Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries

Guangmin Zhou†,‡,◆, Shiyong Zhao§,◆, Tianshuai Wang¶,§, Shi-Ze Yang∥, Shi-Ze Yang‡, Bernt Johannessen,# Hao Chen†, † Chenwei Liu†, Yusheng Ye‡, Yecun Wu‡, Yucan Peng†, Chang Liu†, San Ping Jiang*,∥∥, Qianfan Zhang*,●∥, and Yi Cui‡,⊥

†Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
‡Fuels and Energy Technology Institute and WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
¶School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
∥Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 37831, United States
#Australian Synchrotron, Clayton, Victoria 3168, Australia
∥Advanced Carbon Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
*Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States

Supporting Information

ABSTRACT: Lithium–sulfur (Li–S) batteries are promising next-generation energy storage technologies due to their high theoretical energy density, environmental friendliness, and low cost. However, low conductivity of sulfur species, dissolution of polysulfides, poor conversion from sulfur reduction, and lithium sulfide (Li2S) oxidation reactions during discharge–charge processes hinder their practical applications. Herein, under the guidance of density functional theory calculations, we have successfully synthesized large-scale single atom vanadium catalysts seeded on graphene to achieve sulfur content (80 wt % sulfur), fast kinetic (a capacity of 645 mAh g−1 at 3 C rate), and long-life Li–S batteries. Both forward (sulfur reduction) and reverse reactions (Li2S oxidation) are significantly improved by the single atom catalysts. This finding is confirmed by experimental results and consistent with theoretical calculations. The ability of single metal atoms to effectively trap the dissolved lithium polysulfides (LiPSs) and catalytically convert the LiPSs/Li2S during cycling significantly improved sulfur utilization, rate capability, and cycling life. Our work demonstrates an efficient design pathway for single atom catalysts and provides solutions for the development of high energy/power density Li–S batteries.

KEYWORDS: Single-atom catalysts, lithium–sulfur batteries, catalytic conversion, graphene, density functional theory simulation

Lithium–sulfur (Li–S) battery is regarded as a promising candidate for energy storage due to its high theoretical energy density, low cost, and environmental friendliness. Nevertheless, technological challenges arising from the low electronic/ionic conductivity of sulfur species, the sluggish reaction kinetics with accumulated sulfur species, and dissolved polysulfides, lead to large internal resistance, low sulfur utilization, and fast capacity decay. These challenges have prevented the commercialization of Li–S batteries. To overcome these drawbacks, introducing active adsorption and catalysis centers is required for the cathode to enhance the sulfur utilization and accelerate the reversible conversion between lithium polysulfides (LiPSs) and Li2S. Therefore, much effort has been devoted to developing highly active and durable catalysts, which possess well-designed activation centers capable of adsorbing active species and facilitating desired redox reactions. Our previous work identified metal sulfides as effective catalysts in lowering the overpotential and the Li2S decomposition energy barrier compared with the more commonly used carbon materials in Li–S batteries. Several other bulk and nanosized catalysts including TiO2 nanosheets, MnO2 nanosheets, Fe3O4 nanoparticles, mesoporous TiN, amorphous CoS2 film, VN nanoribbon, and

Received: November 15, 2019
Revised: December 19, 2019
Published: December 30, 2019

DOI: 10.1021/acs.nanolett.9b04719
Nano Lett. XXXX, XXX, XXX–XXX
phosphorene17 have also been synthesized to promote the transformation of sulfur, LiPSSs, and Li\textsubscript{2}S, resulting in a significant increase in utilization of active materials and enhancing the reaction kinetics of Li–S batteries.8 However, attention should be paid to control the weight percentages of these inactive additives without sacrificing the overall energy density of Li–S batteries.

Since catalytic performance is correlated to catalytic particle size, it is natural to hypothesize that maximum catalytic efficiency is achieved at the single atomic level18–20. Single-atom catalysts (SACs), comprised of monodispersed single atoms supported on various substrates, have recently been demonstrated to exhibit high efficiency and distinctive selectivity in various energy, environment, and chemical-related devices, far exceeding conventional metal nanoparticle

Figure 1. Theoretical understanding for Li\textsubscript{2}S decomposition, Li ion diffusion, and anchoring effect. (a) Decomposition barriers of Li\textsubscript{2}S and (b) lithium ion diffusion barriers on different substrates including graphene, NG, SAFe@NG, SAMn@NG, SARu@NG, SAZn@NG, SACo@NG, and SAV@NG. The inset images in panels a and b are the detailed decomposition path of Li\textsubscript{2}S and diffusion pathway of lithium atom on SAV@NG, respectively. (c) Bond angle (Li–S–Li) of Li\textsubscript{2}S, bond length (Li–S) of Li\textsubscript{2}S and (d) side view for charge density difference of Li\textsubscript{2}S adsorption on the graphene, NG, SACo@NG, SAV@NG, SAFe@NG, SAMn@NG, SARu@NG, and SAZn@NG, respectively. The yellow and blue sections represent the electron accumulate and lose region. The iso-surface is set to 0.003 eV/Å3. (e) Binding energy of Li\textsubscript{2}S\textsubscript{6} on the graphene, NG, SACo@NG, SAV@NG, SAFe@NG, SAMn@NG, SARu@NG, and SAZn@NG, respectively. The inset image is the side view for the Li\textsubscript{2}S\textsubscript{6} cluster adsorption configurations on SAV@NG.
Accelerate the search for promising catalyst candidates, which NG, SAFe@NG, SAMn@NG, SARu@NG, and SAZn@NG in seven cases. The decomposition barrier for SAV@NG, SACo@NG was highly related to the kinetic property of Li\textsubscript{2}S oxidation (2.12 eV), much larger than the other materials. The results show that graphene possesses the greatest decomposition performance. Fast lithium ion diffusion behavior facilitates the subsequent steps after the decomposition of Li\textsubscript{2}S, on the charging process and sulfur transformation chemistry on the discharging process. As shown in Figure 1b, the calculation results show that the diffusion barriers of lithium ion on all the substrates are around 0.23 eV. The detailed lithium diffusion pathway on these substrates are shown in the inset of Figure 1b (SAV@NG) and Figure S2. Combining the decomposition energy barriers of Li\textsubscript{2}S with lithium ion diffusion barriers on these substrates, it can be clearly seen that the dominant step for the decomposition process of Li\textsubscript{2}S on the charging process is the bond breaking step between the Li and S atoms. SAV@NG exhibits the smallest decomposition barrier (1.10 eV) of Li\textsubscript{2}S and can maintain the small lithium diffusion barrier, which shows the best potential for catalyzing the decomposition of Li\textsubscript{2}S.

To further have an in-deep investigation for the different catalytic effect on decomposition of Li\textsubscript{2}S on these substrates, the electronic structure and thermodynamic configuration analysis were performed. Considering that the bond length (Li—S) and bond angle (Li—S—Li) can reflect the bonding strength of the Li—S bond in the Li\textsubscript{2}S, we measured the bond length and angle of Li\textsubscript{2}S after it was adsorbed on the substrates. As shown in Figure 1c and Figure S3, the bond length of Li—S on the graphene is the shortest with 2.15 Å and the bond angle of Li—S—Li on the NG is the smallest with 84.80°, while SAV@NG substrate possesses both a maximum bond length (2.28 Å, Li—S) and a maximum bond angle (145.83°, Li—S—Li) among all substrates. The stronger bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreover, electronic transformation behavior between the Li\textsubscript{2}S and substrates were also considered. As shown in Figure 1d, the charge density differences show the electron migration mainly accumulates between the Li atoms and substrates for the graphene and NG materials. The longer bond length and bigger bond angle of Li\textsubscript{2}S on relative substrates mean the greater weakening of the Li—S bond in the Li\textsubscript{2}S molecules, which facilitate the decomposition of Li\textsubscript{2}S. These results are in agreement with our decomposition barrier calculation. Moreve
the SAV@NG substrate possesses the biggest binding energy of 3.38 eV. This indicates that the SAV@NG material exhibits the best potential on mitigating polysulfide dissolution and suppressing shuttle effect in Li−S batteries. Combining the decomposition barrier, lithium ion diffusion barrier, structure stability performance, and anchoring effect of the 10 materials, the SAV@NG shows the best potential and was thus selected as an optimum catalyst for this study. Moreover, according to the different decomposition energy barrier gradients of Li2S, similar lithium ion diffusion barrier and different anchor effect level for Li2S6 on these substrates, graphene, NG, and SACo@NG were also selected as the control electrodes.

Guided by the theoretical results, a seeding approach was proposed to synthesize the SACo@NG and SAV@NG samples, as shown in Figure 2a. Briefly, the seeding approach involves three steps, that is, the seed of single atom metal (Seed-SAMe) preparation, graphene surface modification, and final seed landing (see Chart S1 and experimental details in Supporting Information). The surface modification layer was introduced on the surface of graphene oxide (GO), which bridged the connection between the GO and single atoms. The loading of seeds was controlled through absorbing and stabilizing the metal salts on the carbon nitrides. The components of the single atoms could be adjusted by changing the metal salts. Besides this, the content and loading were also adjustable through changing the ratio between the seeds and supports. Finally, the specific loading of single atom seeds was tested by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and further confirmed by TGA and ICP-OES with values of around 4.3 and 3.9 wt %, respectively (Figure S5a,b). The oxidation resistance temperature of NG, SACo@NG, and SAV@NG are 558 °C, 500 °C, and 450 °C, respectively (Figure S5), and the reduced temperature indicates the catalytic effect of single atoms on the decomposition of NG. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of SAV@NG and SACo@NG demonstrate curved graphene without nanoparticles observed on the surface (Figure 3a,b and Figure S6a,b). X-ray diffraction (XRD) patterns further confirm that there are no metallic vanadium or oxide nanoparticles detected in the products (Figure S7a), consistent with the TEM observations. Raman spectra indicate a similar ratio of D and G band, which means the amorphous carbon derived from polyvinylpyrrolid (PVP) and polyethylene-
nimine (PEI) does not change the basic sp² configuration of graphene (Figure S7b). Furthermore, the energy dispersive spectrum (EDS) elemental mapping images indicated that the C, N, and V elements are uniformly distributed throughout the structure (Figure 3c,d). Isolated single atoms were atomically dispersed on the substrate as shown by the aberration-corrected scanning transmission electron microscopy annular dark-field (AC-STEM-ADF) images (Figure 3e and f).

Similarly, structural investigation of SACo@NG shows successful synthesis of single cobalt atoms on the surface of graphene (see additional details in Figure S6).

In order to understand the chemical environment of SAV@NG and SACo@NG, low energy X-ray photoelectron spectroscopy (XPS) and high energy X-ray absorption spectroscopy (XAS) were used to analyze the carbon, nitrogen, and vanadium oxidation states (see more detail in Supporting Information). The nitrogen K-edge spectra reveal four characteristic resonances occurring at around 399.2, 400.4, 401.4, and 402.2 eV (Figure 3g), corresponding to aromatic C—N—C coordination in one tri-s-triazine heteroring (N1), terminal C—N—H (N2) bond, graphitic 3-fold nitrogen atom N—3C (N3), and sp³ N—3C bridging among the three tri-s-triazine moieties (N4), respectively.33 By comparing with pure g-C₃N₄ of 399.5 eV, the peak of Seed-SAV shifts to lower energy of 399.0 eV, due to the introduction of V atoms in the g-C₃N₄ structure. The N near edge X-ray absorption fine structure (NEXAFS) indicates Seed-SAV largely maintaining the g-C₃N₄ structure (Figure 3g). In comparison, the SAV@NG and NG show an obvious peak at 398.4 eV, which can be assigned to the pyridinic N,34 consistent with the XPS results (Figure S8).

In the Seed-SAV, the V form is predominant by V−N and slight low part of V−O, which may be due to the massive N protection in g-C₃N₄. Different from the rigorous inversion symmetry in VO, V₂O₅, and V metal, the pre-edge of SAV@NG shifts to higher energy, suggesting that the coordination symmetry is more distorted (Figure 3h).35 Turning to XAS, the extended X-ray absorption fine structure (EXAFS) (Figure 3i) profiles indicate the local atomic structure in SAV@NG. The V in SAV@NG shows a lack of V−V bonding (2.24 Å) and is instead dominated by light element bonding, such as V−N (1.30 Å) and V−O (1.56 Å). SAV@NG shows similar structure with that of V in vanadium(IV) oxide phthalocyanine (VOPc), coordinating with two nitrogen atoms and one oxygen. The SAV@NG is dominated by V−N bonding with a smaller V−O contribution and consistent with XPS and

Figure 3. Structural characterizations of SAV@NG. (a) SEM image of SAV@NG, inset image: 1.05 g SAV@NG. (b) TEM image and (c) high-angle annular dark-field (HAADF)-STEM image of SAV@NG. (d) HAADF image and corresponding EDS mappings of SAV@NG. (e,f) AC-STEM-ADF images of SAV@NG. (g) NEXAFS N K-edge of g-C₃N₄, NG, Seed-SAV, and SAV@NG. (h) Vanadium K-edge X-ray absorption near edge structure (XANES) spectra of SAV@NG, V foil, VOPc, VO₂, and V₂O₅. (i) Fourier transform of vanadium K-edge EXAFS spectra of SAV@NG, V foil, VOPc, VO₂, and V₂O₅.
NEXAFS results (Figures S8 and S9). Similarly, the detailed results in Figure S10 reveal that the Co in SACo@NG is also in the form of single atoms.

To understand the LiPSs adsorption capability of these materials, UV–vis absorption spectroscopy was used to compare the concentration change of Li$_2$S$_6$ solution after adding graphene, NG, SACo@NG, and SAV@NG (Figure 4a). The characteristic UV–vis peaks of the polysulfide solution located at 260, 280, 300, and 340 nm are assigned to the S_{6}^{2-} species. After the absorption for 1.5 h, it can be obviously observed that the absorption characteristic peaks of Li$_2$S$_6$ decrease for both graphene and NG and almost disappear for SACo@NG and SAV@NG (inset of Figure 4a), which confirms better absorption capability for S_{6}^{2-} in SACo@NG and SAV@NG. Nitrogen adsorption/desorption isotherms were used to obtain the information on porous structure and surface area of the graphene, NG, SACo@NG, and SAV@NG samples (Figure 4b), and the results indicate that there is a decrease in specific surface area of SACo@NG (841.8 m2 g$^{-1}$) and SAV@NG (781.9 m2 g$^{-1}$) compared with NG with a value of 863.5 m2 g$^{-1}$, which may be attributed to the added metal that dilutes the value of surface area. The pore size distribution (Figure S11) confirms that sufficient pore structure remained in SACo@NG and SAV@NG. The strong chemical adsorption of SAC with LiPSs and large surface area of the composite are beneficial for constructing high-performance sulfur electrodes in Li–S batteries. Therefore, four electrodes were produced through sulfur infiltration methods. Sulfur is uniformly dispersed on the surface of SAV@NG (S-SAV@NG, Figure 4c) and SACo@NG (S-SACo@NG, Figure S12) without obvious sulfur particle aggregates, which are different from S-G and S-NG (Figure S13). In addition, HRTEM images in Figure 4d,e also confirm the absence of obvious sulfur clusters. The EDS signals at 2.30 and 4.95 keV in Figure 4f indicate the
presence of S and V in the S-SAV@NG. The uniform elemental distribution of C, N, V, and S reveals the good sulfur dispersion on the SAV@NG (Figure 4g). In addition, the XANES (Figure S14) and EXAFS of S-SAV@NG and V2S3 (Figure 4h) were conducted to analyze the V state after sulfur infiltration. The first shell of V−S in V2S3 is very close to V−O around 1.53 Å, with a second shell of about 2.02 Å. It proves that the dextral bonding near to V−S formed in the S-SAV@NG (Figure 4g). In addition, the XANES (Figure S14) and EXAFS of S-SAV@NG and V2S3 (Figure 4h) were conducted to analyze the V state after sulfur infiltration. The first shell of V−S in V2S3 is very close to V−O around 1.53 Å, with a second shell of about 2.02 Å. It proves that the dextral bonding near to V−S formed in the S-SAV@NG (Figure 4g).
TGA is used to determine the sulfur content in the composite and the results indicate a high loading of sulfur in the above-mentioned samples with values up to 80 wt % (Figure 4j). All of these characteristics show great potential for applying single atom seeded graphene in Li–S batteries toward desirable electrochemical performance.

To substantiate the effective S/LiPSs/Li2S catalysis conversion by single atoms in improving the performance of Li–S batteries, a series of electrochemical measurements of S-G, S-NG, S-SACo@NG, and S-SAV@NG electrodes were conducted. From the charge/discharge profiles of the S-SAV@NG electrode (Figure 5a), it is clearly observed that two discharge/charge plateaus are well-retained even at a high rate of 3 C, indicating the excellent reaction kinetics. The S-SAV@NG electrode has an obvious higher discharge plateau at ~2.32 V (reduction of sulfur to long-chain LiPSs) and a longer plateau at ~2.10 V (formation of short-chain LiPSs) with corresponding charge plateaus between 2.20 and 2.40 V (transformation from Li2S/LiS to long-chain LiPSs and then to sulfur). The efficient catalysis conversion of SAV enables the battery to deliver the highest capacity of 1230 mAh g\(^{-1}\) at 0.2 C rate, and the reversible discharge capacity could reach 645 mAh g\(^{-1}\) at a high current density of 3 C rate (Figure 5b). When the current rate was abruptly changed back to 0.5 C rate again, the electrode was able to recover to the original capacity, indicating the robustness and stable structure of the S-SAV@NG electrode. Likewise, the S-SACo@NG electrode also exhibits good rate performance with well-defined charge/discharge plateaus, much better than S-G and S-NG electrodes with large polarization especially at high rates (Figure S15). The polarization for the S-SAV@NG and S-SACo@NG electrodes is much lower compared to the S-G and S-NG electrodes at different current densities, for example, the overpotential of S-SAV@NG and S-SACo@NG at 3.0 C is 380 and 460 mV, respectively, much lower than that of S-NG (710 mV) and S-G (1060 mV) electrodes, demonstrating better redox reaction kinetics and good reversibility of single atom seeded sulfur electrodes (Figure 5c). Moreover, the plateaus of the S-SAV@NG electrode are long and flat and are well-retained from 0.3 to 3 C rates between the charge/discharge processes. When comparing the capacity contribution between high and low plateau capacity at different current densities, it is worth noting that the S-SAV@NG has a larger capacity contribution from high and low plateau range especially at high current densities compared with the S-NG and S-SACo@NG electrodes (Figure 5d,e). In sharp contrast, the capacity in high plateau of S-G electrode is only about one-third of SAV@NG electrode at 3 C. Cyclic voltammetry (CV) tests in symmetric cells using an electrolyte containing 0.5 mol L\(^{-1}\) LiTFSI and 1 mol L\(^{-1}\) LiTFSI dissolved in DOL/DME (v/v = 1/1) were carried out to study the catalytic activity of G, NG, SACo@NG, and SAV@NG electrodes within a potential window from −0.8 to 0.8 V (Figure 5f). The SAV@NG and SACo@NG electrodes exhibit higher current under identical test conditions, indicating rapid polysulfide redox conversion reactions of polysulfides on the electrolyte/electrode surface compared to the other electrodes. The accelerated polysulfide redox reaction kinetics can be ascribed to the catalytic activity of SAV and SACo seeded on the graphene promoting the polysulfide conversion.

The cycling performance of these electrodes was measured at 0.2 C between 1.5 and 2.8 V for 100 cycles, as shown in Figure 5g. The S-SACo@NG and S-SAV@NG electrodes exhibit good cycling stability with nearly 100% Coulombic efficiency and reversible specific capacities of 675 and 770 mAh g\(^{-1}\) after 100 cycles, much higher than those of the S-G and S-NG with values of 388 and 560 mAh g\(^{-1}\), demonstrating the effectiveness of the single atom structural design in confining sulfur species through a combined physical and chemical interaction. In addition, the long-term cyclic test at 0.5 C rate was carried out and the initial specific capacity is 780 and 749 mAh g\(^{-1}\) for S-SAV@NG and S-SACo@NG electrodes, respectively, and they stabilized at ~551 and 513 mAh g\(^{-1}\) after 400 cycles, respectively (Figure 5h). The capacity decay is 0.073% and 0.079% per cycle for the S-SAV@NG and S-SACo@NG electrodes, much better than those of S-NG and S-G electrodes with decay rates of 0.101% and 0.165% per cycle, respectively. To further satisfy the requirements of high-energy batteries, the active sulfur loading of S-SAV@NG was increased to 5 mg cm\(^{-2}\). It is obviously observed that the discharging/charging plateaus are still well-retained even at a high rate of 2.0 C (Figure S16a), demonstrating that the reaction kinetic is not influenced by high sulfur loading. The single atom active site catalyst enables the battery to deliver a high initial capacity of 1143 mAh g\(^{-1}\) at 0.2 C, and 701, 580, and 430 mAh g\(^{-1}\) at higher cycling rates of 0.5, 1.0, and 2.0 C, respectively (Figure S16b). In addition, a long-term cyclic test at 0.5 C rate was conducted and the initial specific capacity is 645 mAh g\(^{-1}\), which stabilizes at ~485 mAh g\(^{-1}\) after 200 cycles (Figure S16c). The significantly improved battery performance can be attributed to the merits of single atom seeded electrode configuration design including (i) the single atom V effectively traps the dissolved LiPSs and provides more active sites for Li$_2$S deposition; (ii) the graphene substrate can improve conductivity of the electrode and accommodate the volume change of the active sulfur and intermediate materials during cycling; (iii) the efficient catalytic conversion of Li$_2$S/LiPSs accelerates the reaction kinetics and prevents the loss of active material, thus realizing a high capacity, fast charging, and long cycling life Li–S battery.

To attain an in-depth understanding of the reasons for the improved discharge reaction kinetics of the S-SACo@NG and S-SAV@NG cathodes, the overall reactions based on the reversible formation of Li$_2$S from S$_8$ and Li bulk were considered as shown in Figure 5i. The Gibbs free energies for all of the reaction steps were calculated and the evolution profile from S$_8$ to Li$_2$S species on all the substrates are exhibited. The detailed optimized structures of the intermediates on the SAV@NG substrate were shown in the inset, while other atomic configurations can be seen in Figure S17. It can be seen that the reduction step of S$_8$ to the Li$_2$S$_x$ shows a spontaneous exothermic reaction on all the substrates. The following four reduction steps, from Li$_2$S$_6$ to Li$_2$S, were an endothermic reaction, while the last two steps from Li$_2$S$_5$ to Li$_2$S$_2$ and Li$_2$S$_2$ to Li$_2$S exhibit the high positive Gibbs energy barrier comparing to other steps. The rate-limiting step in the graphene is the step from Li$_2$S$_2$ to Li$_2$S$_3$, with the value of 1.07 eV, but the rate-limiting step for the NG, SACo@NG, and SAV@NG is the step from Li$_2$S$_3$ to the Li$_2$S. Considering the low positive Gibbs energy barrier of rate-limiting step on SACo@NG (0.72 eV) and SAV@NG (0.84 eV), the reduction process of sulfur is more convenient on these substrates during discharging and thus improves the electrochemical performance of Li–S batteries.

In summary, we have demonstrated a well-characterized and customizable method to synthesize SACs supported on...
graphene via a seeding strategy with scalable amount, controllable loading, and adjustable components. On the basis of the guidance of theoretical simulations, vanadium atom catalysts were chosen and prepared for high-performance Li–S batteries. The great improvement in the battery capacity, kinetics, and cycling life confirms the merits of SACs. The single vanadium active catalysis sites facilitate both the formation and decomposition of solid Li2S in discharging and charging processes, which guarantee a high utilization of sulfur species. The precise synthesis of commercial quantities and charging processes, which guarantee a high utilization of sulfur species. The precise synthesis of commercial quantities and charging processes, which guarantee a high utilization of sulfur species. The precise synthesis of commercial quantities and charging processes, which guarantee a high utilization of sulfur species.

ASSOCIATED CONTENT

5 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.9b04719. Methods, additional figures, and additional references (PDF)

AUTHOR INFORMATION

CORRESPONDING AUTHORS

E-mail: yicui@stanford.edu.

AUTHOR CONTRIBUTIONS

G.Z., S.Z., and T.W. contributed equally to this work

Author Contributions

G.Z., S.Z., Q.Z., and Y.C. conceived the concept and experiments. G.Z. and S.Z. prepared samples, built the cells, and carried out experiment characterizations. T.W. and Q.Z. carried out the DFT calculations. S.Y. and B.J. assisted in material characterization. H.C., C.L., Y.Y., Y.W., and Y.P. assisted in the device fabrication and electrochemical measurements. C.L. and S.J. participated in discussions. G.Z., S.Z., T.W., Q.Z., and Y.C. analyzed data and wrote the paper. All authors discussed the results and commented on the manuscript.

NOTES

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Y.C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under the Battery Materials Research program and the Battery 500 Consortium program. G.Z. was supported by the Natural Key Research and Development Program of China (Number 2019YFA0705703). Q.Z. was supported by the National Natural Science Foundation of China (11404017), Beijing Natural Science Foundation (No. 2192029), the Technology Foundation for Selected Overseas Chinese Scholar, the Ministry of Human Resources and Social Security of China, and the program for New Century Excellent Talents in University (NCET-12-0033). S.Z. and S.J. acknowledge the support from the Australian Research Council under Discovery Project Scheme (Project Numbers DP150102044, DP180100731, and DP180100568). C.L. is thankful for the support from the National Natural Science Foundation of China (No. 51872293). The NEXAFS and XAS measurements were performed on the soft X-ray and XAS beamlines, respectively, of the Australian Synchrotron, Victoria, Australia, part of ANSTO. The electron microscopy done at Oak Ridge National Laboratory (S.Z.Y.) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and performed in part as a user proposal at the ORNL Center for Nanophase Materials Sciences, which is a DOE Office of the Science User Facilities.

REFERENCES

