Fast galvanic lithium corrosion involving a Kirkendall-type mechanism

Dingchang Lin, Yayuan Liu, Yanbin Li, Yuzhang Li, Allen Pei, Jin Xie, William Huang and Yi Cui

Developing a viable metallic lithium anode is a prerequisite for next-generation batteries. However, the low redox potential of lithium metal renders it prone to corrosion, which must be thoroughly understood for it to be used in practical energy-storage devices. Here we report a previously overlooked mechanism by which lithium deposits can corrode on a copper surface. Voids are observed in the corroded deposits and a Kirkendall-type mechanism is validated through electrochemical analysis. Although it is a long-held view that lithium corrosion in electrolytes involves direct charge-transfer through the lithium–electrolyte interphase, the corrosion observed here is found to be governed by a galvanic process between lithium and the copper substrate—a pathway largely neglected by previous battery corrosion studies. The observations are further rationalized by detailed analyses of the solid-electrolyte interphase formed on copper and lithium, where the disparities in electrode reduction kinetics on the two surfaces can account for the fast galvanic process.

Corrosion is a chemical degradation process commonly observed when materials are exposed to environments with a high redox power. Electrochemical cells, which involve highly oxidative and reductive redox pairs in ion-concentrated environments, usually encounter corrosion to various extents. Therefore, in most of the practical electrochemical systems, the redox pairs are carefully chosen to fall into (or not far beyond) the thermodynamic stability window of the electrolytes in order to circumvent corrosion. The rechargeable lithium ion battery (LIB), however, is a rather special system in which the potential of the electrodes often falls far beyond the stability limit of the electrolyte to maximize the energy density. As a result, unlike a thermodynamically stable system, corrosion can easily occur in LIBs unless an effective kinetic inhibition is applied, and such corrosion has drawn the attention of the battery community. Fortunately for conventional lithium ion chemistries, satisfactory combinations of redox pairs and electrolytes capable of forming a dense passivating solid–electrolyte interphase (SEI) were found. They were proved to be relatively stable within the battery service life, which has made LIBs a successful means of energy storage over the past two decades.

Nowadays, the burgeoning developments of renewable energy, portable electronics and electric vehicles are demanding electrochemical energy storage devices with an even higher energy density. Metallic Li-based chemistries, such as lithium–sulfur and lithium–oxygen, have the potential to replace LIBs thanks to the over tenfold higher theoretical capacity of Li compared to the 372 mAh g⁻¹ of conventional graphite. Therefore, studies of metallic Li, including its fundamental properties, electrolyte chemistries and interfacial engineering and electrode designs, have been conducted intensively in recent years. However, metallic Li is highly susceptible to corrosion due to its low redox potential (E°(Li²⁺/Li) = -3.04 V versus the standard hydrogen electrode), which is one of the dominant factors that dictates its cycling stability. Although the SEI concept that resulted from Li corrosion studies has been well established, a systematic understanding of the corrosion process beyond the initial SEI formation stage remains elusive. A long-held view is that Li can be passivated by the SEI that forms rapidly in the liquid electrolyte, after which corrosion is eliminated by the blockage of electron transfer. However, if such an assumption is untrue or additional corrosion pathways exist, the limited electrolyte and Li in the cells would be consumed continuously and so cause capacity fading. Moreover, previous studies on the Li metal anode mostly employed continuous cycling conditions, which is very rare in practice. In reality, cycling protocols are far more complicated, as they involve rests and recurring charge/discharge at different states of charge. Therefore, it is critical to study Li corrosion in long-term rest and more practical scenarios.

Here we observe the fast corrosion of Li on a heterogeneous conductive surface and provide insights into the mechanism at play. The study represents well the real circumstances in Li metal batteries, where Li deposition/dissolution occur on a copper current collector. We found that the corrosion of Li on Cu can be described by the typical Kirkendall effect, a phenomenon that attributes void formation to the disparities between inward and outward mass transport. The observed fast Kirkendall-type corrosion also tends to induce dendritic growth during subsequent plating. The fast corrosion of Li is found to involve a galvanic process, whereby Li and the more noble Cu serve as the anode and the cathode, respectively. The galvanic corrosion mechanism is further elucidated by the structural and compositional analyses of the SEI on Cu and Li. Our findings reveal an additional failure mechanism of Li metal anodes, and shed light on their long-term stability in storage and under non-ideal operation conditions. Through this report, we hope to raise awareness in the battery community of the corrosion issues and mechanisms.

Results and discussions

Morphological evolution of corroded Li deposits. To characterize the corrosion process, Li was deposited on clean Cu at a current density of 1.0 mA cm⁻². After a given period of time, the sample was immersed in the electrolyte and fast galvanic corrosion was observed to occur on the deposit. The morphological evolution of the corroded Li deposits was recorded by scanning electron microscopy (SEM), as shown in Figure 1. The corrosion process is initiated at the Cu substrate, where the SEI on the Cu surface is not passivated due to the fast galvanic process. The Li deposition on Cu is accompanied by the formation of a dense SEI layer, which serves as a barrier to electron transfer and inhibits the fast corrosion of Li. However, the corrosion process continues to propagate inward, resulting in the formation of voids in the Li deposit.

References

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. 2. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. 3. These authors contributed equally: Dingchang Lin, Yayuan Liu. *e-mail: yicui@stanford.edu
density of 0.5 mA cm$^{-2}$ and a total charge of 0.18 C cm$^{-2}$ (0.05 mAh cm$^{-2}$). The liquid electrolyte employed, without further specification, was 1.0 M lithium bis(trifluoromethane)sulfonimide (LiTFSI) in 1:1 w/w 1,3-dioxolane (DOL)/1,2-dimethoxyethane with 2 wt% LiNO$_3$, which is a prototypic electrolyte for lithium–sulfur and lithium–oxygen chemistries. The addition of LiNO$_3$ afforded spherical Li deposits with a relatively uniform size (Supplementary Fig. 1), rather than the mossy or dendritic counterparts10,40, which is beneficial for quantitative analyses. Prior to deposition, the Cu was held potentiostatically at 0 V versus Li$^+$/Li0 for ~12 hours to preform the SEI. Once the SEI on Cu was stabilized, Li nucleated underneath the SEI and deposited locally, whereas regions without deposition were still protected by the preformed SEI (Supplementary Figs. 2 and 3). Otherwise, Li was consumed rapidly to stabilize the SEI across the electrode within a few hours of deposition (Supplementary Fig. 4), which prevented the observation of the chronic corrosion process that is the focus of our study.

The morphological evolution of Li deposits was visualized by scanning electron microscopy (SEM) with focused-ion-beam (FIB) milling (Fig. 1a–c) and by cryogenic electron microscopy (cryo-EM) (Fig. 1d–f). Various durations of rest in the electrolyte were applied prior to imaging (0–200 hours). The as-deposited Li was observed to be spherical with a solid core (Fig. 1a). As seen from Supplementary Movie 1, no voids were observed in the majority of the as-deposited Li particles, but a small proportion of them exhibited slightly concave surfaces (particles 5 and 9) owing to the concurrent corrosion at deposition. The solid nature of the as-deposited Li was further confirmed by cryo-EM (Fig. 1d), a recently developed technique to visualize sensitive battery materials in a high-resolution and non-destructive fashion35. The imaged Li shows a light contrast, which indicates no compositional conversion of the low-atomic-number Li under the cryogenic conditions or during the specimen transfer.

When the Li deposits were rested in electrolyte for 100 hours, discernible internal voids could be visualized after FIB milling (Fig. 1b, voids marked with red dash lines). The void fraction of the corroded particles (Supplementary Movie 2) were semiquantitatively resolved by image segmentation, and afforded a value of ~45.6% with a standard deviation of 15.0. In addition to the voiding, pronounced surface concavities were also observed on most of the deposits, which can be ascribed to the collapse of the flexible SEI after Li loss (Supplementary Fig. 5). The cryo-EM image (Fig. 1e) coincided with the FIB/SEM results, in which Li deposits also exhibited obvious voids (marked with red dash lines). After 200 hours of rest in the electrolyte, as illustrated in Fig. 1c, almost all the deposited Li was lost to leave near-empty SEI shells. Many of the remaining SEI shells were highly crumpled, as clearly shown in the cryo-EM image (Fig. 1f).

From the above information, we can construct three-dimensional (3D) models to illustrate the morphological evolution of Li deposits when rested in the electrolyte, which resembles the typical Kirkendall effect (Fig. 1g–i). Starting from freshly deposited spherical Li (Fig. 1g), corrosion occurred gradually with the formation of enlarging voids and concave SEI. After ~100 hours, the voids and concavities became highly discernible (Fig. 1h) with an approximately 50% Li loss. And almost all the Li succumbed to side reactions after ~200 hours to leave concave or crumpled SEI shells on the Cu (Fig. 1i).

The morphological evolution of Li was also studied at higher deposition currents (Supplementary Figs. 6 and 7) and similar results obtained. The corrosion was even more pronounced in smaller deposits (~200 nm), where a distinct yolk–shell structure appeared after only four hours of rest (Supplementary Fig. 8). Comparable corrosion behaviour was also observed in other electrolytes, including carbonate (Supplementary Fig. 9).

According to the conventional understanding, Li in an electrolyte should undergo a relatively short SEI formation stage, in which the SEI could gradually stabilize and ultimately prevent further corrosion by blocking the electron transfer$^{29,32–34}$. However, we did not observe the expected termination of Li corrosion even after a prolonged rest of hundreds of hours. This implies the existence of additional corrosion pathways in the battery, which we discuss in later sections.

Besides losing active material, Li corrosion may induce other severe side effects. For example, we observed an altered deposition behaviour in the presence of corroded Li. In the study, Li was first deposited galvanostatically, followed by an interval rest of five hours before the second deposition. It was found that during the second deposition, dendritic Li was more likely to grow from the corroded regions (Fig. 2a). We further performed protocols that involved multiple depositions with interval rests. In the case of four depositions with three interval rests, the repeated growth of spherical/dendritic Li initiated from a single nucleus was observed (Supplementary Fig. 10c,d), and dendritic Li preferentially evolved...
from the corroded concave spots. However, if Li was deposited continuously, spherical shapes could still be maintained even at larger deposition capacities (1.8–3.6 C cm\(^{-2}\); Supplementary Fig. 11). To elucidate the mechanism behind the altered deposition morphology, the ionic flux across the corroded Li particles was simulated using finite element analysis, based on a 3D Li deposit model with a radius of 1 μm, a concave surface radius of 0.6 μm and a SEI thickness of 15 nm (Fig. 2b). Even if the ion transport characteristics are assumed identical across the whole Li surface (Fig. 2c and Supplementary Fig. 12), the Li ion flux can be concentrated at the concave region by a geometric effect. In practice, concave SEI can potentially experience stress and become defective, which causes an increase in Li ion diffusivity. When a tenfold-higher Li ion diffusion coefficient was imposed over the concave surface, an even more concentrated Li ion flux could be concentrated at the concave region by a geometric effect. In practice, concave SEI can potentially experience stress and become defective, which causes an increase in Li ion diffusivity. When a tenfold-higher Li ion diffusion coefficient was imposed over the concave surface, an even more concentrated Li ion flux could be resolved (Fig. 2d). Further increasing the diffusion coefficient at the concavities had a minimal effect on the ionic flux distribution (Supplementary Fig. 12). Therefore, we conclude that both the geometric effect and the change in local Li ion diffusivity facilitated the preferential Li nucleation inside the corroded pits during successive depositions (Fig. 2c).

Quantitative analysis of corrosion kinetics. The Li corrosion rate on Cu was further quantified via a time-dependent Coulombic loss study, in which the Coulombic efficiency was defined as the ratio of the dissolution capacity to the initial deposition capacity (Fig. 3). Note that ‘dead’ Li formation, commonly observed in carbonate electrolytes, was rare in the ether electrolyte and cycling conditions employed here, as the low-aspect-ratio Li is less likely to be electrically disconnected from the substrate during dissolution (Supplementary Fig. 13). Therefore, the Coulombic loss here can be confidently attributed to Li corrosion.

The black dots in Fig. 3 present the Coulombic efficiency evolution on Cu with the SEI preformed via a potentiostatic process aligned with the condition in Fig. 1 and the blue and red dots show the trend when the SEI was preformed galvanostatically at a relatively high (0.5 mA cm\(^{-2}\), as for the condition in Supplementary Fig. 4) and low (0.02 mA cm\(^{-2}\)) current, respectively. The typical voltage profiles of the tests are shown in Supplementary Figs. 14–16. Among the three conditions, Cu with the SEI preformed potentiostatically showed the slowest corrosion (Coulombic efficiency ~45% at 100 hours and ~5% at 200 hours). This coincides with the FIB/SEM and cryo-EM...
Empirically, Li corrosion through galvanic process. Empirically, Li corrosion occurs through a direct charge transfer with the electrolyte species (solvents, anions and so on)35,36,41. Based on the hypothesis, the frontier of the side reactions is proposed to be at the SEI/electrolyte interface rather than the Li/SEI interface, because the compact SEI shell fully blocks the diffusion of solvents and anions37. The thickness of the SEI is therefore determined by the tunnelling length of the electrons, beyond which the corrosion would be terminated44. However, such a theory cannot account for the continuous, fast corrosion of Li on the Cu surface observed in this study. Correspondingly, we suggest an alternative corrosion pathway that has been almost overlooked, which is the galvanic corrosion of Li in conjunction with the more noble Cu substrate through an internally formed galvanic cell. In the galvanic cell, Cu and Li serve as the cathode and anode, respectively. Due to the relatively weak passivation power of the SEI on Cu, electrons are transferred from Li to the electrolyte through Cu, with Li+ diffusing outward through the SEI on the Li surface (Fig. 4a). In such a scenario, the dominant outward Li+ diffusion can account well for the observed Kirkendall-type void formation45.

The corrosion rate extracted from Coulombic loss includes all the possible mechanisms. To quantify the specific contribution from the galvanic process, a galvanic cell was designed in which separated electrodes of Cu and Li in the electrolyte were connected externally through an ammeter, as schematically illustrated in Fig. 4b. The Cu electrode was fixed at 0 V versus Li+/Li0 as the current that passed through the external circuit was recorded over time. The device mimics the pure galvanic corrosion of Li in direct contact with Cu—the measured current indicates the galvanic corrosion rate. Figure 4c shows the time-dependent corrosion current, which was high initially (partially due to the capacitive contribution) and dropped quickly to the μA cm-2 level. Nevertheless, rather than eventually dropping to zero, the galvanic current approached a relatively fixed value (~0.1 μA cm-2) even after hundreds of hours, which indicates the incessant nature of galvanic corrosion. A similar effect was also observed in a carbonate electrolyte with a slightly slower galvanic corrosion (Supplementary Fig. 19), which can be attributed to the change in SEI composition on Cu. Moreover, as the junction type also affects the galvanic corrosion rate, a faster corrosion might be expected when metals are in direct contact rather than connected by an external circuit38. Thus, the real galvanic corrosion rate of Li deposits on Cu could be even higher than the measured value.

By integrating the galvanic corrosion current over time and comparing it with the Coulombic efficiency analyses, the galvanic process turns out to account for ~80% of the total corrosion (a detailed
local electrolyte permeability and ion transport. As a result, cracks, defects and grain boundaries of the LiF, which increase the LiF (~0.1 μA cm⁻²). The minute current leakage might be due to cracks, defects and grain boundaries of the LiF, which increase the local electrolyte permeability and ion transport. As a result, compared to pristine Cu, the Coulombic loss of Li deposited on LiF@Cu was drastically slowed down, with a ~70% capacity retention after 200 hours of rest (Supplementary Fig. 23). Note that when Li was deposited onto LiF@Cu, a higher polarization was observed due to the reduced electrical and ionic conductivity (Supplementary Fig. 24). The corresponding Li deposits exhibit near-spherical shapes with faceted features (Supplementary Fig. 25), whereas the other regions without Li can still be protected by the conformal LiF film (Supplementary Figs. 2 and 3).

The mechanisms behind disparities in corrosion kinetics. To understand the drastic differences in the corrosion rate on Li metal and Cu surfaces, detailed analyses of the SEI on both surfaces were conducted by cryo-EM and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry shows the electrolyte decomposition potentials (Supplementary Fig. 26; LiNO₃ and solvent/LiTFSI reduction can be identified at ~1.7 V and 0–1 V versus Li⁺/Li⁰, respectively), and the possible decomposition products are summarized in Supplementary Fig. 27.

Cryo-EM reveals that the thickness of the SEI on Cu is ~5–8 nm (Fig. 5a), which is 2–3 times thinner than that on Li (~15 nm (Fig. 5b)). More importantly, the SEI on Li has a significantly higher degree of crystallinity (Supplementary Figs. 28 and 29) and exhibits a bilayered structure with a dense Li₂O shell (the ~0.268 nm lattice spacing can be assigned to the {110} planes of Li₂O). Elemental mapping (Supplementary Fig. 30) and electron energy loss spectroscopy (Supplementary Fig. 31) confirmed the presence of oxygen, nitrogen and carbon elements in the SEI. The crystalline domains might impart a greater stability to the SEI on the Li surface.

The composition of the SEIs at various formation times (from 3 to 100 hours) was further studied using XPS depth profiles (Fig. 5c–d and Supplementary Figs. 32–38). Overall, the SEIs on Cu and Li share similar compositions, including inorganics (LiF, Li₂O, LiNO₃, and so on) and organics (ROLi, oligomers, polymers and so on), which is not surprising because the two surfaces are thermodynamically equivalent (equipotential). In the early stage...
kinetics on Cu than on Li, although they share the same thermodynamically favourable with a synergy between charge transfer and nucleo/electrochemical reduction products, especially the rate-determining steps (which might involve valence bond breaking or the formation of products with a lower oxidation state), can be more favourable with a synergy between charge transfer and nucleo/electrochemical attack. The Li surface exhibits a higher electron density to facilitate the reactions. And such a direct charge transfer would result in a higher Li ion concentration near the Li metal surface, which is also beneficial for the precipitation of inorganics.

With the above discussion, we can now propose a comprehensive mechanism that governs the galvanic corrosion of Li. Due to the fast formation of a thick, inorganic-rich passivation layer on the Li metal surface, both electron tunnelling and solvent/anion diffusion through the SEI can be terminated after a brief period of rest inside the electrolyte, which prevents further corrosion through direct charge transfer42,48. However, the electrolyte decomposition on Cu is rather slow and so is unable to afford a compact passivation and might allow continuous mass/charge transport through the interphase. Furthermore, given the much slower reduction kinetics, the reduction products are more likely to stay at higher oxidation states. Rather than precipitating as part of the SEI, these (organic) products might allow continuous mass/charge transport through the interphase and avoiding excessive side reactions.

Conclusions

In summary, we disclose here the fast corrosion of Li on a Cu surface during ageing, which occurs through continuous Kirkendall-type voiding, and the corroded Li can be vulnerable to dendrite formation in subsequent deposition. Importantly, the fast Li corrosion mainly undergoes a galvanic process, in which Li is oxidized and the electrons are transported through Cu to reduce the electrolyte species. From a careful analysis of the SEIs on Cu and Li, we believe the intrinsically slower electrolyte reduction kinetics on Cu and the resulting porous, organic-rich SEI is the cause of the fast galvanic corrosion. The findings point out a critical issue of Li anodes and offer important supplements to the conventional understanding of corrosion in batteries. This work provides vital insights into the corrosion mechanisms and the corresponding anti-corrosion technology needed to pave the way for future practical Li metal batteries.

Methods

Electrochemistry. Without further specification, the electrochemical cells in the morphological and Coulombic loss studies were demonstrated with 2032-type coin cells. The cells were assembled in an Ar-filled glove box with an O₂ level < 0.2 ppm and a H₂O level < 0.1 ppm. High-purity Li foil (750 μm, 99.9% (Alfa Aesar)) and Cu foil (25 μm, 99.8% metal basis (Alfa Aesar)) were employed in all the experiments. Cu foils were first punched into round disks of 2.0 cm², and then washed sequentially with 2-propanol x1 (Fisher Scientific), 5% HNO₃ x1 (Sigma–Aldrich), 2-propanol x1 (Fisher Scientific) and acetone x2 (Fisher Scientific) to remove the surface oxidants and organic contaminants. Before their transfer to the washed Cu foils were directly dried in the vacuum transfer chamber of the glove box to avoid potential air exposure. If no further specification was required, the electrolyte employed was 1 M LiTFSI (Solvay) in 1:1 w/w DOL/DME.

Material characterization. Either an FEI Strata C30 dual-beam FIB/SEM or an FEI Helios NanoLab 600i DualBeam FIB/SEM was used for the milling and imaging of the Li deposits. Ga⁺ was used as the ion source. Each specimen was washed with 1 ml of DOL in an Ar-filled glove box with an O₂ level < 0.2 ppm and a H₂O level < 0.1 ppm to remove the Li salts. A transfer vessel was employed to move the specimens directly from the glove box to the FIB systems to minimize air exposure. Void ratio analyses of the FIB results were performed by image segmentation using ImageJ, in which the void ratio was calculated by the integration of the void area in each slice along the milling progress direction. The XPS characterizations were performed on a PHI Versaprobe I with a monochromatized Al Kα X-ray source. The chamber was kept at a pressure of ~10⁻¹⁰ Pa during the characterizations. Each specimen was washed with 1 ml of DOL in an Ar-filled glove box with an O₂ level < 0.2 ppm and a H₂O level < 0.1 ppm to remove the Li salts prior to the characterization. A vacuum transfer vessel was used to move the specimens directly into the vacuum transfer chamber of the system to prevent direct air exposure. Ar ion sputtering was employed for the depth profile analysis. A gentle sputtering with a power of 1 kV × 0.5 mA on a 2 mm × 2 mm surface was employed, with the sputtering rate on SiO₂ calibrated to be 15 nm min⁻¹. For the cryo-TEM characterizations, Li deposits were washed with DOL to remove the Li salts. Once dry, the TEM grid with plated Li was placed in a Teflon-sealed Eppendorf tube and transferred out into the ambient air. The pressure inside the Ar-filled glove box (and thus the Eppendorf tube) was greater than the ambient pressure, which prevents the potential for air to leak into the tube. The sealed Eppendorf tube (with an Ar environment inside) was plunged directly into a bath of liquid nitrogen. We then quickly crushed this
aitight container with a bolt cooler while it was still immersed in liquid nitrogen to rapidly expose the Li metal to the cryogen. The TEM grid was then carefully mounted onto a TEM cryoholder (Gatan) using a cryotransfer transfer to ensure the entire process occurred under liquid nitrogen. During insertion into the TEM column (~1 s), a built-in shutter on the holder was closed to prevent contact of metallic Li with the air. In this way, the reactive battery material can be safely transferred from a cell to the TEM without any chance of ambient air exposure. Once inside the TEM column, the sample was kept cold at ~178°C. The TEM characteristics were then carried out using a FEI Titan 80-300 environmental (scanning) transmission electron microscope operated at 300 kV. The microscope was equipped with an aberration corrector in the image-forming (objective) lens, which was tuned before each sample analysis. Other non-destructive SEM images were taken with a FEI XL30 Sirion scanning electron microscope system. The cells were disassembled in an Ar-filled glove box with an O2 level <0.2 ppm and a H2O level <0.1 ppm. Each specimen was washed with 1 ml of DOL in an Ar-filled glove box with an O2 level <0.2 ppm and a H2O level <0.1 ppm to remove the Li salts. A transfer vessel was employed to move the specimens directly from the glove box to the SEM system to minimize air exposure. X-ray diffraction was measured on a Bruker D8 Venture with a Cu Kα source. Image) was used to process the statistic analysis of Li particle size distribution.

Data availability
All the data supporting the findings of this study are available within the article and its Supplementary Information, and from the corresponding authors upon reasonable request.

Received: 3 May 2018; Accepted: 11 December 2018; Published online: 21 January 2019

References
characterizations. Ya.Li and Yu.Li performed the cryo-EM characterizations. A.P.
and D.L. performed the 3D modelling and finite element analysis. J.X. carried out
the ALD coating of LiF on the Cu substrates. D.L. analysed the results. D.L. and
Y.C. co-wrote the manuscript. All the authors discussed the results and commented
on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41557-018-0203-8.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to Y.C.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019