when � � �� where � is the Kolmogorov
scale� We will study coe�cient scale dependence using �ltered DNS data �a priori

test� and perform LES at varying viscosity� so that ���� or the mesh�Reynolds
number �McMillan � Ferziger� ������ de�ned as Re� � ��j �Sj��� decreases towards
Re� � ��

First� a review of the expected behavior of C�� � �� is given in x�� In x��
we analyze highly�resolved DNS data at moderate Reynolds number and compare
the real Smagorinsky coe�cient to that obtained from the dynamic model under
the assumption that C��� � C����� The e�ect of varying � is also examined�
In section x�� we report on several attempts to generalize the dynamic model to
explicitly take into account the scale�dependence of the coe�cient� Conclusions are
outlined in x��

�� Smagorinsky coe�cient in the viscous range

Before considering the dynamic Smagorinsky model� it is useful to establish the
expected behavior of the Smagorinsky coe�cient as the grid�scale approaches the
viscous range� The analysis is based on a generalization of the argument by Lilly
������ and was recently carried out by Voke ������ who expressed the results in
terms of the mesh�Reynolds number Re�� We shall also need results in terms
of ���� so the analysis is brie�y repeated below� Examination of the equation
for resolved kinetic energy in isotropic� statistically steady� and forced �force fi�
turbulence yields

hfi�uii � �
�
�ij �Sij

�
� ��

�
�S�
ij

�
� ���

where hi denotes a volume average� The last term above is viscous dissipation of
resolved motion� which was neglected in the traditional Lilly ������ analysis as
� �� �� Using the fact that in steady turbulence the injection rate hfi�uii equals
the overall rate of dissipation 	� replacing the Smagorinsky model with a possibly

scale�dependent coe�cient C���� and using the approximation
�
j �Sj�

�
�
�
j �Sj�

� �
� �

one obtains

	 � C���������
�

�S�
ij

����
� ��

�
�S�
ij

�
� ���

The moment
�

�S�
ij

�
�
�

�Sij �Sij
�

can be evaluated from the energy spectrum of the
resolved �eld� which is assumed here to follow the Pao spectrum up to a sharp cuto�
wavenumber k� � ���� The Pao spectrum� given by

E�k� � cK	
���k���� exp

�
�

�

�
ckk

����

�

is one of the cases considered by Voke ������� and we use it here because resulting
expressions are simple� Solving for C� one obtains

C����� � e�
�

�
cK���������

� �
�

�� �
�� e�

�

�
cK���������

�����

� ���



��� C� Meneveau � T� S� Lund

C
��
�
�
�

���

�a�

C
�R
e
�

�

Re� � ��hj �Sji��

�b�

Figure �� �a� Smagorinsky coe�cient as calculated from the dissipation balance
using the Pao spectrum �Eq� ��� �b� Same result but expressed in terms of mesh
Reynolds number �solid line�� obtained by solving Eq� �� �see also Voke ������� who
expresses the same result in terms of the ratio of eddy to molecular viscosity�� The

dotted line is a convenient �t� namely C�t�Re�� � ������ �������Re�����
� �

The predicted variation in C is shown in Fig� �a �for cK � ����� As expected�
the above estimate shows a rapid decrease in C as the grid�scale approaches the
Kolmogorov scale�

For future reference� it is also useful to express the coe�cient in terms of the
mesh�Reynolds number Re� � ��j �Sj�� which �as opposed to ���� is a variable
that can be computed locally in LES� Using � � ����	���� and replacing 	 with the
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r�h�s� of Eq� �� one obtains

C�Re�� �
sinh�

�

� 


�
�

�Re
�

�

�

q
C�Re�� � Re��

�

e����� ���

where


 �
�

�
cK�

�

�Re��
� �C�Re�� � Re��

� ��
�

� �

In deriving this result it has been assumed that
�
j �Sj
�
�
�
j �Sj�

��
� � Solving for C�Re��

numerically �cK � ���� one obtains the curve shown in Fig� �b� This curve is not
too di�erent from the empirically obtained result of McMillan � Ferziger �������

While the precise nature of these curves depends strongly on the assumed Pao
spectrum� which is not entirely realistic� the general trend is quite robust
 The
coe�cient begins to drop from the asymptotic value starting from scales signi�cantly
greater than the Kolmogorov scale� Evidently� at the transition between inertial and
viscous range� the assumption that C does not depend on scale is not accurate�


� A priori tests

The aim of this section is to evaluate Smagorinsky coe�cients computed with the
dynamic model operating on �ltered DNS data of forced isotropic turbulence� The
dynamic coe�cient is then compared with the real� coe�cient obtained by requiring
that the model dissipate the correct amount of energy� Velocity �elds at microscale
Reynolds number R� � �� were generated with the pseudo�spectral code of Rogallo
������ on a ���� mesh� This data base has a very well�resolved dissipation range
and was used previously by Lund and Rogers ������ in their study of the topology
of dissipative motions� This feature is important for the present study since we are
interested in the behavior near the Kolmogorov scale� The maximum wavenumber
scaled in Kolmogorov units is kmax� � �� which corresponds to a mesh spacing of
�m � ���� � ���

From the DNS� we evaluate the coe�cient from the large�scale portion of the
spectrum using the dynamic model �Eq� ��� assuming that C��� � C����� The
analysis is repeated at various �ltering scales � �cuto� wavenumbers ���� and sev�
eral values of �� For comparison� the coe�cient can be obtained from the condition
that the model dissipates the proper amount of energy�

C��� � �

�
�ij �Sij

�
������

D
� �S�

ij�
�

�

E � ���

Results are shown in Fig� �� As can be seen� the real� coe�cient is near C �
���� � ���� when � � ���� i�e� for scales above the viscous range� At smaller �� the
coe�cient decreases rapidly� qualitatively in accord with the theoretical prediction
based on the Pao spectrum �Fig� �a�� We do not ascribe much signi�cance to
the discrepancies between Fig��a and � since we have veri�ed that they are due
to minor di�erences between the Pao and the actual spectrum� and also due to
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Figure �� Coe�cients obtained from a priori tests using well resolved DNS
����� simulation at R� � �� and kmax� � ��� � � true coe�cient� obtained from
dissipation balance �Eq� ��� Other symbols
 dynamic model coe�cient �standard
formulation� at various test��lters
 � � � �� � � � � �� � � � � ��

C
��
�

����

Figure �� Same as Fig� �� but plotted as function of ����� The near collapse
means that the dynamic model yields the coe�cient appropriate to the test��lter
scale instead of the grid�scale�

residual unsteadiness in the simulations due to a limited sampling of velocity �elds
in time� At large scales a drop in coe�cient can be seen� probably due to the e�ects
of forcing�

The dynamic model predictions yield a similar trend for the coe�cient� only that
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the scale range appears to be shifted� Since the dynamic model samples the scales
at the test��lter level� it is reasonable to expect that the resulting coe�cient is
the one corresponding to the test��lter scale instead of that of the grid�scale� To
verify this idea� in Fig� � we plot the results of the dynamic model as function of
the respective test��lter scales instead of the grid�scale �except for the coe�cient
obtained from Eq� ��� The collapse is quite good� indeed verifying that in this case
the dynamic model yields the coe�cient corresponding to the test��lter scale�

Similar results were obtained when using the strain�rate contraction �Germano
et al�� ����� for the dynamic model �for which C �

�
Lij �Sij

�
�
�
Mij

�Sij
�
�� or the

least�square error approach to determine the real� coe�cient �for which
C � �

�
�ij j �Sj �Sij

�
����

�
j �Sj� �S�

ij

�
�� Therefore� the results are quite robust with

regard to how the coe�cients are determined�
At this point we conclude that the dynamic model is capable of reproducing the

important trend that the coe�cient should decrease as the �lter�length approaches
the Kolmogorov scale� Nevertheless� some discrepancy is observed between the
real� and dynamic coe�cient for scales at which the coe�cient is strongly scale�
dependent� From a practical perspective� this discrepancy is quite benign in the
current application� since the dominant mechanism of energy drain when the �lter
is near the Kolmogorov scale is the resolved viscous dissipation� Indeed� simulations
with resolutions in the viscous range run with the dynamically obtained coe�cient
�which according to Fig� � may be too high� did not show any signi�cant di�er�
ence from one using a lower coe�cient� essentially because the SGS dissipation is
negligible in these cases�

In what follows� we examine several reformulations of the dynamic model that
attempt to explicitly include the scale�dependence of the coe�cient� Because it
a�ords relative ease of implementation and interpretation� the analysis is still con�
ducted within the context of the viscous range� even though the impact of using
di�erent values for the coe�cients is rather small�

�� Alternative formulations

In this section� we consider several alternative formulations of the dynamic model�
None of the options considered will be found to be completely satisfactory� but the
observations made along the way provide useful insights into the workings of the
dynamic model�

��� The limit �� �

Since we have found that �for � � �� the standard dynamic model yields the
coe�cient C���� instead of C���� an obvious possible remedy would be to allow
the test �lter scale to approach the grid scale� This issue was brie�y addressed theo�
retically by Gao � O�Brien ������� who noticed that while the resulting expressions
would be indeterminate� the limit may be written in terms of higher�order gradi�
ents of the resolved velocity� thus emphasizing the scales closest to the grid�scale�
A possible disadvantage of this approach is that the scales closest to the cuto� are
often strongly a�ected by numerical errors�
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Figure �� � � Coe�cients obtained from the dynamic model at di�erent test�
�ltering scales �from right to left� � � �� �� ���� �� ��� and ����� �� Coe�cient value
obtained from dissipation balance �Eq� �� at the grid scale �a� Grid�scale is � � ���
�b� Grid�scale is � � ����

�
�A
ij
B
ij
�

���

Figure �� Correlation coe�cient between the model tensors Aij and Bij measured
from �ltered DNS as function of �lter scale� The correlation coe�cient is computed

according to ��A�B� � hAijBiji �
q�

A�
ij

� �
B�
ij

�
�
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To see if the limit � � � can be used to advantage in this case� we repeat the
a priori test of the previous section and compute the dynamic model coe�cient at
the smaller �lter�width ratios of � � ��� and � � ���� Figure �a shows the results
for a grid�scale � � ��� and �b for � � ���� In both cases� it is apparent that for
� � � there is a smooth trend of the dynamic coe�cient tending towards the true�
coe�cient as obtained from the dissipation balance� However� for �  �� there is a
change in behavior and the coe�cient increases again and does not tend towards the
expected value as �� �� While such a result may be speci�c to present conditions
of analysis� it suggests that as the width of the band between grid and test �lter
becomes small� the procedure can yield unphysical results� For this reason� we do
not consider this approach further�

Before proceeding however� we notice from Fig� � that for � � � the approach
towards the true� coe�cient appears to be exponential� This observation will be
used in x����

��� Solving for two coe�cients

Here we return to the case � � �� Instead of assuming that C��� � C�����
we investigate the proposal of Moin � Jim�enez� ������ where the least�square�error
approach is used to solve for the two coe�cients� Upon solving the linear set of
equations� one obtains �using� say� volume averaging�

C��� �
hAijLiji

�
B�
ij

�
� hBijLiji hAijBiji�

A�
ij

� �
B�
ij

�
� hAijBiji

� � ��a�

C���� �
hAijLiji hAijBiji � hBijLiji

�
A�
ij

�
�
A�
ij

� �
B�
ij

�
� hAijBiji

� � ��b�

The averages can be evaluated from the DNS �as in x�� at di�erent scales� and the
coe�cients computed from the above expressions� However� the results appear to
be unphysical
 both C��� and C���� were found to be negative� with large scatter
from one scale to another�

The cause for this problem can be traced to the fact that the two tensors Aij

and Bij �or ��j��Sj��Sij and dj �Sj �Sij� are strongly correlated� The correlation coe�cient
between them is evaluated from the DNS and plotted in Fig� �� for di�erent scales�
Due to the strong tensor�alignment� the system of equations is ill conditioned� It is
interesting to point out that in the standard dynamic model� the coe�cient is deter�
mined mainly by the fact that both tensors have signi�cantly di�erent magnitudes
�due to the coe�cient ���� However� to use additional �directional� information
from the Germano identity� at least in the context of the Smagorinsky model� ap�
pears not feasible�

��
 The bidynamic model

This version of the dynamic model is motivated by our observation that the model
provides the coe�cient at the test��lter level ��� While this suggested taking the
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limit � � �� it was shown in x��� that then the Germano identity relied on less
and less modes between test and grid �lter� modes that are often most a�ected by
numerical errors� Another alternative formulation is to compute coe�cients from
two di�erent test �lters and use these to extrapolate to the grid scale� Brie�y� one
assumes that the dynamic coe�cient obtained by the traditional method �with Mij

given by Eq� �� is a smooth function of the test�to�grid �lter ratio �� In fact� noting
the exponential behavior in Figs� � for � � �� it is more convenient to write that
C is a smooth function of �� where �� � ���� The usual case � � � corresponds
to � � �� while the limit � � � is obtained as � � �� Let us therefore denote the
coe�cient obtained from the traditional method as C���� Next� we expand C���
in Taylor series around � � ��

C��� � C�� � �� �
dC

d�
j��� � ��� ����

To evaluate dC�d� we introduce a secondary test��lter at scale� say� �� �� � ���
evaluate the corresponding coe�cient C�� � ��� and compute the coe�cient deriva�
tive using one�sided �nite�di�erence� �dC�d��j� � C��� � C���� The information
employed has been obtained at and above scale ��� where according to the results
of x��� robust results can be expected� Since we are interested in the limit � � ��
we now propose to simply evaluate Eq� �� at � � �� The resulting coe�cient can
be written as follows


C � �
hMijLiji

hMijMij i
�
hNijFiji

hNijNiji
� ����

where the tensors Fij and Nij are de�ned exactly as the tensors Lij and Mij re�
spectively� only using a test��lter scale equal to �� instead of ���

This basic formulation is �rst tested a priori
 The DNS data is �ltered at an
additional test��lter scale to compute Fij and Nij � The coe�cient C is evaluated
according to Eq� �� using volume averaging� and the analysis is repeated at several
grid�scales �� Figure � shows the results� As can be seen� the bi�dynamic� model
is very noisy since it is based on extrapolation� Nevertheless� the procedure does
improve the prediction of the standard dynamic model� Importantly� this approach
preserves the basic foundation of the dynamic model which only uses information
from the resolved scales� instead of relying on equilibrium arguments to calibrate
the coe�cient and its dependence on scale�

The approach is implemented in LES of forced isotropic turbulence on ��� modes�
The code and methodology is the same as that described in Meneveau et al� �������
but using volume averaging� The primary and secondary test��ltering are performed
using cuto� �lters at scales �� and ��� and �� simulations are run with various
viscosities to vary the mean mesh Reynolds number� The results are shown in Fig�
�� where the volume averaged terms C��� � hLMi � hMMi� C��� � hFNi � hNNi
and the extrapolated result C��� � � hLMi � hMMi � hFNi � hNNi are shown�
The latter coe�cient is used in the subgrid model� As can be seen� the results
appear to display the correct trend� although some features are noteworthy
 At
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C

���

Figure �� A priori test of extrapolation procedure� based on DNS results de�
scribed in Fig� �� � Real� coe�cients from dissipation balance� � and �
Dynamic coe�cients at � � � and � � �� �� extrapolated values according to
Eq� ���

C

Re� � ��hj �Sji��

Figure �� Coe�cients obtained in LES of forced isotropic turbulence at various
Reynolds numbers� using the bi�dynamic model with volume averaging� �
Value at scale ��� hFNi � hNNi� � Value at scale ��� hLMi � hMMi� � �
Bi�dynamic� coe�cient obtained by extrapolation to scale �� � hLMi � hMMi �
hFNi � hNNi� This coe�cient is used in the LES� As reference� the Taylor�microscale
Reynolds number R� �

p
��u�����	� �where 	 is the total dissipation� ranges from

R� � �� to R� � �� ����
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large Reynolds numbers� the coe�cient value asymptotes to a slightly smaller value
than the standard dynamic model� No simple explanation for this trend has been
found�

Qualitatively� one expects the model to be quite stable because if� say� C�� � ��
falls below its appropriate value while C�� � �� remains �xed� the extrapolated
coe�cient will drop signi�cantly� This will cause more pile�up� of energy near the
grid�scale� raising the value of C��� and raising the extrapolated coe�cient� This
in turn damps the smallest scales� The opposite occurs if C��� is initially increased�
with excessive damping causing C��� to diminish� However� the equilibrium point
of this version of the model appears to establish itself at a slightly smaller value
than that of the traditional approach� even at very large Reynolds numbers where
viscosity does not a�ect the results� Another observation is that at very small
Re�� the extrapolation process yielded negative coe�cients� This is essentially an
extrapolation error� In this application� this error had no impact on the simulation
due to the smallness of the SGS term at such low mesh Reynolds numbers�

Finally� an attempt was made to replace the volume averaging with Lagrangian
averaging �Meneveau et al�� ������ The motivation is to enable applications of
the dynamic model to LES of complex�geometry �ows� where no directions of sta�
tistical homogeneity exist� but where some averaging must still be performed� In
the Lagrangian bi�dynamic model�� one would compute four variables ILM � IMM �
IFN � and INN � which correspond to the pathline averages of the source terms
LijMij � M�

ij � FijNij and N�
ij respectively� They are obtained by integrating re�

laxation transport equations with a prescribed relaxation time�scale �Meneveau et

al�� ������ To be consistent with this reference� we must choose two relaxation
time�scales� T� � �����ILMIMM ����	 and T� � �����IFNINN ����	� T� is used in
the equations for ILM and IMM � while T� is used for IFN and INN � With these
time�scales it is assured that the numerators ILM and IFN never become negative�
Then� the coe�cient at the grid�scale is computed by extrapolation at every point
according to C��� � �ILM�IMM � IFN�INN �

Overall� this approach resulted in several di�culties due to the spatial variability
of the local coe�cient coupled with the extrapolation procedure� Even though
the method guarantees the individual coe�cients at the two test��lter levels to
be positive� there were many instances in which IFN�INN � �ILM�IMM � and
therefore the extrapolated coe�cient was negative causing instability or unphysical
results�

To stabilize the simulation it was necessary to perform an additional pathline
averaging of the coe�cient C��� itself� with an appropriately selected relaxation
time�scale so that it would not become negative� Denoting the Lagrangian average
of the coe�cient by IC � the time�scale chosen was T� � ������ICIMM �IMM  ���	�
On average� this time�scale is of the same order as T� and T�� Results are shown
in Fig� �� The average of the coe�cient shows the appropriate trend� although the
extrapolated coe�cient is not much smaller than the value at scale ��� and at low
Re� is considerably higher than the expected values �compare with Fig� ��� Given
the extra expense �carrying �ve relaxation�transport equations instead of two� and
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C

Re� � ��hj �Sji��

Figure �� Coe�cients obtained during LES of forced isotropic turbulence at var�
ious Reynolds numbers� using the bi�dynamic model with Lagrangian averaging of
numerators and denominators� and additional averaging of extrapolated coe�cient�
Shown is the volume average of the coe�cient �which varies locally�� � � Value at
scale ��� hIFN�INNi� � � Value at scale ��� hILM�IMM i� � � Mean bi�dynamic
coe�cient� obtained by extrapolation to scale ��

the small improvement� this approach does not seem to constitute a method of
choice�

��� Using nondynamic estimates for scaledependency

A more robust method is to explicitly build scale�dependence into the dynamic
model� This is accomplished by rewriting Eq� � �for � � �� as follows

Lij � C���

�
C����

C���
Aij � �Bij

�
� ����

and solve for C��� as in Eq� �� but with Mij given by

Mij � f���Aij �Bij � ����

where

f��� �
C����

C���
�

The idea is to solve for the coe�cient C��� but to use prior knowledge about the
possible scale dependence to evaluate the function f���� In the present case of ap�
proaching the viscous range� this function depends on the dimensionless parameters
��� or Re�� As mentioned previously� the latter case is more convenient during
LES since it is based on the strain�rate magnitude� which may be evaluated locally�
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C

Re� � ��hj �Sji��

Figure 	� Coe�cients obtained in LES of forced isotropic turbulence� using
the Lagrangian dynamic model in which scale dependence is incorporated non�
dynamically� Shown are the mean values of the coe�cients� Average mesh Reynolds
number is varied systematically by changing �� � � mean coe�cient using standard
formulation� Eq� � and �a� � � modi�ed dynamic model� in which Mij is given by
Eq� ��� � prediction based on Pao spectrum �Eq� ���

Using Eq� �� we evaluate the ratio C�����C���� which can be �tted quite well by
the following expression


f�Re�� � �������
Re�����
��

�Re�����
�

�� ����

where Re�� � ���j��Sj��� When the mesh Reynolds number is evaluated based
on the local strain�rate magnitude� it may locally approach zero� Then Eq� ��
diverges� which can cause numerical di�culties� Thus� the expression is clipped
at f�Re�� � max�f�Re��� ��� � This approach was tested a priori and gave good
results in the sense that the coe�cient obtained by this modi�ed method is indeed
smaller than the value that would have been obtained by assuming C��� � C�����

The approach was then implemented in LES of forced isotropic turbulence on
��� modes using the Lagrangian method of averaging �Meneveau et al�� ������
accumulating two variables ILM and IMM instead of �ve as in x���� The code and
methodology was the same as that described in the above reference� except for the
de�nition of Mij � The local values of Mij were computed from Eq� ��� and the local
mesh Reynolds number Re� was based on the local strain�rate magnitude� In order
to span a signi�cant range of Re�� �� simulations with di�erent values of � were
carried out� For comparison� simulations were also done with the standard de�nition
of Mij � i�e� assuming that C��� � C����� Results are shown in Fig� � as function
of the average value of the cell Reynolds number� Each symbol represents the result
of a simulation that was run to a statistically stationary state� For comparison� the
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dotted line shows the theoretical prediction of Eq� �� As can be seen� the approach
provides improved prediction of the coe�cient compared to the standard dynamic
model� As stated before� the di�erence in coe�cient had no appreciable e�ect on
the resolved scales or their energy spectrum�

This approach provides robust predictions of the coe�cient for this case �in the
viscous range�� and is very easy to implement� However� it requires input based on
theoretical arguments� It can thus only be applied to cases in which one knows a

priori the dependence of the ratio of coe�cient on scale� Therefore� this approach
is not entirely dynamic� in the sense that important information about model coef�
�cients must be speci�ed and is not determined during the simulation�

�� Conclusions

The dynamic Smagorinsky model has been examined in a case where it is known a

priori that the coe�cient depends on scale� namely in the viscous range� Theoretical
arguments were reviewed giving the coe�cient�s expected dependence on scale or
on mesh Reynolds number� A priori tests using well�resolved DNS data revealed
an important property of the standard dynamic model as applied to such a case

The method gives the coe�cient corresponding to the test��lter scale instead of the
grid�scale�

Several possible reformulations of the dynamic model were examined and	or
tested in LES of isotropic turbulence� In the �rst� the limit � � � was consid�
ered� Using a priori tests at test��lter scales near the grid scale �� � ��� and
����� it was shown that unphysical behavior can result� This limit is also expected
to be susceptible to numerical errors� Another proposal was studied in which the
Germano identity is used to solve for two unknown coe�cients C��� and C����
in the least�square�error sense� For implementations with the Smagorinsky model�
this procedure was shown to be ill�conditioned essentially because the eigenvectors

of the two basis tensors j��Sj��Sij and dj �Sj �Sij are almost co�linear� �their correlation
coe�cient is about � � ������

A new procedure� the bi�dynamic model� was proposed and tested� It is based
on extrapolating coe�cients obtained at two test��lters� When implemented with
volume averaging� the method gave fair results� Some complications arose when
the method was coupled with Lagrangian averaging� We conclude that while the
idea of using more than one test��lter scale to sample the resolved �eld in more
detail appears to be promising in principle� in the present application the added
complications outweigh the bene�ts� Finally� we tested a modi�ed formulation in
which one solves for a single coe�cient at the grid�scale but must prescribe the
ratio of coe�cients at test and grid scales non�dynamically� This method proved
quite practical� and it gave good results� However� it is not completely dynamic
since prior theoretical information about scale�dependence must be employed �a
similar approach was employed to account for grid anisotropy in Scotti et al�!in
this volume��
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