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ABSTRACT: We discover many new crystalline solid
materials with fast single crystal Li ion conductivity at room
temperature, discovered through density functional theory
simulations guided by machine learning-based methods. The
discovery of new solid Li superionic conductors is of critical
importance to the development of safe all-solid-state Li-ion
batteries. With a predictive universal structure−property
relationship for fast ion conduction not well understood, the
search for new solid Li ion conductors has relied largely on
trial-and-error computational and experimental searches over
the last several decades. In this work, we perform a guided
search of materials space with a machine learning (ML)-based
prediction model for material selection and density functional
theory molecular dynamics (DFT-MD) simulations for calculating ionic conductivity. These materials are screened from over
12 000 experimentally synthesized and characterized candidates with very diverse structures and compositions. When compared
to a random search of materials space, we find that the ML-guided search is 2.7 times more likely to identify fast Li ion
conductors, with at least a 44 times improvement in the log-average of room temperature Li ion conductivity. The F1 score of
the ML-based model is 0.50, 3.5 times better than the F1 score expected from completely random guesswork. In a head-to-head
competition against six Ph.D. students working in the field, we find that the ML-based model doubles the F1 score of human
experts in its ability to identify fast Li-ion conductors from atomistic structure with a 1000-fold increase in speed, clearly
demonstrating the utility of this model for the research community. In addition to having high predicted Li-ion conductivity, all
materials reported here lack transition metals to enhance stability against reduction by the Li metal anode and are predicted to
exhibit low electronic conduction, high stability against oxidation, and high thermodynamic stability, making them promising
candidates for solid-state electrolyte applications on these several essential metrics.

I. INTRODUCTION

All-solid-state Li-ion batteries (SSLIBs) hold promise as safer,
longer lasting, and more energy dense alternatives to today’s
commercialized LIBs with liquid electrolytes. However, the
design of SSLIBs remains a challenge, with the principal
technological bottleneck in realizing these devices being the
solid electrolyte. A high performance solid electrolyte material
must satisfy several criteria simultaneously: it must possess fast
Li-ion conduction, negligible electronic conduction, a wide
electrochemical window, robust chemical stability against side
reactions with the electrodes, and high mechanical rigidity to
suppress dendritic growth on the anode. The material should
also be cheap and easy to manufacture. Given these many
constraints, searching for promising new materials that satisfy
all requirements through the trial-and-error searches has
yielded slow progress.

The earliest efforts to discover fast Li-ion conducting solids
began in the 1970s1 and have continued to present. More
recently, density functional theory (DFT) simulation has
enabled high-throughput computational searches, essentially
automating the process of guess-and-check.2,3 Across these
four decades, only several solids with liquid-level Li conduction
(>10−2 S/cm) at room temperature (RT) have been identified,
including notably Li10GeP2S12 (17 mS/cm)4 and Li7P3S11 (25
mS/cm).5 This slow progress suggests that continuing in the
guess-and-check paradigm of decades past is unlikely to quickly
yield the material innovations we need to unlock the high
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energy density, high cycle life, and unquestionably safe energy
storage devices of the future.
Leveraging atomic and electronic structure data from the

Materials Project database,6 we have screened all 12 000+ Li-
containing materials for thermodynamic phase stability, low
electronic conduction, high electrochemical stability, and no
transition metals (to enhance stability against reduction). We
also compiled information on the estimated raw materials cost
and the earth abundance of the elemental constituents of each
material. This identifies 317 materials that may be strong
candidate electrolyte materials if they are also fast ion
conductors.
Following the guess-and-check paradigm, one would begin

to test these materials for fast ion conduction at random, or
according to his/her best scientific intuition. To identify the
subset of these materials most likely to exhibit fast ionic
conductivity, we have instead developed7 a machine learning
(ML)-based model for predicting the likelihood Psuperionic that
an arbitrary material exhibits fast Li-ion conduction at RT,
based only on features xi derived from the atomistic structure
of the unit cell. Throughout this work, we define superionic
conductivity to be greater than 0.1 mS/cm, based on the
approximate minimum electrolyte ionic conductivity required
for battery applications. Experimental reports of ionic
conductivity for several dozen materials ranging over 10
orders of magnitude were used to train the model. This data-
driven predictor takes the form of a logistic function,

= + − ∑ Θ −( )P x e( ) 1 x
superionic

1
i i i , where

∑ Θ = × − × − ×

+ × − × −

x 0.18 LLB 4.01 SBI 0.47 AFC

8.70 LASD 2.17 LLSD 6.56

i
i i

(1)

Here, LLB is the average Li−Li bond number (number of Li
neighbors) per Li; SBI is the average sublattice bond ionicity;
AFC is the average coordination of the anions in the anion
framework; LASD is the average equilibrium Li−anion
separation distance in angstroms; and LLSD is the average
equilibrium Li−Li separation distance in angstroms. Since this
model does not require any electronic structure information, it
is >5 orders of magnitude faster to evaluate than a DFT
simulation of conductivity.
Screening this list of 317 candidate materials identifies 21

crystalline compounds that are predicted to be fast ion
conductors with robust structural and electrochemical stability,
representing a 99.8% reduction in the entire space of known
Li-containing materials. One of these 21 materials, LiCl, has
been reported to exhibit poor RT Li conduction (∼10−9 S/
cm),8 making it a known false positive prediction. Another
material, Li3InCl6, has been reported to have a RT conductivity
of approximately 1 mS/cm, making it a correct model
prediction.9 Very little is reported in the literature regarding
the remaining 19 materials to our knowledge.
In this work, we perform DFT molecular dynamics (DFT-

MD) calculations10,11 on the promising candidate materials
identified by our screening procedure, finding evidence of
superionic RT Li conduction in eight and marginal RT Li
conduction in two. As a control, we then perform DFT-MD on
a similar number of materials drawn at random from the same
population of 317. We quantify the increase in research
efficiency offered by our ML-based model by comparing the
improvements in experimental outcomes against the random
case. We consider 41 unique materials in total. We find our

ML-guided search offers approximately 3−4× improvement in
predictive power for fast Li ion conductors over random
guesswork depending on the metric, while on average the
predicted RT Li ionic conductivity of any simulated material is
over 44× higher.
As a further test of the model’s efficacy, we provided the

same list of materials to a group of six graduate students
working in the field and asked them to identify the best ion
conductors. We found the F1 score of the model outperformed
the F1 score of the intuition of the students by approximately
two times, while each prediction was made approximately 1000
times faster. This result suggests ML-based approaches to
materials selection may provide significant acceleration over
the guess-and-check research paradigm of the past. Further-
more, these results provide confidence in our data-driven
superionic prediction model, as well as compelling evidence in
the promise of machine learning-based approaches to materials
discovery.

II. SIMULATIONS

We first perform DFT-MD on the 19 most promising new
candidate materials for solid electrolyte applications that are all
predicted to be fast ion conductors by our ML-based model eq
1. LiCl and Li3InCl6 were not simulated due to the existence of
conductivity data in the literature.8,9 In order to accelerate Li
diffusion to a computationally tractable time scale, we initially
seek an upper bound by performing MD at elevated
temperature and removing one Li atom per computational
cell to introduce a small concentration of Li vacancies to
enhance conduction and minimize the number of false
negatives identified. We simulate large supercells in order to
minimize the effect of the periodic boundary conditions. All
materials were initially simulated at T = 900 K; if melting is
observed, the simulation is restarted at increasingly lower
temperatures until no melting is observed. The vacancy
concentration ranges from 3 to 17% depending on the unit
cell. The simulation temperatures, computational cell size, and
Li vacancy concentrations are provided in the Supporting
Information, Table S1.
We simulate the candidate materials for a range of times on

the tens to hundreds of picoseconds time scale; see Table S1.
To calculate ionic diffusivity, which may be isotropic, we
compute the average of the diagonal elements of the second
rank Li diffusivity tensor (or equivalently, one-third of the
trace). We denote this as ⟨Dii⟩, where the average is taken over
the three elements ii = {xx, yy, zz}. We first evaluate the mean
squared displacement (MSD) of the Li atoms ⟨Δr2⟩ over time
(starting at t = 0) and apply the following formula:

⟨ ⟩ = ⟨Δ ⟩
Δ→∞

D
r
t

lim
1
6ii

t

2

(2)

To probe for melting, we also calculate the MSD of the
sublattice atoms and assume melting if sustained, nonzero
diffusivity is observed in both Li and the sublattice (the
smallest diffusivity that can be resolved through DFT-MD at
900 K is approximately 0.01 Å2/ps). To assess the degree of
convergence in ⟨Dii⟩, we compute the standard deviation in
diffusivities when measured from different starting times in the
MSD data. We compute the slope of the MSD data for every
starting time from t = 0 to up to 75% of the total run time, in
100 fs increments. We compute one standard deviation above
and below the mean diffusivity across all starting times to
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represent the approximate upper and lower limits of the
distribution of diffusivities one may observe under these
simulation conditions. The diffusivity as measured from t = 0
and the mean diffusivity across all starting times are not
necessarily equivalent, and thus the upper and lower
uncertainties are not necessarily symmetric around the value
predicted from t = 0.
Ionic transport in crystalline solids is modeled here as a

stochastic phenomenon governed by a Boltzmann (Arrhenius)
factor that is exponential in a single energy barrier between
equilibrium sites, Ea:

⟨ ⟩ = −D T D e( )ii
E k T

0
/a B (3)

Ionic hopping becomes exponentially less likely as the energy
barrier increases, and at 900 K (kBT = 78 meV) hopping may
not happen on the tens to hundreds of picoseconds time scale
if the barrier is much above 0.4 eV (e−0.4/0.078 = 0.006). Thus,
high temperature MD simulations are not well-suited to
predict a numerical value for ionic conductivity in medium- to
high barrier systems because the statistical behavior is not
captured on typical DFT simulation time scales. Numerical
values can only be predicted through MD in low barrier
systems, and even then are still approximate due to the
stochastic nature of hopping. Our approach is most suited for
high throughput calculations in which the main goal is
identifying whether or not materials are superionic conductors,
i.e., for making binary predictions of superionic vs non-
superionic conduction.

From the diffusivity ⟨Dii⟩, we convert to the average of the
diagonal elements of the ionic conductivity tensor ⟨σii⟩ via the
Einstein relation:12

σ⟨ ⟩ =
⟨ ⟩

T
D T nq

k T
( )

( )
ii

ii
2

B (4)

where n is the concentration of Li atoms and q is the charge on
the Li atoms. We measure the effective Li charge q using the
Bader charge analysis methods of Henkelman et al.13−16 Given
the linear relationship between conductivity and diffusivity, we
compute the spread of possible conductivities by applying eq 4
to the computed bounds in diffusivity as well.
It stands to reason that fast Li conduction will not be

observed at RT if it is not observed in these favorable
conditions. Our approach therefore should not identify false
negatives (materials with poor conduction at high temperature
but fast conduction at RT), although there is a risk of
identifying false positives (materials with fast conduction at
high temperature but poor conduction at RT). To ensure
favorable scaling to room temperature and guard against the
identification of false positives, we simulate DFT-MD again at
alternate temperatures if significant Li diffusion has been
observed at the initial simulation temperature. The line
connecting the two or three diffusivities on an Arrhenius
plot of log10(σ) versus inverse temperature is employed here to
extrapolate down to RT without direct calculation of Ea. This
assumes Arrhenius scaling applies and there are no structural
phase changes or nonstructural superionic transitions (where

Figure 1. Flowchart of high-throughput density functional theory molecular dynamics (DFT-MD) simulation process. Materials are chosen either
according to the machine learning-based model (left stream) or by random selection (right stream). Materials are initially simulated at 900 K for
approximately 50−100 ps. If no Li diffusion is observed on this time scale, the materials are immediately considered poor ion conductors and no
further simulation is performed. If materials exhibit Li diffusion at 900 K, they are simulated again at alternate temperatures so a simple two- or
three-point Arrhenius extrapolation to room temperature can be made. If melting is observed in the ML-selected materials at 900 K, the simulation
is restarted at a lower temperature. Randomly chosen materials that exhibit melting at 900 K are discarded immediately for computational
efficiency; this occurred in two randomly chosen materials.
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conductivity changes abruptly as new ionic pathways become
energetically accessible or inaccessible without any significant
sublattice rearrangement)17 between the simulation temper-
atures and RT. The spread of possible values in the RT
conductivity extrapolations is computed by extrapolating along
the upper and lower limits of the deviations in the high
temperature conductivity calculations. Using typical values for
Li concentration, Bader charge, and site hopping distance, we
estimate that the RT conductivity is likely to be 10−9 S/cm or
lower if no Li diffusion is observed on the simulation time scale
at 900 K (see Supporting Information, Section S1 for
calculation).
A flowchart describing this process is shown in Figure 1.

This extrapolation scheme requires less computational expense
than simulating each material at several different temperatures
right away and is the most tractable way for us to quantify the
ionic conductivity of the materials studied here on a reasonable
time scale. Screening for Li superionic RT diffusion by two-
temperature extrapolation has been leveraged in recent work to
search sulfide-based compositional spaces, for example.3

We perform DFT calculations with the Vienna Ab Initio
Simulation Package (VASP)18 with the generalized gradient
approximation (GGA) of Perdew−Burke−Ernzerhof (PBE)19
and the projector augmented wave (PAW)20 method. We use
the pseudopotentials and plane wave cutoff energy (520 eV for
all structures) as recommended by the Materials Project. The
VASP input files are generated using the pymatgen.io.vasp.sets
module of Pymatgen.21,22 Given the large unit cells (and DFT
Kohn−Sham bandgaps exceeding 1 eV for all these materials),
we use a gamma-point only k-mesh. The pseudopotentials are
given in Table S1.
The ultimate metric of the utility of materials selection

models is the improvement in likelihood of successfully
identifying positive examples over the background probability
of these materials. To quantify the superiority of our model to
completely random guesswork, we must know the likelihood of
discovering a superionic material by chance with no scientific
intuition involved. In 1978, Huggins and Rabenau questioned
“whether there is anything fundamentally different in such
materials, or whether they merely exhibit extreme values of
‘normal’ behavior.”23 Superionic conductors may have
remarkably low diffusion barriers, but how do they compare
to the distribution of barriers across the space of all the
candidate electrolyte materials?
Experience would tell us that the likelihood of chance

discoveries is low, given that only a handful of fast Li
conductors have been discovered since the search began nearly
40 years ago. However, we are probing for superionic
conduction in a very specific way: we are pulling from a
potentially biased group of 317 known materials in the
Materials Project database, introducing Li vacancies, and
simulating finite computational cells at high temperature.
Therefore, this question is best answered by doing a straight-
across comparison of high temperature DFT-MD simulations
for a similar number of structures chosen at random from the
same population.
To accomplish this, we perform a control experiment where

we simulate 21 structures chosen uniformly at random from
among the 317 materials that satisfy all prerequisite screening
criteria (band gap > 1 eV, predicted oxidation potential > 4 V,
energy above convex hull = 0 eV, no transition metals) and
simulate MD under the same procedure. These 21 structures
and their predicted superionic likelihoods according to the ML

model are the following: LiLa2SbO6 (0%), Li6UO6 (7.7%),
LiInF4 (0.6%), LiBiF4 (0.2%), Li6Ho(BO3)3 (10.1%),
RbLiB4O7 (4%), Li4Be3As3ClO12 (0.3%), Li6TeO6 (6.4%),
Li3Pr2(BO3)3 (9.2%), NaLiS (36%), LiSbO3 (2.4%), LiCaGaF6
(0.0%), Li2Te2O5 (15.8%), LiNO3 (8.3%), Ba4Li(SbO4)3
(0.0%), Rb2Li2SiO4 (4.5%), NaLi2PO4 (0.0%), Cs4Li2(Si2O5)3
(0.1%), RbLi(H2N)2 (24.5%), Cs2LiTlF6 (0.0%), and LiSO3F
(100%). We chose 29 structures in total but removed eight
(Na2LiNF6, CsLi2(HO)3, LiU4P3O20, Li3Nd2H6(N3O10)3,
Li3La2H6(N3O10)3, Li3P11(H3N)17, Li4H3BrO3, and Li2Pr-
(NO3)5) due to either melting at 900 K or due to extremely
slow or failed electronic convergence, in some cases due to
electronic bandgap closure during the simulation. Of the
remaining 21 randomly chosen materials we successfully
simulate, 20 have a negative ML-based superionic prediction
(below <50%) so we do not expect them to conduct. The only
material of these 21 random materials that is predicted by our
ML-based algorithm to conduct is LiSO3F. The computational
parameters used in these randomly chosen simulations are also
provided in Table S1. This set of randomly drawn materials
also provides a test set to explore the ML model performance
versus the predictive power of the intuition of human experts;
we explore this in Section III, Subsection v.
The ML-chosen materials and randomly chosen materials

exhibit notably different distributions in their compositions.
For example, compositions containing oxygen are heavily
represented in the randomly chosen materials (71.4% of
materials) but poorly represented in the ML-chosen materials
(14.3%). The former is closely aligned with the distribution of
oxygen-containing compositions in the broader pool of 317
candidates (70.0%) that satisfy the constraints including high
oxidation potential, which we expect given the randomly
chosen materials are drawn from this pool. Similarly, sulfur-
containing compositions make up 9.2% of the 317 candidates
and 9.5% of the randomly chosen candidates but 57.1% of the
ML-chosen materials, indicating a clear preference by the ML
model for sulfides over oxides when ionic conductivity is the
primary consideration. We note that this work is focused
primarily on finding the best specific target compounds; a
follow-up study24 will focus on the identification of promising
new target systems.
In this work we report a total of 4.3 ns of molecular

dynamics simulation, with a mean simulation time of 74.9 ps
and mean computational cell size of 99.1 atoms. The total
volume of data reported here corresponds to approximately
330 000 GPU-hours of simulation.

III. RESULTS AND DISCUSSION
i. Discoveries from ML-Guided Selection. The

computed ionic conductivities for the ML-chosen candidate
materials and the randomly chosen materials are provided in
the Arrhenius diagram on Figure 2a. The computed high
temperature diffusivities, ionic conductivities, average Li Bader
charge, and extrapolated RT ionic conductivities with
predicted deviations (conductivities measured from alternate
starting time points) of these candidates are given in Table 1.
We do not calculate results for one of the ML-chosen
candidates, Li2GePbS4, because of problems with electronic
convergence in our simulations.
Our simulations show 10 of the simulated candidate

materials exhibit significant Li conduction at high temperature.
After applying Arrhenius scaling and extrapolating to RT, eight
of these materials are predicted to exhibit superionic
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conductivity (>10−4 S/cm) under the simulated vacancy
concentrations: Li5B7S13, CsLi2BS3, LiMgB3(H9N)2, Li2B2S5,
Li3ErCl6, Li3InCl6, Li2HIO, and LiSO3F. Two materials,
Sr2LiCBr3N2 and LiErSe2, conduct well at high temperature,
but their extrapolated RT conductivities are below 10−4 S/cm
at RT.
Zhu et al. report3 that RT superionic conductors will

typically exhibit a simulated Li diffusivity of at least 0.01 Å2/ps
at 800 K. Of these promising materials that were simulated at

900 K, all have diffusivities significantly above 0.01 Å2/ps. The
two marginal conductors are above this limit by a factor of two
to three, while the best conductors are above this limit by a
factor of 10 or more. This provides additional confidence in
their fast RT ionic conductivity.
The rightmost column of Table 1 indicates whether the

DFT evidence suggests the superionic prediction of the ML
model was correct. In total, 8 materials are observed to show Li
conduction of 10−4 S/cm or above at RT, 2 materials are near
this threshold, and 10 fall far below.

ii. Discoveries from Random Selection. The results of
the simulation on the randomly selected materials are listed in
Table 2 and plotted in Figure 2b. Of the 21 randomly chosen
and simulated materials, five structures demonstrated meas-
urable Li conduction at 900 K: LiSO3F, LiSbO3, Li6Ho(BO3)3,
Li2Te2O5, and RbLi(H2N)2, with Li diffusivities at 900 K of
0.3, 0.1, 0.05, 0.04, and 0.02 Å2/ps, respectively. The remaining
16 structures showed no observable Li conduction on the time
scale of tens to hundreds of picoseconds. See Supporting
Information for computational parameters and simulation
times.
The five materials that exhibited diffusion at 900 K were

simulated again at alternate temperatures. After constructing
the conductivity extrapolation, the conductivities in three of
these materials (LiSO3F, Li6Ho(BO3)3, and LiSbO3) were
found to extrapolate to above 10−4 S/cm at room temperature.
The remaining two, however, showed zero diffusion during
simulation at 700 K. Using typical values for the Li
concentration and Bader charge, we estimate that zero Li
diffusion after 50 ps of simulation at 700 K likely corresponds
to an ionic conductivity of 10−9 S/cm or less. Therefore, the
RT conductivity of these two materials is predicted to be far
below 10−4 S/cm when the assumed 700 K conductivity is
factored into the extrapolation.

iii. Discussion of Discovered Materials. Between the
ML-guided search and the random search, we identify 12
materials total that are predicted by our DFT-MD simulations
to exhibit significant Li ion conduction at RT (and the DFT-
MD of Zevgolis et al.9 for Li3InCl6). Aside from Li3InCl6 and
Li6Ho(BO3)3, none of these materials have reported DFT or
experimental conductivity values in the literature to our
knowledge. Due to our additional screening steps, these
materials also satisfy several other critical criteria beyond fast
ionic conductivity to make them useful as solid-state
electrolytes in Li-ion batteries: all materials possess DFT-
predicted band gaps greater than 1 eV to ensure limited
electronic conduction, are free from transition metal elements
which may easily reduce in contact with a Li metal anode,
exhibit high predicted electrochemical stability against
oxidation by cathodes (>4 V vs Li/Li+), and sit on the convex
hull of their phase diagrams to ensure robust structural (phase)
stability.
Two of the materials discovered here (Li2B2S5 and Li5B7S13)

belong to the Li−B−S system, which appears to be a promising
class of materials for realizing fast conducting, electrochemi-
cally stable, low mass solid electrolyte materials. The RT ionic
conductivity of Li5B7S13 in particular is predicted to be an
exceptional 74 mS/cm, six times higher than the material
Li10GeP2S12 (12 mS/cm),4 one of the best known Li-ion
conductors. CsLi2BS3 is a Cs-substituted isomorph of Li3BS3, a
fast conductor also in the Li−B−S family.25 These three phases
were initially identified and characterized as phases observed
within Li−B−S (and Cs−Li−B−S) glasses.26−28 The glassy

Figure 2. Computationally observed ionic conductivity in candidate
materials and extrapolation to room temperature (RT). In Part (a) we
show the computed ionic conductivities for the 10 fast conducting
materials as chosen by the ML model (from 20 of the 21 identified in7

Li2GePbS4 not simulated); in part (b) we show the same for the five
conducting materials from the 21 randomly chosen materials. The
vertical dotted gray line represents room temperature (293 K), and
the horizontal dotted gray line represents our RT ionic conductivity
threshold (10−4 S/cm) for a material to be considered superionic. All
calculations were performed with small Li vacancy concentrations as
listed in Table S1 in the Supporting Information. Materials simulated
in this work are not shown here if no Li conduction was observed.
After extrapolating to room temperature, 10 of the ML-chosen
materials exhibit significant RT ion conductivity (with eight of them
at or above 10−4 S/cm) in (a), while the same is true of only three of
the randomly chosen materials in (b). The predicted RT conductivity
values are provided in Tables 1 and 2. The errors associated with
these calculations are not shown here but are listed in Tables 1 and 2.
Materials with dotted lines have caveats in their extrapolations: (1)
Li2HIO was only simulated at 400 K due to melting at higher
temperatures; the RT extrapolation assumes a diffusion barrier of 0.35
eV: a typical, if high, Li ion diffusion barrier in fast conducting
materials. (2) Li3InCl6 was not simulated in this work, and
conductivity values were taken from ref 9. (3) CsLi2BS3 was initially
simulated at 900 K, but issues with slow or failed convergence were
encountered when simulating at alternate temperatures. The RT
conductivity value is assumed to be of the same order of magnitude as
Li3BS3 in ref 25. (4) LiCl was also not simulated here with
conductivity values taken from ref 8. Both Li2Te2O5 (5) and
RbLi(H2N)2 (6) did not exhibit any Li conduction at 700 K on the 50
ps time scale, so a conductivity ≤10−6 S/cm at this temperature was
assumed.
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Li−B−S−I system was reported to be an exceptional Li ion
conductor in 1981,29 but to our knowledge these phases within
the crystalline Li−B−S space have not been studied as solid
electrolytes.
Li3ErCl6, an Er-substituted analogue to the fast-conducting

Li3InCl6, appears to be a promising Li conductor with a
predicted RT ionic conductivity of 3 × 10−4 S/cm, although
the high atomic mass and low earth abundance of Er makes it a
less attractive candidate for battery applications. Li3ErCl6 was
first studied and characterized in 1996 as a potential fast Li ion
conductor,30 but to our knowledge the ionic conductivity was
not reported. We find another Er-based compound appears to
be a marginal RT Li ion conductor, LiErSe2. LiErSe2 is a Li-
intercalated two-dimensional layered material that was initially
studied in 1987 for its phase transitions and magnetic
properties.31

We discover three nitride-based fast ion conductor materials
with quite complex compositions: Sr2LiCBr3N2, RbLi(H2N)2,
and LiMgB3(H9N)2. Sr2LiCBr3N2 is a solid-state carbodiimide
material that was first characterized in 2005;32 RbLi(H2N)2
was originally synthesized in 191833 and subsequently
characterized in 2002;34 and LiMgB3(H9N)2 was initially
synthesized and studied in 2014 as a candidate solid-state

hydrogen storage material.35 The exotic stoichiometries of
these materials underscores the utility of the ML-based model,
as it seems unlikely that such complex materials would be
discovered by chance to be fast ion conductors. A potential
drawback in using these materials with many elements as solid
electrolytes is that the electrochemical stability is likely to be
low, given the high number of stable interfacial phases that
could form from a subset of these elements.
We discover four oxygen-based materials predicted to be fast

RT ion conductors: Li2HIO, LiSO3F, Li6Ho(BO3)3, and
LiSbO3. These materials may be particularly promising
candidates for further experimental studies, given that oxide
materials can often be synthesized in atmospheric conditions.
LiSbO3, LiSO3F, and Li2HIO were first studied in 1954, 1977,
and 1994, respectively,36−38 but to our knowledge have not
been studied as a candidate solid electrolyte material.
Li6Ho(BO3)3 was first characterized39 in 1977, and exper-
imental work from 1982 reported it to have poor RT ionic
conductivity.40 If the experimental observation is assumed to
reflect the “ground truth” of ionic conductivity, this gives
Li6Ho(BO3)3 the interesting distinction of having been
accurately predicted to be a poor ion conductor by the ML
model (which was trained on experimental data) but

Table 2. Density Functional Theory Molecular Dynamics Results for Random Material Selectiona

Randomly Guided Material Selection

MPID
(mp-
####) chemical formula computed ⟨Dii⟩ (Å

2/ps), T (K)

average Li
Bader
valence
charge

computed ⟨σii⟩ (mS/cm),
T (K)

extrapolated
RT ⟨σii⟩
(mS/cm)

ML-
predicted
superionic?

evidence for
correct model
prediction?

6674 LiLa2SbO6 ∼0 [900] − ∼0 [900] <10−6 no yes
8609 Li6UO6 ∼0 [900] − ∼0 [900] <10−6 no yes
28567 LiBiF4 ∼0 [900] − ∼0 [900] <10−6 no yes
12160 Li6Ho(BO3)3 0.10 (0.12, 0.10) [1200], 0.048

(0.05, 0.044) [900]
(+1.0) 490 (580, 470) [1200], 300

(310, 280) [900]
5.1 (1.7, 3.8) no no

6787 RbLiB4O7 ∼0 [900] − ∼0 [900] <10−6 no yes
560072 Li4Be3As3ClO12 ∼0 [900] − ∼0 [900] <10−6 no yes
7941 Li6TeO6 ∼0 [900] − ∼0 [900] <10−6 no yes
13772 Li3Pr2(BO3)3 ∼0 [900] − ∼0 [900] <10−6 no yes
8452 NaLiS ∼0 [900] − ∼0 [900] <10−6 no yes
770932 LiSbO3 0.18 (0.19, 0.16) [1200], 0.065

(0.16, 0.078) [900]
(+1.0) 420 (460, 380) [1200] 210

(520, 240) [900]
0.67 (520,
5.3)

no no

12829 LiCaGaF6 ∼0 [900] − ∼0 [900] <10−6 no yes
27811 Li2Te2O5 0.050 (0.14, 0.065) [1200], 0.044

(0.057, 0.042) [900], ∼0 [700]
(+1.0) 110 (330, 150) [1200] 130

(170, 120) [900], ∼0 [700]
<10−6 no yes

8180 LiNO3 ∼0 [900] − ∼0 [900] <10−6 no yes
7971 Ba4Li(SbO4)3 ∼0 [900] − ∼0 [900] <10−6 no yes
8449 Rb2Li2SiO4 ∼0 [900] − ∼0 [900] <10−6 no yes
558045 NaLi2PO4 ∼0 [900] − ∼0 [900] <10−6 no yes
562394 Cs4Li2(Si2O5)3 ∼0 [900] − ∼0 [900] <10−6 no yes
510073 RbLi(H2N)2 0.088 (0.12, 0.03) [1100], 0.04

(0.036, 0) [900], ∼0 [700]
(+1.0) 166 (230, 54) [1100], 84 (76,

0) [900], ∼0 [700]
<10−6 no yes

7744 LiSO3F 0.86 (0.92, 0.65) [1200], 0.20
(0.22, 0.17) [900], 0.072 (0.08,
0.059) [700]

+0.91 1300 (1400, 960) [1100] 370
(390, 310) [900], 170 (190,
140) [700]

0.082 (0.11,
0.10)

yes yes

989562 Cs2LiTlF6 ∼0 [900] − ∼0 [900] <10−6 no yes
8892 LiInF4 ∼0 [900] − ∼0 [900] <10−6 no yes

aWe simulate 21 materials as chosen at random and provide the computed values for diffusivity ⟨Dii⟩ (average of diagonal elements in the diffusivity
tensor), conductivity, and average Li Bader charge and the extrapolated RT ionic conductivity values. In parentheses, we provide the diffusivities
corresponding to one standard deviation above and below the mean when measuring the diffusivity from varying start times. We extrapolate along
these alternate diffusivities to RT to compute expected deviations in the RT conductivity predictions. The second-to-right column gives the ML-
based model prediction for superionic likelihood, and the rightmost column communicates whether the ML-based model gave a correct prediction
for each material. The Bader charge on the Li atoms in the control group is taken to be +1.0 for computational efficiency. Additional randomly
chosen materials that melted at 900 K or whose simulations did not converge were discarded and are not listed here. The success rate of random
selection is computed to be 3/21 = 14.3%.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.8b03272
Chem. Mater. 2019, 31, 342−352

348

http://dx.doi.org/10.1021/acs.chemmater.8b03272


incorrectly predicted to be a good ion conductor by DFT-MD.
It is also possible that the bulk ionic conductivity of the
material is fast, which is accurately modeled by DFT-MD, but
it becomes a poor ion conductor under the experimental
conditions of ref 40, e.g., due to defects, stoichiometric
variations, or microstructural effects. The calculations
performed here suggest that this material warrants a revisit
of the experimental results.
iv. Model Performance. Quantifying the accuracy of the

original ML-based model should be done based on its
performance on a randomly sampled test set, not on a test
set consisting only of positive predictions. The 21 randomly
chosen materials that were simulated here provide such a set.
On this set, the model correctly predicts the DFT-validated
material label 19/21 times, yielding an overall predictive
accuracy of 90.5%. This value is similar to the 90.0% model
accuracy predicted via leave-one-out cross-validation in the
original model building process.7 Only one material (LiSO3F)
was predicted to be a superionic conductor by the ML-based
model, and our DFT simulation confirmed the prediction was
correct; this gives a model precision of 1.0 on this particular
test set. Of the three materials that DFT-MD found to be RT
superionic conductors (LiSO3F, LiSbO3, Li6Ho(BO3)3), only
one was accurately predicted by the ML model; this gives a
model recall of 1/3 = 0.333 on the test set. Taken together,
these values give the model an F1 score of 0.50. For
comparison, the baseline F1 score of fast ion conductors on
the test set (i.e., the F1 score of completely random
guesswork) is simply the fraction of positive examples in the
test set, which gives a baseline F1 score of 0.143. Therefore,
the F1 score of the ML model is 0.50/0.143 = 3.5x higher than
the F1 score associated with completely random trial-and-
error.
As an alternative means of quantifying the expected

improvement in experimental outcomes of Li conductivity
measurements in the ML-guided versus random searches, we
average the predicted RT ionic conductivities across all
randomly chosen materials and all ML-chosen materials.
Given that ionic conductivity varies over many orders of
magnitude, we average the base-10 logarithm of conductivity.
This gives a log-average RT ionic conductivity of the randomly
chosen materials of 6.8 × 10−6 mS/cm, while the log-average
conductivity in the ML chosen materials is 3.0 × 10−4 mS/cm,
44 times higher. This comparison assumes the average RT
ionic conductivity in the materials with no observed Li motion
is 10−6 mS/cm; as discussed in Supporting Information
Section S1, this value likely serves as an upper bound in
most cases on the conductivity in these materials, and thus the
44× improvement in conductivity is a lower bound on the true
improvement the model offers, e.g., if the average conductivity
of the nonconductors is taken to be 10−9 mS/cm, the
improvement in conductivity increases to over 350×.
As an additional performance metric, we compare the

likelihood of discovering a RT superionic conductor under the
ML-guided screening versus random searching. The random
search yields 3 fast conductors and 18 nonconductors. This
yields a baseline superionic probability of 3/21 = 14.3%. To
make a fair comparison to the ML-guided case where materials
that melted at 900 K were not discarded, we do not consider in
the statistics those ML-chosen materials that melted at 900 K.
Two of the eight ML-chosen RT superionic conductors melted
at 900 K (LiMgB3(H9N)2 and Li2HIO). Removing these two
materials from the count, the ML model identifies six fast

conductors, two marginal conductors, and ten nonconductors.
Counting the marginal cases as one-half, this gives an ML-
guided conductor discovery rate of 7/18 = 38.9%. Therefore,
applying the ML-based model to screen candidate materials
before experimentation yields an expected 0.389/0.143 = 2.7x
improvement in discovery rate. In Figure 3 we provide a

histogram showing the ionic conductivity distribution in the
ML-chosen and randomly chosen materials; the ML model
discovers over five times more materials with ionic
conductivity above 1 mS/cm, while the number of nondiffusive
materials falls from 86% to 56%. We refer the reader to the
Supporting Information Section S2 for further discussion.

v. Comparison to Human Intuition. We perform a test
of the model’s speed and predictive power against human
intuition, which is likely to identify fast conducting materials at
a higher rate than the background distribution of ion
conductors. Several design principles for predicting superionic
diffusion have been reported recently,41−43 but human-guided
search efforts may or may not take these principles into
account. To understand the precision of human intuition, we
polled six Ph.D. students in the Department of Materials
Science & Engineering at Stanford University to test their
ability to predict superionic conduction in the 21 randomly
chosen materials. The students are all actively engaged in
research involving ion conductors. The students were allowed
to take as much time as necessary to make predictions and
could access all structural information about the candidate
materials provided on the Materials Project database or any
other source. This included structure (CIF) files, space and
point groups, and properties like formation energy and band
gap. This poll sought to test how quickly and accurately the

Figure 3. Normalized histogram of predicted room temperature (RT)
conductivities for the ML-guided material search versus the random
search. We study 20 materials based on the predictions of our data-
driven model and a control group of 21 chosen at random from the
same population. When choosing materials for study based on the
predictions of our data-driven model, we observe a significant increase
in RT Li conductivity than when simulating materials chosen at
random. After removing cases from both populations that melted at
900 K, 28% of the ML-selected materials exhibited a predicted RT
conductivity of 1 mS/cm or higher with small Li vacancy
concentrations, compared to only 5% of materials selected at random.
The rate of negative outcomes (no ionic motion) in the simulations
during the ML-guided material simulation was 56%, while the
randomly chosen materials demonstrated a negative outcome rate of
86%. The log-average of RT predicted conductivity in the ML-guided
case is at least 44 times higher if nonconducting cases are assumed to
have an RT ionic conductivity ≤ 10−6 mS/cm (3.0 × 10−4 versus 6.8
× 10−6 mS/cm).
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students would naturally predict superionic conduction in the
absence of eq 1, and so they were not given access to any of the
pretabulated features employed in eq 1, nor were they
encouraged to make predictions quickly. After making
predictions, we calculated their average precision and recall
on the data set; the average precision was 0.25 and the average
recall was 0.222, giving an overall average F1 score of 0.235.
The baseline F1 score for random guessing is 0.143. The
students took approximately one minute to make each
individual prediction. For comparison, the ML model made
each prediction in approximately one millisecond.
In Figure 4 we compare the performance in speed and F1

score of the Ph.D. students and the ML model. The ML model

exhibits more than double the F1 score of the students and is
more than 3 orders of magnitude faster. As a reference, we
provide the performance of DFT-MD, which we assume has an
F1 score of 1.0 and requires approximately 2 weeks to make a
reliable prediction.
While DFT-MD is taken here to be ground truth, the logistic

regression model utilized in this work is trained on
experimental measurements, where grain boundaries, contam-
inants, and other uncharacterized factors may have altered the
result. This may mean the model is best suited to guide
experimental searches, as the model has a built-in bias toward
expected results under experimental conditions. In contrast,
our DFT-MD simulates conductivity in single crystal bulk
systems with small Li vacancy concentrations. Although DFT-
MD is well-suited to make predictions under these conditions,
its predictions have potential to deviate from the ground truth
for the ML model; for example, the conflicting DFT-MD and
experimental reports for RT Li ion conductivity in Li6Ho-
(BO3)3 between this work and ref.40 This work predicts RT
ion conductivity of approximately 5.1 mS/cm, while ref 40
reports RT ion conductivity orders of magnitude lower (see
Section III, Subsection iii). It is possible that the model may
recognize that experimental efforts on Li6Ho(BO3)3 are likely
to yield a poor conductor even though the single crystal
conductivity is fast. We look forward to future experimental
reports of the ionic conductivities of some of the materials
presented here, to both advance the state of the art in ion
conductors and to further quantify the performance of the data
driven approach.

IV. CONCLUSIONS

Guided by machine learning methods, we discover many new
solid materials with predicted superionic Li ion conduction
(≥10−4 S/cm) at room temperature: Li5B7S13, Li2B2S5,
Li3ErCl6, LiSO3F, Li3InCl6, Li2HIO, LiMgB3(H9N)2, and
CsLi2BS3. Two additional materials show marginal RT
conduction: Sr2LiCBr3N2 and LiErSe2. One of these materials,
Li5B7S13, has a DFT-MD predicted RT Li conductivity (74
mS/cm) many times larger than the fastest known Li ion
conductors. A search over randomly chosen materials identifies
two additional materials with promising predicted RT ionic
conductivities: Li6Ho(BO3)3, and LiSbO3. In addition to high
ionic conductivities, all these materials have high band gaps,
high thermodynamic stability, and no transition metals, making
them promising candidates for solid-state electrolytes in
SSLIBs. These materials represent many exciting new
candidates for solid electrolytes in SSLIBs, and we encourage

Figure 4. Comparison of human and machine. Here we plot the
predictive accuracy (F1 score) of the ML model and the predictive
accuracy of a group of six Ph.D. students working in materials science
and electrochemistry. We chose 22 materials at random from a list of
317 highly stable Li containing compounds in the Materials Project
database and queried both Ph.D. students and the ML model to
predict which materials are superionic Li conductors at room
temperature. Validation of superionic conduction is performed with
density functional theory molecular dynamics simulation. The Ph.D.
students average an F1 score of 0.24 for superionic prediction while
the model produces an F1 score of 0.5. For reference, we provide the
baseline F1 score expected for random guessing (0.14) as a dashed
vertical line. Additionally, the students average a rate of approximately
one minute per prediction while the trained ML model makes over
100 predictions per second, a thousand-fold increase in speed. The
density functional theory simulation used to validate superionic
conduction is a physics-based model that is taken here to represent
the ground truth (F1 score of 1.0) but is very slow, with a prediction
rate on the scale of weeks. Taken together, these data points highlight
the experimental approach that ML-based prediction tools are well-
suited to address: making fast predictions more accurately than trial-
and-error guessing.

Table 3. Summary of Model Performancea

model precision recall
F1
score fast Li ion conducting materials identified (in this work)

machine learning (logistic regression on 40
examples)

1.0 0.33 0.5 Li5B7S13, Li2B2S5, Li3ErCl6, Li2HIO, LiSO3F, Li3InCl6, CsLi2BS3, LiMgB3(H9N)2,
Sr2LiCBr3N2 (marginal), LiErSe2 (marginal)

random selection 0.14 0.14 0.14 Li6Ho(BO3)3, LiSbO3, LiSO3F
Ph.D. student screening 0.25 0.22 0.24 −

aHere we provide the performance metrics (precision, recall, F1 score) and list of discovered fast Li ion conducting materials for the three models
explored in this work. The results of the Ph.D. student screening represent the average performance of six students on the same test set of randomly
chosen materials as used to compute the “random selection” statistics. The machine learning-based approach to predicting ion conductivity from a
small data set of 40 materials significantly outperforms both random chance and the average polled Ph.D. student. This highlights the promise of
applying machine learning-based approaches to materials screening before performing computationally expensive simulation techniques like DFT-
MD or time consuming experimental tests.
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subsequent experimental investigations into the properties of
these materials.
Compared to the machine learning-guided search, the

control experiment of searching for fast ion conductors
through random guesses yields significantly lower quality
results. Screening with our ML-based model improves the
likelihood of superionic discovery by nearly three times, with a
more than 44× improvement in log-average of RT ionic
conductivity. Additionally, the model outperforms the intuition
of Ph.D. students actively working on ion conductors by more
than a factor of 2. This is a significant acceleration beyond trial-
and-error research and provides confidence in our ML-based
approach to materials screening. These results are summarized
in Table 3. Such data-driven models are expected to improve
with every new data point, and with the data we report here we
expect to drive significant improvements to ML-based models
for Li conduction.
The improvement over random guessing provided by our

ML-based model for predicting Li ion conductivity under-
scores the importance of thorough data reporting, centralized
data collection, and careful data analysis for materials.
Although significant improvements have been made in the
last several years thanks to incentives provided by the Materials
Genome Initiative,44 there are still many materials properties,
especially experimentally expensive properties like ionic
conductivity, without any comprehensive data repository.
This work demonstrates that learning on even small sets of
materials data (40 samples) can offer a significant advantage in
screening efforts. To that end, we encourage efforts to continue
centralizing and learning on diverse types of data on materials.
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