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Since the introduction of commercial Li-ion batteries in 1991, 
we have witnessed tremendous development in portable elec-
tronic devices, and the recent emergence of electric vehicles 

promises to revolutionize personal transportation too1,2. The inher-
ent limitations of Li-ion chemistry make it unlikely, however, that 
this type of battery can meet the growing demand for energy den-
sity2,3, and it is now widely accepted that battery chemistries beyond 
Li-ion need to be developed.

Lithium metal is the ultimate choice for the anode in a Li bat-
tery, because it has the highest theoretical capacity (3,860 mAh g–1, 
or 2,061 mAh cm–3) and lowest electrochemical potential (–3.04 V 
versus the standard hydrogen electrode)3,4 of all possible candidates. 
Furthermore, a Li metal anode is indispensable for Li–S and Li–air 
systems, both of which are being intensively studied for next-gener-
ation energy-storage applications5. The benefits of Li metal chemis-
try are summarized in Fig. 1a. State-of-the-art Li-ion cells can reach 
a specific energy of ~250 Wh kg–1, which is an order of magnitude 
lower than the practical value of petrol (gasoline)6. Once the anode 
is replaced by Li, a Li–LMO cell (where LMO is a lithium transi-
tion-metal oxide) can deliver a specific energy of ~440  Wh  kg–1. 
Transition to Li–S and Li–air systems can further boost the specific 
energy to ~650 Wh kg–1 and ~950 Wh kg–1, respectively. In terms of 
volumetric energy density, the best commercial Li-ion cell already 
possesses a relatively high value of ~700  Wh  l–1, but moving to a 
Li–air system would offer a practical value greater than 1,100 Wh l–1, 
comparable to that of petrol.

In fact, metallic Li was used in the infancy of Li battery research, 
including in the first viable Li secondary batteries pioneered by 
Stanley Whittingham at Exxon in the 1970s. In the late 1980s, 
Moli Energy commercialized Li metal batteries using a MoS2 cath-
ode paired with excess Li; this device could be cycled hundreds of 
times, and millions of cylindrical-type cells were sold to the market. 
But frequent accidents, including fires caused by dendrite forma-
tion, brought safety concerns to public attention, ultimately lead-
ing to the recall of all the cells7,8. In subsequent years, NEC and 
Mitsui conducted intensive reliability tests on over 500,000 Li metal 
cells but still failed to resolve the safety issue. At the same time, 
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Sony developed carbonaceous anodes to replace Li and successfully 
built reliable Li-ion cells that have been used until now3. As a result, 
the commercialization of Li metal anodes was halted. Now, how-
ever, Li-ion cells are approaching the limit of their capabilities, and 
attempts to revive the Li metal anode are becoming a necessity. 

Recently, growing research efforts have been devoted to improv-
ing our understanding of Li metal chemistry and developing better 
Li anodes. This Review aims to provide an overview of the funda-
mentals of Li anodes and to summarize the recent key progress on 
methodologies, materials and characterization techniques. Our 
main objective is to illustrate the revolution that is taking place in 
this field and thus provide inspiration for future developments in Li 
metal chemistry.

Challenges of Li metal anodes
Before the Li anode can become a viable technology, formidable 
challenges need to be overcome, the greatest of which are safety and 
cyclability. Similar to many other metals, Li tends to deposit in den-
dritic form4, which is known to be the main cause of thermal runa-
way and explosion hazards caused by internally shorting the cells. 
Therefore, dendrite-free Li deposition needs to be achieved as a basic 
demand. Good cyclability is also mandatory, as low Coulombic effi-
ciency and the gradual increase of the Li anode overpotential leads 
to capacity fading during cycling. To deal with these issues, we need 
to attain a profound understandings of interfacial chemistries, Li 
deposition behaviour and the correlations among them.

Solid electrolyte interphase formation on Li surface. Since the 
pioneering studies by Emanuel Peled9,10 and Doron Aurbach11,12, the 
solid electrolyte interphase (SEI) has become a critical component 
of battery research. Owing to the highly negative electrochemical 
potential of Li+/Li, virtually any available electrolyte can be reduced 
at the Li surface13. Passivation by the SEI makes it possible to operate 
a cell under such a reductive environment and extend the voltage 
window to 4 V and above. Early explorations of SEI on the Li surface 
and the theories derived from these have been extensively applied 
to carbonaceous anodes with great success14. Compared with Li-ion 
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chemistry, however, the Li anode imposes much more restrictive 
requirements on the SEI. As well as having ion-conduction and 
electron-blocking capability, researchers have concluded that the 
SEI on Li needs to be homogeneous in composition, morphology 
and ionic conductivity. As there is considerable interface fluctuation 
during cycling, good flexibility or even an elastic SEI is required4,15,16.

Organic carbonates are the electrolyte of choice for almost all 
commercial Li-ion batteries today, but they are not ideal for Li 
metal cells. The initial SEI composition is mainly the product of Li 
alkyl carbonates (ROCOOLi) by means of one-electron reduction 
of alkyl carbonates, which can be further converted to Li2CO3 in 
the presence of trace amounts of water11. Depending on the salts 
used, Li halides17 as well as large-molecular-weight polymers18 can 
be present in the SEI. More stable components such as Li2O, Li2CO3 
and Li halides dominate the inner layer of the SEI, while metasta-
ble ROCOOLi is distributed at the outer layer12,15. The SEI can be 
further described by a ‘mosaic model’ formed by the heterogene-
ous stacking of small domains with distinct compositions10. Overall, 
SEIs of this type lack flexibility, making them vulnerable during 
interfacial fluctuation.

Ethers are much better electrolyte solvents for Li anodes, with 
higher Coulombic efficiency (>98%) and evident dendrite suppres-
sion achieved in several systems13,19. This has been attributed to the 
formation of oligomers that show good flexibility and strong bind-
ing affinity to the Li surface15. However, ethers have been excluded 
from most commercial batteries, mainly owing to their low anodic 
decomposition voltage (<4 V vs Li+/Li) and high flammability13.

Despite these shortcomings, it is important to continue study-
ing Li anodes in both kinds of electrolyte system. On one hand, by 
improving Li anodes in carbonate electrolytes, we would be able 
to replace the carbonaceous anode and instantly boost the specific 
energy of current Li-ion cells. On the other hand, developing Li 
anodes in ether electrolytes will be beneficial in the long run for 

new battery systems (Li–S and Li–air)5. More importantly, the two 
electrolyte systems share similar fundamentals regarding SEI for-
mation and many findings in one system can be applied to the other.

Theories on Li dendrite growth. Dendritic deposition is a com-
mon occurrence during high-current electroplating of metals such 
as Cu, Ni and Zn, but this phenomenon has been comprehensively 
understood, and it is not an issue in industrial applications20. During 
electroplating, there is a cation concentration gradient in the elec-
trolyte between the two electrodes. Once a critical current density 
J* is reached, the current can only be sustained for a certain period 
called the Sand’s time, τ, after which cations become depleted in the 
electrolyte, breaking the electrical neutrality at the plated electrode 
surface. This builds up a local space charge, bringing about the for-
mation of ramified metal depositions. This theory works well to pre-
dict the electroplating of Li dendrites for current densities higher 
than J* (refs 21,22). But because J* is relatively large in commonly 
used electrolytes and cell configurations, the cells are most often 
operated far below J*. Nevertheless, dendritic Li deposition can still 
be observed23, suggesting that a different mechanism is at play.

This theory oversimplifies the Li plating process, as it does not 
take into consideration interfacial chemistry. In contrast to other 
high-redox-potential metals, Li spontaneously forms an SEI at its 
surface. According to the abovementioned ‘mosaic model’10, the 
SEI exhibits heterogeneous Li-ion conductivity, which aids inho-
mogeneous nucleation. Moreover, cracks can form in the SEI under 
large volume variation during cycling16; in turn, this exposes fresh 
Li underneath, which has an even lower energy barrier for Li-ion 
transport. The enhanced ion flux at cracks intensifies non-uniform 
Li deposition16.

Lithium dendrite growth is self-enhanced, and several theories 
have been proposed to rationalize this phenomenon. One theory 
is that protrusions with high curvature have a considerably higher 
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Figure 1 | Opportunities and challenges for Li metal anodes. a, Bar chart showing the practical specific energy (pink) and energy densities (blue) of petrol 
(gasoline) and typical Li batteries including the state-of-the-art Li-ion battery, the Li metal/LMO cell, Li–S and Li–air cells. Battery casings, separators and 
electrolytes are all taken into account. b, Schematic showing the Li stripping/plating process. Step 1: Li plating causes volume expansion, which cracks 
the SEI film. Step 2: further plating causes Li dendrites to shoot out through the cracks. Step 3: Li stripping produces isolated Li which becomes part of the 
‘dead’ Li, while volume contraction results in further SEI fracture. Step 4: Continuous cycling causes steps 1–3 to occur repeatedly, and this finally results 
in accumulated dead Li, thick SEI and porous Li electrode. c, Correlations among the different challenges in the Li metal anode, originating from high 
reactivity and infinite relative volume change.
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electric field at their tips, which thus tend to attract more Li-ions, 
resulting in further growth of the protrusions and finally evolving 
into dendrites24. Another factor is that the hemispherical tips of 
protrusions enable three-dimensional (3D) Li-ion diffusion, rather 
than the one-directional diffusion observed in flat surfaces, leading 
to faster Li deposition on the tips4,25.

Infinite relative volume change. All electrode materials undergo 
volume change during operation. Even commercial intercala-
tion electrodes such as graphite exhibit a volume change of ~10% 
(ref.  26). Alloy-type anodes undergo a much greater volume 
change (~400% for Si), and this is an obstacle to their commer-
cialization27. The relative volume change of a Li anode is virtually 
infinite, owing to its hostless nature. From a practical perspective, 
the areal capacity of a single-sided commercial electrode needs to 
reach at least 3 mAh cm–2, equivalent to a relative change in thick-
ness of ~14.6 μm for Li. The value could be even higher for future 
batteries, meaning that Li interface movement during cycling 
could be tens of micrometres. This imposes formidable challenges 
on the SEI stability. 

Correlations among Li metal challenges. The main problems of 
Li anodes are summarized in Fig. 1b. During Li plating, the huge 
volume expansion can rupture the fragile SEI (step 1), promoting 
Li dendrite growth through the cracks (step 2). During Li strip-
ping, volume contraction further fractures the SEI, while stripping 
from kinks in a dendrite or from its roots can break the electrical 
contact and produce ‘dead’ Li (metal that is electrically isolated 
from the substrate; step 3). After continuous cycling (step 4), the 
repeated process can produce a porous Li electrode, a thick accu-
mulated SEI layer and excessive dead Li, leading to blocked ion 
transport and capacity fading. More detailed correlations are sum-
marized in Fig. 1c. We emphasize that among the many challenges 
identified throughout the years, high chemical reactivity and infi-
nite relative volume change should be regarded as the two root 
issues (centre circle of Fig. 1c). Fracture of the SEI, in conjunction 
with further chemical side-reactions, dendrite formation and dead 
Li, eventually results in both safety hazards and capacity fading.

Electrolyte engineering for stabilizing Li anodes
Electrolyte components, especially additives, have been investi-
gated to improve the performance of Li anodes. These additives 
can decompose, polymerize or adsorb on the Li surface, modi-
fying the physico-chemical properties of the SEI and therefore 
regulating the current distribution during Li deposition28. The 
presence of additives, sometimes even at ppm levels, can alter the 
deposition morphology and cycling efficiency. Classic examples 
of additives in the early era of Li anode research included gaseous 
molecules (CO2, SO2, N2O)29,30, 2-methylfuran31, organic aromatic 
compounds32, vinylene carbonate33 and various surfactants34.

Fluorinated compounds. Among other additives, HF was inten-
sively investigated35,36. Small amounts of HF and H2O in carbonate 
electrolytes promote the formation of a dense and uniform LiF/Li2O 
bilayer on the Li surface, which leads to smooth and hemispheri-
cal Li deposition. However, the Coulombic efficiency is still insuf-
ficient, and this protective effect wears off after several cycles, as 
the SEI eventually becomes too thick for HF to reach the Li sur-
face during deposition. Similar phenomena have been observed 
with fluorinated salts such as LiPF6 and with other active fluorine-
containing additives, such as (C2H5)4NF(HF)4 and LiF (refs. 37,38). 
Fluoroethylene carbonate as a film-forming additive has also been 
proved to increase the Coulombic efficiency significantly39. It pro-
duces a thin and soft surface film with homogeneous structure, and 
aids Li-ion transport through the SEI, both desirable effects for sup-
pressing Li dendrites.

Self-healing electrostatic shield. Dendrite-free Li deposition was 
recently achieved in carbonate electrolyte by using Cs+ and Rb+ as 
additives, which functioned by a ‘self-healing electrostatic shield’ 
mechanism24,40. According to the Nernst equation, it is possible for 
metal cation additives (M+) to have an effective reduction poten-
tial below that of Li+, if M+ has a standard reduction potential close 
to Li+ and a much lower concentration. Therefore, as illustrated in 
Fig. 2a, during Li deposition, M+ will adsorb on the Li surface with-
out being reduced. If non-uniform Li deposition occurs, the charge 
accumulation at the protuberances will attract more M+ near the 
tip to form an electrostatic shield. This positively charged shield 
repels the incoming Li+ and thus slows down the propagation of 
protrusions. Compared with the dendritic Li morphology in a con-
trol electrolyte (Fig. 2b), a considerable improvement in deposition 
quality can be observed (Fig. 2c).

Synergistic effect of Li polysulfide and LiNO3. LiNO3 is an impor-
tant additive in ether electrolytes, especially for Li–S batteries41, but 
can also stabilize the Li anode when combined with Li polysulfide42. 
In the presence of both additives, Li can be plated into a pancake-
shaped morphology without dendrites in ether electrolyte, which 
cannot be achieved with LiNO3 alone. This synergy is attributed 
to the competition between the two additives towards the reaction 
with Li. LiNO3 reacts first to passivate the Li surface, and Li poly-
sulfide then reacts to form Li2S/Li2S2 in the upper layer of the SEI 
to prevent electrolyte decomposition. This synergistic effect enables 
stable cycling even at high current density.

High salt concentration. In the scenario of Li-ion depletion model 
for dendrite growth, high Li salt concentration can increase the 
threshold J* and thus suppress dendrite formation. Following this 
line of reasoning, a new class of electrolytes for Li–S batteries with a 
lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) salt concen-
tration as high as 7  M has been developed43. The highly-concen-
trated electrolyte effectively suppressed Li dendrites (Fig. 2d) and 
reduced the dissolution of Li polysulfide, which is a major problem 
in Li–S batteries. Moreover, the approach resulted in high Li-ion 
transference number (the fraction of current contributed by Li-ion 
movement), owing to the incompletely solvated Li-ion, making it 
favourable for high-rate operations. In a similar approach, using 
a 4 M lithium bis(fluorosulfonyl)imide (LiFSI) in ether electrolyte 
resulted in nodule-like Li plating (Fig.  2e) and high Coulombic 
efficiency even at high current density44,45. Although high salt con-
centration provides a route to the stable and safe operation of Li 
anodes, more economical production of Li salts is needed to reduce 
the costs.

Stabilizing Li anode by interface engineering
The SEI stability has an immediate impact on the plating/strip-
ping behaviour and cycle life of Li metal batteries. Therefore, SEI 
engineering is a critical aspect in addressing the challenges of Li 
metal. Moreover, a robust SEI is particularly important in batter-
ies in which active species can diffuse freely through the electrolyte 
(such as Li polysulfide in Li–S) or where inherent contamination 
is present (H2O, CO2 and N2 in Li–air). Ideally, the SEI should be 
homogeneous; have a relatively thin, compact structure; and possess 
high ionic conductivity and high elastic strength.

Artificial SEI. One commonly adopted approach to stabilize the 
SEI involves covering the Li surface with a protective layer before 
cycling. For the most part, this artificial SEI should be a strong phys-
ical barrier against dendrite propagation, as theoretical predictions 
show that a surface coating strength in the order of gigapascal is 
effective to suppress dendrites4,46. But it was recently proposed that 
a modulus of tens of megapascals might be sufficient if the surface 
tension and ion transport were modified47. The coatings are often 
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chemically stable and dense to prevent Li corrosion by the elec-
trolyte, while possessing reasonable Li-ion conductivity (Fig.  3a). 
Artificial SEI can be formed by controlled exposure of Li with cho-
sen chemicals. For example, the reaction between substituted-silane 
and the natural OH-terminated layer on clean Li surface results in 
a protective coating stable under static conditions with low initial 
impedance and slow impedance growth when exposed to organic 
electrolytes48,49. Tetraethoxysilane-generated silicate coating has 
been even more effective in improving cycle life50. Gaseous species 
can also be used: for example, N2 has been used to form Li3N coat-
ing at room temperature51,52, as well as acetylene to form polyacety-
lene throguh in situ polymerization53. Ionic liquids and common 
electrolyte additives have also been used for a more stable inter-
face54,55. Recently, a thin (~50-nm) yet uniform Li3PO4 artificial SEI 
on Li was used56; thanks to the good Li-ion conductivity and high 
Young’s modulus of this passivation layer, the modified electrode 
exhibited a smooth, compact interface without obvious dendrites 
after 200 cycles (Fig. 3b). Nevertheless, to be effective, artificial SEI 
formation by direct chemical reaction with Li usually requires very 
good control over the reaction conditions and the contamination 
levels (moisture, oxygen and so on).

Advanced thin-film fabrication techniques, which are capable 
of minimizing Li corrosion in air during processing and meeting 
the challenges associated with the low melting point of Li, prom-
ise more precise control over the coating thickness, uniformity, 
conformity and defect density. For example, stable Li electrodes 
have been fabricated by radio-frequency magnetron sputtering of 
a thin film of lithium phosphorus oxynitride solid electrolyte57. 
Atomic-layer deposition (ALD) has emerged as the premier dep-
osition process for the low-temperature fabrication of uniform, 
conformal and ultrathin films. ALD coating of Li surface with 
ionically conducting oxides and sulfides has been demonstrated 
to extend the lifetime of Li anodes58,59. A 14-nm coating of Al2O3, 
for example, was found to delay the onset of Li tarnishing for 20 h 
upon exposure to air, and to effectively retard Li corrosion in 
organic solvents and polysulfides (Fig. 3c). Other techniques such 
as doctor blading have also been explored for artificial SEI fabri-
cation60. Finally, inert ceramic particles coated on separators have 
also been used to mechanically inhibit dendrite growth61.

Nanoscale interfacial engineering. This approach relies on using 
chemically stable and mechanically strong scaffolds to reinforce the 
SEI formed during electrochemical cycling62,63. The SEI forms on 
top of the scaffold, and ideally the two move together during battery 
cycling without fracturing. Simultaneously, Li-ions can pass freely 
through the scaffold such that deposition can take place underneath 
without forming dendrites (Fig. 3d). For example, if interconnected 
hollow carbon nanospheres on Cu are used, column-like Li is 
formed (Fig. 3e), rather than dendrites62. The electrode produced in 
this way also had better Coulombic efficiency and cycling stability. 
Direct growth of 2D hexagonal boron nitride (h-BN) on Cu current 
collectors was also proposed63. The remarkable chemical stability 
and mechanical strength of h-BN afforded a stable SEI and smooth 
Li deposition (Fig.  3f). Graphene grown directly on Cu or trans-
ferred to the Li surface is also effective in scaffolding the SEI63,64.

Relatively low electrical conductivity is desirable when choos-
ing the appropriate scaffold materials, in order to prevent direct Li 
deposition on top of it. Relatively weak interaction between the scaf-
fold and the current collector is also needed to give the scaffold the 
flexibility to expand and contract during cycling. Given the large 
toolbox of the burgeoning 2D materials and nanostructure synthe-
sis, more scaffold designs are to be expected.

Homogenizing Li-ion flux. Because the spatial inhomogeneity 
in Li-ion distribution on an electrode surface contributes directly 
to dendrite formation, it is important to develop strategies for 

producing a more uniform Li-ion flux. A direct and practical 
approach is to increase the effective surface area of the electrode 
to dissipate the current density; this can be realized by manipulat-
ing the nanoarchitectures of metal current collectors. A 3D Cu 
current collector with submicrometre skeleton structure was syn-
thesized by reduction of Cu(OH)2 fibres65. In planar current col-
lectors, Li nuclei at the initial stage of deposition resemble sharp 
tips that locally enhance the Li-ion flux, amplifying dendrite 
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Figure 2 | Effects of different electrolyte additives. a, Schematic 
illustration of the Li deposition process based on the self-healing 
electrostatic shield mechanism. In the top panel, Li cations (green) are 
attracted to the negative charge on a protruding point, adding to it and 
causing further growth. In the presence of metal cation additives (M+) with 
effective reduction potential below that of Li+ (lower panel), however, the 
M+ additive (red) can be adsorbed on the Li surface instead to form an 
electrostatic shield, repelling the incoming Li+ and thus slowing the growth 
of protrusions. b,c, Morphologies of Li deposited in 1 M LiPF6 /propylene 
carbonate (PC) at 0.1 mA cm–2, without additive (b) and with 0.05 M 
CsPF6 additive (c)24. The addition of CsPF6 produces a much more uniform 
surface without obvious dendrites. d, SEM image of Li metal surface after 
280 cycles in 7 M bis(trifluoromethane)sulfonimide lithium (LiTFSI) 
1,3-dioxolane/dimethoxy ethane (DOL/DME) electrolyte43, which shows 
a smooth surface without dendritic deposition (0.1 mA cm–2). e, Surface 
morphologies and optical images (insets) of Li deposited on Cu in 1 M 
LiPF6/PC (left) and 4 M lithium bis(fluorosulfonyl)imide (LiFSI)/DME 
(right)44 at 1.0 mA cm–2. The latter exhibits nodule-like deposited Li with 
much larger particle size. Figure adapted with permission from: b,c, ref. 24, 
American Chemical Society; d, ref. 43, Macmillan Publishers Ltd; e, ref. 44, 
Macmillan Publishers Ltd. 
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growth (Fig. 3g). In contrast, the numerous protuberances on 3D 
Cu current collectors can all serve as charge centres and nuclea-
tion sites, affording a more homogeneously distributed electric 
field (Fig. 3h). In ether electrolyte, Li fills the pores of the 3D cur-
rent collector during deposition and forms a relatively flat sur-
face, improving Coulombic efficiency and cycling stability. Several 
other studies applied similar design principles yet with different 
synthetic approaches, such as chemical dealloying66, and solvent-
evaporation assisted assembly67. High-surface-area carbon-based 
materials, such as graphene and carbon fibres, have also been 
implemented as advanced current collectors68,69. Improving the 
electrolyte-wettability of separators is an alternative approach 
along this line70,71, as demonstrated for polyethylene separators 
coated with polydopamine using a simple dip-coating method 
(Fig. 3i)70. In another example, the polar functional groups of an 
oxidized polyacrylonitrile nanofibre layer on top of the current 
collector bind Li-ions in the electrolyte and retard their move-
ments toward spots with highly concentrated Li-ion flux (Fig. 3j)72. 
Similar effects have subsequently been observed with glass fibres73. 

Finally, strategies involving a mechanically patterned Li surface74, 
or stabilized Li powder, can also serve this purpose75,76.

Minimizing volume change by using stable hosts
Although the infinite relative volume change is a critical aspect of Li 
anodes16, this issue is only just starting to be tackled.

Recently, to address the problem of relative volume change, 
stable host materials77 have been introduced that contain pre-
stored Li, infused into nanoscale gaps in the form of molten metal. 
This approach is especially important for Li–S and Li–air cells, 
as both involve cathodes in the non-lithiated form during battery 
construction. In one example, layered reduced graphene oxide 
was fabricated through Li-assisted reduction of graphene oxide 
(Fig.  4a) and found to possess unique molten Li wettability 
(or lithiophilicity)77. By simply touching the edge of the reduced 
graphene oxide to molten Li, Li can be infused into the matrix by 
capillarity. This layered composite of Li/reduced graphene oxide 
reduced the relative volume change of Li anode to below 20%, 
resulting in much more stable cycling, lower polarization and 
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of Li3PO4-modified Li anode after 200 cycles56. c, Optical images of pristine (top) and 14 nm ALD Al2O3-protected (bottom) Li metal foil soaked in 
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corresponding morphologies of deposited Li are presented below each schematic image. Figure reproduced/adapted with permission from: b, ref. 56, 
Wiley; c, ref. 58, American Chemical Society; d,e, ref. 62, Macmillan Publishers Ltd; f, ref. 63, American Chemical Society; g,j, ref. 72, American Chemical 
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dendrite-proof properties. This strategy has several advantages: 
first, a stable host minimizes the volume variation by dividing 
dense Li into smaller domains; second, the increased active Li 
surface greatly reduces the effective current density, homogeniz-
ing the ion flux and further suppressing dendrites; third, stable 
volume can be maintained at the electrode level to avoid stress 
fluctuation within a cell, thus minimizing safety concerns.

Excellent lithiophilicity of the host materials is a prerequisite for 
molten Li infusion. However, unlike reduced graphene oxide, most 
available materials cannot be well wetted by molten Li (ref. 77). In 
this circumstance, it is possible to develop a universal surface func-
tionalization method to afford lithiophilicity by means of a thin 
and conformal coating of Si or ZnO (Fig.  4b)78,79. This effect can 
be explained by the spontaneous reaction between Si or ZnO and 
molten Li, which affords more lithiophilic species (LixSi and LixZn/
Li2O, respectively) on the surface. Other species that can chemi-
cally react with Li may also be good candidates as a coating layer. 
Using this surface functionalization strategy, stable hosts were 
constructed out of originally lithiophobic carbon nanofibres and 
thermal-resistant polymeric network, which then showed minimal 
volume variation (Fig. 4b) and good cyclability.

Guided Li plating and protection
In Li–LMO cells where Li is pre-stored in the cathode, the anode 
can in principle start with an empty reservoir. However, successful 
confinement of Li deposition in the anode is challenging because of 
random Li nucleation and growth. A solution would be to engineer 
a seeded growth to control the Li deposition80. It was found that 
Li nucleation calls for different overpotential on different metallic 
substrates; an appreciable nucleation barrier exists for metals with 
negligible solubility in Li (for example Cu), whereas no nucleation 

barrier is present for metals exhibiting a definite Li solubility (for 
example Au, Ag and Zn). Based on this, hollow carbon nanocap-
sules with embedded Au seeds were designed (inset in Fig. 4c), in 
which the Au seeds facilitate Li deposition solely inside the nano-
capsules, and the carbon shells act as hosts to stabilize the SEI. High 
Coulombic efficiency (over 98%) can be obtained for over 300 cycles 
even in an alkyl carbonate electrolyte (Fig. 4c). In addition to the 
seeded growth strategy, guided Li plating can also be achieved by 
tuning the surface morphology74.

Preventing dendrite propagation by use of solid electrolyte
Developing advanced solid electrolytes is important to prevent Li 
dendrite growth and side reactions of Li. This can be achieved 
through a relatively straightforward strategy involving the devel-
opment of physical obstacles to stop dendrite propagation. Solid 
electrolytes mainly fall into two categories: inorganic ceramic elec-
trolytes and solid polymer electrolytes. Inorganic ceramic elec-
trolyte is a general term pertaining all kinds of inorganic Li-ion 
conductive species such as sulfides81–86, oxides87–91, nitrides92,93 
and phosphates94–96, while solid polymer electrolyte describes 
those blending Li salts with polymers97–99. Several criteria need 
to be met for solid electrolytes to be effective: (1) sufficiently high 
modulus to stop Li dendrite penetration; (2) sufficient Li-ion con-
ductivity at ambient temperature; (3) wide electrochemical stabil-
ity window without cathodic or anodic decomposition at either 
electrode; (4) low interfacial resistance and good adhesion with 
both electrodes.

Generally, inorganic ceramics exhibit satisfactory ionic con-
ductivity and mechanical properties100. Some of them, such 
as Li10GeP2S12 (ref. 84) and Li9.54Si1.74P1.44S11.7Cl0.3 (ref. 86), have 
ionic conductivity approaching or even surpassing that of liquid 
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electrolytes (Fig. 5a), as summarized in Table 1. The elastic modu-
lus of most of the inorganic ceramics ranges from tens to hundreds 
of gigapascals, which should be sufficient to prevent the forma-
tion of Li dendrites. However, a trade-off exists between modulus 
and surface adhesion with the electrodes; high-modulus materials 
often do not afford good adhesion, especially for Li metal101. Poor 
adhesion can, in turn, significantly increase interfacial resistance 
during cycling. Moreover, the electrochemical stability window of 
inorganic ceramics, especially sulfides, is narrow102. Although not 
generally observed in cyclic voltammetry, redox reactions can still 
happen at the electrode/electrolyte interface with formation of ion-
blocking layers, severely affecting the cell kinetics.

Solid polymer electrolytes usually exhibit ionic conductivity 
2–5 orders of magnitude lower than that of liquids. Their elastic 
modulus is also mediocre (typically <0.1  GPa). As a result, sim-
ple polymer/salt blends cannot fully stop the protrusion of Li 
dendrites22. Nevertheless, the adhesion between the solid polymer 

electrolytes and the electrodes is much better than for ceramics, 
and most solid polymer electrolytes exhibit good flexibility and 
scalable fabrication, which is favourable for practical battery man-
ufacturing. Therefore, this type of electrolyte remains an actively 
studied topic, and progress in this field has been well summarized 
in several reviews103–105. Continuous efforts have been made to fur-
ther improve their ionic conductivity and mechanical strength. 
Block copolymers were designed to decouple their mechanical 
properties from their Li-ion conductivity by introducing mechani-
cal reinforcement blocks such as polystyrene106, while high Li-ion 
transference number was achieved by incorporating single-
ion conductors (inset formula in Fig.  5b)107. As a consequence, 
enhanced mechanical strength and better Li-ion conductivity 
could be obtained simultaneously (Fig.  5b). To solve the modu-
lus versus adhesion dilemma, a block copolymer with liquid-like 
surface and mechanically strong bulk phase was developed101. 
Alternatively, combining a crosslinked ‘hairy’ SiO2 nanoparticle 
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Table 1 | Comparison of room-temperature ionic conductivity, modulus and electrochemical stability window of different  
solid electrolytes.

Materials Ionic conductivity at 25 °C  
(mS cm–1) 

Elastic modulus (GPa) Electrochemical stability 
window (V)

References 

Li2S–P2S5 ~0.3–3 ~18–25 1.71–2.31 82, 83, 85, 102
Li10GeP2S12 ~12 ~20 1.71–2.14 84, 100, 102
Li3xLa2/3–xTiO3 ~1 ~190–260 1.75–3.71 87, 89, 100, 102
Li7La3Zr2O12 ~0.8 ~150 0.05–2.91 88, 90, 91, 100, 102
Li3N ~1 ~150 0–0.44 92, 93, 100
LIPON ~0.001 ~77 0.68–2.63 95, 96, 102
PEO/Li salt blends 0.001–0.1 <0.1 to ~5* (compatible with Li) 97–99

*Obtained from cyclic voltammetry measurement data.
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with gel polymer electrolyte (Fig. 5c) afforded enhanced mechani-
cal strength and good ionic conductivity108.

The combination of solid polymer electrolytes and Li-ion con-
ductive inorganic ceramics is a promising strategy. A membrane 
combining one-particle-thick Li1.6Al0.5Ti0.95Ta0.5(PO4)3 with a flex-
ible polymer was developed to afford both flexibility and dendrite 
suppression (Fig.  5d)109. Recently, a polymer/ceramic/polymer 
sandwich structure was proposed (Fig. 5e)110. In this architecture, 
Li1.3Al0.3Ti1.7(PO4)3 (LATP) and cross-linked poly(ethylene glycol) 
methyl ether acrylate were combined to afford a soft interface with 
mechanically strong ceramic bulk, making it a valid approach for 
solving the modulus–adhesion dilemma and suppressing Li den-
drite growth. In addition, blends of 1D Li3xLa2/3–xTiO3 (LLTO) 
nanowires with polyacrylonitrile can offer continuous Li-ion con-
duction pathways and thus highly improved ionic conductivity 
(>0.1 mS cm–1 at room temperature; Fig. 5f,g)111. The combination 
of garnet phase Li7La3Zr2O12 (LLZO) nanowires and poly(ethylene 
oxide) (PEO) electrolyte (Fig. 5h) exhibits a similar effect112.

Advanced characterization techniques on Li metal
Diverse characterization techniques have been developed to study 
fundamental aspects of Li anodes. These techniques can broadly 
be divided into two categories: those used to study the microstruc-
tures of Li deposition and those used to probe the surface chemistry. 
Techniques often used to meet these two purposes — for exam-
ple scanning electron microscopy (SEM), transmission electron 
microscopy (TEM), optical microscopy, atomic force microscopy 
(AFM), and nuclear magnetic resonance (NMR) for morphological 
investigations, and Fourier transform infrared spectroscopy (FTIR), 
X-ray photoelectron spectroscopy (XPS) and Auger electron spec-
troscopy (AES) for surface analysis — have been well summarized 
in previous reviews4,113. Here, it is important to highlight that most 
of the characterizations reported in the early years were done 
ex situ or in situ under static conditions (without cycling). Applying 
in operando diagnostics can provide more meaningful information 
on the dynamics of Li anode in a real working environment, but 
remains underdeveloped, mostly because of the high reactivity of 
metallic Li and its low atomic number, which makes it a weak scat-
terer for electrons and X-rays.

Open-cell in situ TEM techniques were initially used to observe 
Li dendrite formation114–116 and then proven powerful for visual-
izing the electrochemical behaviour of nano-engineered Li elec-
trodes (Fig.  6a,b)62,77,80. Similarly, in situ SEM has been used to 
probe the inhomogeneity of Li deposition117. But these open-cell 
investigations used either an ionic liquid or a solid electrolyte, 
because liquid electrolytes would be too volatile. Unfortunately, 
this deviates considerably from most practical situations. As an 
alternative, optical microscopy would be compatible with liquid 
cells for in operando studies, yet the information is limited by the 
spatial resolution (~200 nm)42,118,119.

Recently, micro-fabricated hermetic electrochemical liquid cells 
have been developed for in situ TEM investigations to monitor elec-
trochemical dynamics and perform quantitative measurements at 
high spatial and temporal resolution (Fig. 6c)120. It was possible, for 
example, to observe the growth of SEI (Fig. 6d) and Li plating/strip-
ping dynamics in commercial carbonate electrolyte (Fig.  6e) and 
to conclude that dendrites grow from the base point of SEI while 
dissolving from tip and kink points121; or, using chemically sensi-
tive annular dark-field scanning transmission electron microscopy 
(STEM), to estimate the density of the SEI and identify Li-containing 
phases formed in the liquid cell over time122. Other representative 
works includes the direct visualization of SEI inhomogeneity before 
dendrite formation123, and the study of current density and electron 
beam effects on Li deposition morphology124.

X-ray-based techniques, such as transmission X-ray micros-
copy125, X-ray diffraction and X-ray absorption spectroscopy126, 

can also provide important insights into the working dynamics 
of many battery chemistries. Yet only a few studies have specifi-
cally focused on Li metal. These include the investigation of the 
changes in anode composition at different cycling stages and vari-
ous anode depths under multiple discharging–charging cycles in 
an operating Li–air cell using spatially and temporally resolved 
synchrotron X-ray diffraction (Fig. 6f)127; as well as the use of syn-
chrotron hard X-ray microtomography, to image the early stage 
of dendrite development in symmetric Li–polymer–Li cells, and 
to detect the nucleation of subsurface dendritic structures located 
within the Li electrode (Fig. 6g)128.

In addition, in operando 7Li-NMR spectroscopy, 7Li-magnetic 
resonance imaging (MRI; Fig. 6h) and in operando electron para-
magnetic resonance spectroscopy have been proposed as new 
analytical techniques for the semi-quantitative determination of 
Li nucleation and growth129–131. Moreover, the increasing research 
attention on artificial SEI necessitates characterization of the prop-
erties of the coating layer, and techniques including in situ electro-
mechanical testing in TEM132,133, matrix-assisted laser-desorption 
ionization time-of-flight (MALDI-TOF) mass spectrometry18, AFM 
peak force tapping56, and nanoindentation60,91,96 can all be applied 
to obtain complementary information. Finally, electrochemical 
testing methods remain non-destructive, convenient and powerful 
techniques for evaluating battery materials and performances as a 
whole, and can be used, for example, to study the origin of overpo-
tentials at different cycling stages134.

We believe that a combination of characterization techniques, 
including both in operando and post-mortem analyses, is required 
to provide a holistic understanding of the dynamic behaviour of Li.

Outlook
Although valuable progress has been made on Li anode research, 
we believe that great advances still await discovery. Here, we outline 
several possible directions for future Li anode research, which may 
lead to pathways for effective practical solutions.

2D and 3D forms of Li. Nearly all Li anode research in the past 
has been based on Li foil, so that Li plating or stripping took place 
on a 2D surface. There is a maximum current density that a planar 
foil can handle; understanding such a limit would be important for 
safe and stable battery operation. Issues such as large interfacial 
fluctuation also need to be tackled for planar foils. An exciting 
direction is to generate 3D forms of Li, consisting of Li embed-
ded inside a matrix. The matrix could have additional attractive 
functions, including mechanical and chemical stability and Li-ion 
conductivity. The 3D form affords opportunities for handling high 
current density, diminishing volume change and strengthening 
the SEI.

Characterization of metallic Li. Despite the various characteri-
zation techniques applied to metallic Li, we have not yet obtained 
a clear understanding of Li nucleation, growth, stripping, micro-
structure and chemical reactivity. It has been challenging to obtain 
a fresh Li surface in order to understand its initial reaction with 
the surrounding environment, and it is not yet possible to obtain 
an atomically resolved structure of Li and the SEI, owing to their 
instability under characterization conditions. Understanding the 
critical stable nuclei size in different environments would also guide 
us towards strategies for more effective dendrite prevention.

Engineering the SEI and other interfaces. Research into elec-
trolyte additives and artificial SEI is making important progress 
and should continue. We believe that introducing reactive gas/
vapour is a promising alternative for obtaining homogenous sur-
face layers (Fig. 7a). The gas-phase reactant should not be limited 
to simple molecules such as HF and N2, but include more complex 
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compounds such as haloalkanes that exhibit more controllable 
reactions with Li. In addition to inorganic coatings, moreover, 
oligomers or polymers should also be explored. Lamination of 
pre-fabricated layers on the Li anode is another possible direction 
(Fig. 7b), which can not only greatly extend the choice of materi-
als, synthetic techniques and nanostructure design, but also enable 
large-scale manufacturing by roll-to-roll process. It would also be 
interesting to incorporate the self-healing function into the SEI 
using materials such as encapsulated healing agent135 and polymers 
with non-covalent intermolecular bonding (Fig. 7c)136. Currently, 
most of the surface coatings are single-layer, single-component 
coatings with a single desired property (such as high modulus 
or ionic conductivity). However, a stable interface is far more 
demanding and requires composite or multi-layer configurations 
(Fig. 7d), in which various layers can serve different functions. For 
instance, it is possible to imagine a multilayer made of a flexible 
and mechanically strong support, a highly Li-ion-conductive layer 
and an electrolyte-proof film.

Solid electrolyte. We emphasize that composites that take advan-
tage of both highly conductive inorganic ceramics and soft poly-
mer electrolytes may be an ultimate solution for solid electrolytes. 
Ideally, the composites could be made of vertically aligned 1D or 2D 
inorganic materials within a polymeric matrix, which provide not 
only high mechanical strength and a vertical pathway for efficient 
Li-ion transport, but also greatly improved flexibility. Interfacial 
engineering between solid electrolytes and electrodes is crucial to 
improve their adhesion and to extend the electrochemical stabil-
ity window. Multilayered solid electrolytes may be favourable, in 
which the interfacial layers can be designed to be electrochemically 
stable against the electrodes. Here, a semi-fluidic solid electrolyte 
interfacial layer can be helpful to accommodate the interfacial fluc-
tuation at the anode side. Furthermore, in most of the studies, espe-
cially those on inorganic ceramics, the samples are relatively thick 
(>100 μm) and small in area (<5 cm2). Economical approaches to 
fabricate thin (<30 μm; comparable to or thinner than commercial 
separators) and large-area (>30 cm2) solid electrolytes need to be 
further developed for practical applications.

Full-cell design. Two main challenges exist in the design of the 
Li metal full cell, namely the significant volume variation at elec-
trode and battery level (Fig. 7e, I–IV) and the unwanted shuttling 
of cathode species to the anode. For Li–S (II) and Li–air cells (III) 
that are commonly assembled in the fully charged state, volume 
contraction during discharge might lead to the detachment at 
interfaces. For Li–LMO cells assembled in the fully discharged 
state, volume expansion occurs during charging (IV). This might 
build up large internal stress and damage the cells, raising safety 
concerns and producing engineering challenges for battery pack-
aging. Two approaches could be effective to tackle the volume 
fluctuation: matching volume changes of the two electrodes, or 
engineering electrodes with minimal volume fluctuations (V, VI). 
It is known that for Li–S and Li–air cells, the cathode expands 
while Li shrinks during discharge. This offers the opportunity to 
maintain a constant cell volume by matching the volume changes 
of the two electrodes. Nevertheless, such an approach still causes 
floating interfaces, which imposes extra challenges on electrolyte/
separators and SEI stability. Moreover, it cannot be applied to Li–
LMO cells, because the volume of LMO remains nearly constant 
during cycling. Alternatively, stable hosts can be designed for 
both electrodes, a versatile strategy for all Li metal cells. In addi-
tion, the shuttling of cathode species (Li polysulfides, O2) to the 
anode needs to be minimized, although it would be challenging 
to prevent this entirely. The environment change due to shuttling 
might alter the Li deposition behaviour and the SEI composition, 
another important aspect that needs to be explored.

‘Smart’ designs for safe battery operation. In addition to solving 
the intrinsic safety issues, it is also meaningful to integrate extra 
‘smart’ functions into Li batteries. Previously, Li dendrite detec-
tion137,138, thermoresponsive flame-retardant release139 and battery 
shut-down mechanisms140 have been demonstrated by means of 
engineering of separators and current collectors. Because temper-
ature response is an efficient way to detect battery failure, materi-
als such as thermoresponsive polymers and shape-memory alloys 
can be integrated into the system. Gas release and voltage fluc-
tuation prior to battery failure are also indicators that would be 
worthwhile exploring.

In all, it is unlikely that a single strategy can be applied uni-
versally to solve all the problems of Li anodes. Rather, it is the 
combination of various approaches that could ultimately make 
Li anodes a viable technology. Nanotechnologies have created 
new possibilities for solving these multifaceted problems, while 
advanced characterization techniques are offering more infor-
mation that can guide materials design. The revival of Li metal 
chemistry is on its way, and it calls for more efforts in fundamen-
tal study, materials development and battery engineering to make 
it viable.

Received 27 September 2016; accepted 25 January 2017; 
published online 7 March 2017

Figure 7 | Outlook for Li metal battery engineering and full-cell design. 
a–d, Multiple interfacial coating strategies including reactive gas/vapour 
coating (a), lamination (b), self-healing polymer coating (c) and multilayer 
coating (d). e, Problems and possible solutions for full cell design for 
Li metal batteries. Volume shrinkage can be expected for Li–S (II) and 
Li–air (III) cells, whereas volume expansion can be observed for Li–LMO 
(IV) cells. Matched cathode expansion (V) and stable host design for both 
electrodes (VI) could be solutions to the volume fluctuation.
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