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1.1 Introduction 

Is there a limit to the performance of linear optical components? Suppose we 
asked a specific question, such as how much glass would we need to make a 
device that would split 32 wavelengths in the telecommunications C-band near 
1.5 microns wavelength. Intuitively, we would probably agree that 1 cubic 
micron of glass would not be enough. We could, however, certainly achieve this 
goal with a room full of optics, and in fact we know we could purchase a 
commercial arrayed waveguide grating device, with a scale of centimeters, to 
make such a splitter. So our intuitive experience suggests that there is some limit 
on performance of such optical components, though historically we have not had 
a general limit we could use.  

The need for a limit is not merely academic. With modern nanophotonic 
techniques, we can make a very broad variety of devices, some with little or no 
precedent. In part because of the high refractive index contrast available to us in 
photonic nanostructures, design of such devices is often quite difficult, and we 
would at least like to know when to stop trying to improve the performance. 
Classes of devices of interest to us could include dispersive structures, slow light 
elements, holograms, or any kind of device that separates different kinds of input 
beams or pulses to different positions in space or time. 



Recently, we have been able to devise quite a general approach to limits for 
the performance of linear optical components1. This approach gives upper limits 
to performance that are quite independent of the details of the design, being 
dependent instead only on the overall geometry of the device, and, for example, 
the largest dielectric constant variation anywhere in the structure at any 
wavelength.  This overall limit has already been applied to calculate limits to 
dispersive devices1 and to slow light2. Here we will introduce this limit, 
summarizing its derivation and the applications so far.  

This limit is based on the idea of counting possible orthogonal wave 
functions that can be generated when an optical component acts to “scatter” an 
incident wave into a receiving volume. This idea in turn is based upon some 
earlier work3 that is a generalization of diffraction theory to volumes, in which 
we can count the orthogonal “communications modes” – the best choices of 
sources in one volume and the resulting waves in another for communicating 
between the two.  

Below, after summarizing the background to the need for a new limit 
especially in nanophotonics, we will then introduce the underlying mathematical 
methods, including a discussion of communications modes and their applications. 
We will give the proof of a new general theorem for strong and/or multiple 
scattering, a theorem that underlies our limit to optical components. Then we will 
summarize two applications of the new limit, one to slow light devices and the 
other to dispersion of pulses, before indicating future directions and drawing 
conclusions. 

1.2 Background 

There has been extensive prior work on limits or at least design techniques for 
optical components that are intended to separate beams or pulses (see references 
in Ref. 1). That prior work, however, largely deduces limits for devices designed 
in a specific way, such as a simple resonator, coupled resonators, a periodic 
structure or a grating. For example, we could deduce limits to group delay for a 
Fabry-Perot resonator, based on an explicit model of such a resonator. Such a 
limit would show a trade-off between the magnitude of the group delay and the 
bandwidth over which such delay would be available. In such structures, we can 
often have relatively simple and sometimes intuitive models of how adjusting 
some part of the design will lead to a specific consequence. But there is a class of 
structures that can be made, and that can have relatively very good performance, 
for which there are no such models. Such structures can result from purely 
numerical optimization in design. 

For example, we recently had set out to design and test superprism 
wavelength splitters made from one-dimensional dielectric stacks4,5,6. In a 
superprism, the effective angle of propagation of a beam in a structure can vary 
very strongly with the wavelength of the incident light. Such superprism effects 
have been known for some time at least for periodic structures7, and can be 
understood in that case in terms of the band structure of the periodic system. 
Better performance, both in the linearity of the shift with wavelength and in the 



magnitude of the shift, can, however, be obtained from non-periodic structures in 
which the thickness of each layer is potentially adjusted during the design 
process4,5. It is easy to understand that such a structure might be able to give 
better performance – there are simply more engineering degrees of freedom 
available if we do not merely restrict ourselves to designing the unit cell of a 
periodic structure. We also found in this work that, for over 600 designs with 
different starting design concepts, different materials, and different 
optimizations, the performance of all of these lay near or below a specific line5, 
suggesting some underlying limit.  

In work on designs of two-dimensional structures, in this case for mode-
splitting8,9, we were able to devise quite effective and very compact designs by 
numerical optimization based on removing or adding dielectric “rods” in a region 
of the structure, but in this case in particular we simply do not know “how” it 
works. We cannot say that a particular rod or group of rods does a specific 
function in a specific way. All the rods interact with the optical field in 
performing the final function. Since we do not know how it works, we also 
cannot say how well it could work, or what the limit to it should be based on 
some analysis of this specific device type. The “exhaustive search” approach of 
trying all possible designs to establish the best one is generally computationally 
very expensive, so we would very much like the guidance of some limit that was 
independent of device details. 

The challenge is to devise a limit to the performance of optical components, 
completely independent of the design approach, so that we can bound the 
performance not only of the kinds of devices we have used up to now, but for any 
future device based on any kind of optical structure, including the many 
possibilities enabled by nanophotonics. 

1.3 Mathematical approach 

Our approach to this limit1 is based upon counting the number of distinct 
available channels or “modes” for communicating with an incident wave through 
a “scattering” volume (the volume that contains our optical component structure 
of interest) to a receiving volume. As we will see below, with only simple 
information about the scattering structure, such as its size and shape and the 
largest dielectric constant variation within it, we can deduce upper limits to this 
available number of modes. When we are also able to state the number of 
channels needed for a given optical function, then we can deduce whether that 
function could possibly be performed by such a structure regardless of how we 
design it.  

1.3.1 Communications modes 

Before discussing the full problem of scattering waves from one volume to 
another, we can look at the simpler problem of communicating from sources in a 
transmitting volume to generate waves in a receiving volume3. If those volumes 
were simply thin parallel surfaces (see Fig. 1), and we were considering waves of  



a specific frequency only, in optics we would fall back on our understanding of 
diffraction to tell us how many distinct channels there are10. We would expect 
that there would be essentially one distinct channel possible for each resolvable 
spot, where the size of the resolvable spot is deduced from diffraction theory. 
Though such an approach is somewhat informal, it is essentially correct for such 
a problem.  

There is a more formal and rigorous approach that was initially understood at 
least for simple (e.g., square or circular) parallel surfaces11,12, and that can be 
extended also to the case of volumes3. We sketch this approach here. Consider 
transmitting and receiving volumes3, as shown in Fig. 2, which are 
generalizations of the object surface and image surface respectively. We presume 
that we have some source function in the transmitting volume VT, and we write 
this function as T . This source function generates a wave, leading specifically 
to a wave R TR T G  in the receiving volume VR, where TRG  is the coupling 
operator (basically the Green’s function of the wave equation).  

Note, incidentally, that here and below we are using Dirac’s “bra-ket” 
notation as a convenient notation for linear algebra; the reader can think of a 
“ket” such as T  as a column vector whose elements are the values of the 
function at the various values of the argument of the function, for example. The 
“bra” vector T  is then the row vector that is the Hermitian adjoint of T . 
The Hermitian adjoint, which can also be indicated by a superscript dagger “ † ”, 
is the transpose of a vector or matrix in which we also take the complex 
conjugate of all the elements (so, e.g., †

T T  ). We use “san serif” letters, 
such as G , to represent operators, which we can think of as matrices. 
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Figure 1 Illustration of diffraction from an “object” surface to an “image” surface, with the 
number of distinct spatial channels being given approximately by the number N of 
resolvable spots as deduced from a simple diffraction model3.  
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Figure 2 Illustration of a source function T in a transmitting volume VT, giving rise to a 
wave R in a receiving volume VR, formally through a coupling operator TRG (the 
Green’s function of the wave equation).  



Suppose then we wish to find the best possible set of distinct (i.e., 
mathematically orthogonal) source functions in the transmitting volume that 
would generate the largest possible amplitudes of wave functions in the receiving 
volume. The general solution to such a problem is known. It is well understood 
also in the context of imaging between surfaces (see Ref. 13, and references 
therein). We find the solution by formally performing the singular value 
decomposition of the coupling operator TRG  between these volumes. The best 
choices of source functions are the (orthogonal) eigenfunctions Ti  of the 
operator †

TRTRG G , with eigenvalues 2
is . The corresponding wave functions in 

the receiving volume are the (orthogonal) eigenfunctions Ri  of the operator 
†

TR TRG G , also with eigenvalues 2
is . Once we have solved these two eigen 

problems, we can write TRG  in its singular value decomposition form as 

 TR i Ri Ti
i

s   G  (1) 

where the is  are called the singular values. 
Specifically, the source function Tm  leads to a corresponding wave 

m Rms   in the receiving volume; such a pair of one of these source functions 
Tm in the transmitting volume and its corresponding wave function Rm  in 

the receiving volume can be called a “communications mode”3. These 
communications modes represent the best possible set of source and wave 
function pairs for establishing orthogonal communications channels from one 
volume to another. If we choose the sets Ti  and Ri  also to be normalized, 
then the singular values represent the coupling strengths of these modes. 

When we take such an approach to the coupling between thin, plane-parallel 
square or circular transmitting (i.e., “object”) and receiving (i.e., “image”) 
volumes relatively far apart (so we can use a paraxial approximation in 
considering wave propagation), then there are specific so-called “prolate 
spheroidal” functions that are the eigenfunctions of these problems for each 
surface11,12. These functions are not simple small spots on one or other surface –  
each of the prolate spheroidal functions covers the whole surface – but these 
functions are truly orthogonal on a given surface, in contrast to a set of spots that 
are only approximately orthogonal insofar as their “tails” do not overlap very 
much.  These prolate spheroidal functions then form the communications modes 
of truly orthogonal channels. With such functions, it is known that the singular 
values are approximately all the same up to some critical number, after which 
they fall off drastically. That critical number corresponds in this case to the 
number N we would deduce from the idea of counting the number of resolvable 
spots. 

With the general mathematical formalism above for singular value 
decomposition, we can also solve for communications modes between volumes3 
rather than merely surfaces, and we need not restrict ourselves to 
communications modes that can be calculated analytically; the numerical 
prescription for finding the communications modes for arbitrary volumes is quite 
clear in principle, merely requiring finding eigenfunctions of some specific 



operators. In this more general approach, we are also not restricted to paraxial 
approximations, and we can even find the communications modes in near field 
problems3,14.  

For more arbitrary volumes, it is not in general true that the singular values 
are all of similar size up to some critical number; that similarity in size of 
singular values arguably is a characteristic of volumes of uniform thickness3. 
There is, however, another relation that does bound the singular values. It is quite 
generally true for a linear operator that the sum of the squared modulus of its 
matrix elements is independent of the (orthonormal) basis sets used to represent 
it. One way of representing the coupling operator is in terms of its Green’s 
function (which is technically the expansion of the operator on continuous (delta-
function) basis sets, one set for each of the transmitting and receiving volumes). 
Another representation is in terms of the singular value decomposition sets as in 
Eq. (1) above. Let us take as a concrete simple example the (retarded) Green’s 
function for a free-space monochromatic scalar wave, which is, for a point source 
at position rT in the transmitting volume and a resulting wave at position rR in the 
receiving volume  

    exp
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We can then equate the sum of the modulus squared of the singular values, 
which is the sum of the modulus squared of the matrix elements of TRG  in its 
singular value decomposition form, to the integral of the modulus squared of 

 ,TR T Rr rG  over the volumes, i.e.,  
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Hence, performing a simple volume integral over the two volumes gives us 
an absolute upper bound to the sum of the squares of the coupling strengths 
between the volumes3. Even if the coupling strengths of the communications 
modes do not have the simple form of being approximately constant up to some 
value, there is still a limit on the sum of their squares. We can view this statement 
as being a generalization of the concept of the “diffraction limit”, now for 
arbitrary three-dimensional volumes. This limit does agree with the specific 
results for planar surfaces above. Note then that if we try to defeat the diffraction 
limit, we will necessarily have to use communications modes that are very 
weakly coupled – in other words, we will need relatively very large source 
amplitudes. 

This concept of communications modes has recently seen a number of 
applications in optics13,14,15,16,17. The theory has also been generalized to vector 
electromagnetic waves18, and it is helpful in understanding the limits to the 
synthesis of light fields in three dimensions19. It has also proved useful in 
analyzing wireless communications20,21,22, where the transmitting and receiving 
antennas and volumes are not plane surface.  



The communications mode concept also illustrates some of the power of 
considering waves between volumes in terms of orthogonal source and wave 
functions. The theorem below expands on this approach for a quite different 
application. 

1.3.2 New theorem for strong or multiple scattering 

As mentioned above, we will think of our optical component in general as a 
“scatterer” – that is, there is some incident wave that is “scattered” by the optical 
component, generating a wave in the receiving volume. Our scattering problem 
here is particularly severe; we want to consider arbitrarily strong and/or multiple 
scattering by the object, including arbitrarily large and/or abrupt changes in 
dielectric constants. As a result, we cannot proceed simply by adding up all of the 
successive scatterings in some series – such a series will typically not converge. 
Below we will derive the core theorem that we use to deal with the problem. This 
derivation closely follows that of Ref. 1.  
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Figure 3 Illustration of scattered (a) pulses, and (b) beams for temporal and spatial 
dispersers respectively. The “straight-through” and single-scattered pulses or beams may 
not actually be present physically, but the theory first considers outputs that are 
orthogonal to what both of these would be mathematically. Here we show the case where 
the “straight-through” and single-scattered pulses or beams miss the receiving volume, 
though in general they may not1. 

 



We consider (Fig. 3) two volumes, a scattering volume VS that contains a 
scatterer that is our optical device (such as a dielectric with dielectric constant 
that can vary strongly within the volume), and a receiving volume VR in which 
we want to generate waves.  

An incident wave (the input pulse or input beam in Fig. 3) will lead to some 
net wave within the scattering volume. That net wave that will interact with the 
scatterer to generate some resulting effective source in the scatterer. A specific 
net source Sm  in the scattering space will generate a wave SCm  within the 
scattering space through the Green’s function operator GS within the scattering 
space, i.e.,  

 SCm S Sm G  (4) 

Here Sm  represents all sources in the volume. Hence SG  is the “free-
space” Green’s function. We presume here that the only sources are the induced 
polarizations or currents generated as a result of the interaction between the net 
wave and the scattering material; we have no other sources in the scattering 
volume.  We presume some incident wave Im  caused all of these sources 
through its scattering. The net wave Sm in the space must be the sum of the 
incident and scattered waves, i.e., 

 Sm Im SCm     (5) 

Any wave  , interacting with the scatterer, will in turn give rise to sources 
  through some other linear operator C, an operator that we can think of 
simply as representing the dielectric constant of the material, for example. So  

  C  (6) 

We must have self-consistency, and so we require that the net source in the 
scattering volume, Sm , is the one that would be generated by the net wave 

Sm  interacting with the scatterer. Hence 

 
Sm Sm Im SCm
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C C C
C CG C A

 (7) 

where  

 S SA CG  (8) 

If we presume now that we have some specific source function Sm  in the 
scattering space, then there also be some linear operator GSR (again a “free-
space” Green’s function, like the GTR considered above for the communications 
mode problem) that we could use to deduce the resulting wave Rm  in the 
receiving space, i.e., 

 Rm SR Sm G  (9) 



Given that we want to separate out light beams or pulses into some receiving 
space, we ask that the various waves we generate in the receiving space are 
mathematically orthogonal, just as we were considering above for the 
communications modes between two volumes. We will try to deduce some limit 
on the number of such orthogonal functions Rm  that can be generated in the 
receiving space. In particular here, we will use the sets of functions Sm  and 

Rm  that are the communications modes between the scattering and receiving 
spaces, i.e., the singular value decomposition of GSR , and specifically we will 
restrict these sets to those elements corresponding to non-zero singular values, 
i.e., we only want to consider source functions that give rise to non-zero wave 
amplitudes in the receiving space.  

We will separate the counting of orthogonal waves into two parts. 
Specifically, we will come back later and consider the waves that correspond to 
“straight-through” or “single-scattered” waves. “Straight-through” waves are the 
waves that would exist in the receiving space in the absence of any scatterer; they 
correspond to propagation of the incident wave straight through the scattering 
volume. “Single-scattered” waves are the waves that would hypothetically arise 
from the scattering of the incident wave if it were imagined to be completely 
unchanged by its interaction with the scatterer, i.e. formally a wave SR ImG C . 
We will be interested for the moment only in waves in the receiving space that 
are formally orthogonal to both the “straight-through” and “single-scattered” 
hypothetical waves. These concepts are sketched in Fig. 3. This neglect of 
“straight-through” and “single-scattered” means we are only counting those 
orthogonal waves in the receiving volume that are the result of strong and/or 
multiple scattering in the scattering volume. 

Our neglect of “straight-through” waves means that Eq. (9) gives the total 
wave in the receiving space, and so that wave becomes  

 Rm SR Sm SR Im SR S Sm     G G C G A  (10) 

Because we presume we are only interested in scattered waves Rm  that are 
orthogonal to the “single-scattered” wave RIm SR Im = G C , by definition we 
have 

 0Rm SR Im  G C  (11) 

Hence, from Eqs. (10) and (11) 
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Now, since the Sm  are by definition complete and orthonormal for the 
source space of interest, we can introduce the identity operator for that space, 
which we can write as Sj SjjHS   I , to obtain from Eq. (12) 
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where in the last step we have used the fact that  

 † 0 unless Sm SR Sj Rm RjSR m j     G G  (14) 

because of the orthogonality we are enforcing for the waves Rm  we want to 
generate in the receiving volume. Hence we come to the surprising conclusion 
from Eq. (13) that, for each m for which Sm  gives rise to a non-zero wave in 
the receiving space, i.e., for which 

 † 0Sm SR SmSR  G G  (15) 

then  

 1Sm S Sm  A   (16) 

and hence, trivially, 

 
2

1Sm S Sm  A  (17) 

If we could separately establish a result of the form 

 
2

Si S Si A
i

S   A  (18) 

for some finite number SA, then we would conclude that the maximum number M 
of possible orthogonal waves that could be generated in the receiving space by 
our strong scattering is 

 AM S  (19) 

An important additional result1, which we will not prove here, is that we can 
quite generally evaluate such a limit, and we can split it into two parts. 
Specifically, we can write 

 C GSM N N  (20) 

Here  

  †
CN Tr C C  (21) 

is essentially the integral of the modulus squared of the dielectric constant 
variation in the structure, and 

  †
GS SSN Tr G G  (22) 

is essentially the integral of the modulus squared of the wave equation’s Green’s 
function within the scattering volume.  



Hence we can see the core of a remarkable bound on the possible 
performance of optical components. First, there is a number M we can evaluate, 
based only on average properties of the dielectric medium and the shape of the 
scattering volume. Second, that number tells us an upper bound on the number of 
orthogonal functions that can be generated as a result of multiple and/or strong 
scattering into the receiving volume (technically, we are only counting those 
functions that are orthogonal to the “single-scattered” or “straight-through” 
waves, though for many strong scattering problems we will be able to deal with 
these separately or discount them altogether). For each such orthogonal function 
we want to be able to generate, we use up one unit of “strength” of the scatterer. 
Since the scatterer only overall has a finite “strength” M, there is a bound to the 
number of such orthogonal functions we can generate by this scattering into the 
receiving volume. 

Note a key difference between this limit and the limit calculated above for 
the communications modes in Eq. (3). The communications modes limit was a 
bound on the sum of the strengths of the couplings between the transmitting and 
receiving volumes. It did not tell us directly the number of the communications 
modes that would be strongly coupled. We needed some other criterion to 
determine the actual coupling strengths of such strongly coupled modes. The new 
scattering limit we have proved here, Eq. (20), gives us an upper bound on the 
number of possible orthogonal functions that can be generated as a result of 
scattering from the scattering volume into the receiving volume, independent of 
the strengths of those scatterings (as long as they are non-zero). Once we can say 
how many functions we need to be able to control in the receiving volume for our 
optical component (scatterer) to have performed our desired optical operation, 
then we can use our new limit to tell us if that operation is impossible with an 
optical component of a given volume and given range of dielectric constants. 

1.4 Limit to the performance of linear optical components 

The use of this limit involves two steps. First, for some class of optical 
structures and problems of interest, we need to evaluate C GSN N . Second, we 
need to think of how to express the optical operation we wish to perform in terms 
of the number of orthogonal functions we will need to be able to control in the 
receiving space. So far, in our work we have considered both of these steps for 
the simple case of one-dimensional systems, i.e., systems like dielectric stack 
structures, a beam within a medium (such as an atomic vapor) or, with an 
appropriate renormalization to allow for mode overlap, single-mode guided wave 
structures, and we will summarize some results below. 

1.4.1 Explicit limit for one-dimensional systems 

As shown in Ref. 1, we can obtain simple explicit results for one-
dimensional systems, i.e., any systems that can be described by a wave equation 
for a wave of frequency fo that can be written  



  
2

2 2
2

,o o o
d

k k z f
dz

       (23) 

Here 2 / 2 /o o o ok f v    , where ov  is the wave velocity and o  is the 
wavelength, both in the background medium. This is an appropriate equation for 
electromagnetic waves in one-dimensional problems in isotropic, non-magnetic 
materials with no free charge or free currents. Then  is the fractional variation 
in the relative dielectric constant in the structure, i.e.,  

    ,
, o

o
ro

z f
z f







   (24) 

where ro  is the background relative dielectric constant, the wave velocity in the 
background medium is /o rov c  , where c is the velocity of light, and for a 
relative dielectric constant  , oz f , we define  , o roz f     . (Note that  
may be complex.) With appropriate re-scaling of the dielectric constant variation 
to include mode overlap, such an approach can also be taken for any single-mode 
system, such as a single-mode waveguide. 

We will restrict ourselves here to situations where the frequency bandwidth 
f  of interest is much less than the center frequency fc , and where the thickness 

L of the scattering medium is much larger than the wavelength /c o cv f   in the 
background material at the center frequency. Here we presume the scattering 
structure outputs pulses by transmission into a receiving space that is “behind” 
the slow light structure, as in Fig. 3 and Fig. 4. (The case of reflection rather than 
transmission is also easily handled, and gives similar results1,2.) We also allow 
the receiving space thickness, Rz , to be arbitrarily long so that it will capture 
any possible orthogonal function that results from scattering. With these 
simplifying restrictions, we can evaluate the quantities  † 2

maxtotTr n C C , 
where max is the maximum value of   at any frequency within the band of 
interest at any position within the scatterer, and    2† 2( / 3) /S tot cSTr n L G G . 
Here  2 /tot R on f z v   is the number of degrees of freedom required to define a 
function of bandwidth f  over a time /R oz v   . The resulting M from Eq. 
(20) becomes 

 max
3

tot
c

L
M n

 


  (25) 

If the scatterer has a similar range of variation of  over the entire scattering 
volume and if there are no dielectric constant resonances that are sharp compared 
to the frequency band of interest, then we can use the root mean square variation, 
rms, of the magnitude of , averaged over position and frequency1 instead of 

max  in Eq. (25) and the expressions that follow below.  

1.4.2 Slow light limit 

A particularly clear and simple example of the application of this limit2 is to the 
problem of slow light. Our approach here follows that of Ref. 2. We would like 



to understand for some linear optical system just what are the limits to the 
amount of delay we can get of some bit stream, in particular the number of bits of 
delay.  We obtain quite a simple and general upper bound answer, an answer that 
does not even depend on the bandwidth of the slow light system. This approach 
does not require that we assume any particular pulse shape, and, unlike other 
approaches to slow light limits23,24,25, it does not rely on the concept of group 
velocity, a concept that has limited meaning within anything other than a uniform 
or periodic structure. 

We note that we need N linearly independent functions to represent an 
arbitrary N bit binary number in a receiving space, and so the basis set of 
physical wave functions used to represent the number in the receiving space must 
have at least N orthogonal elements. Suppose we have a incident bit stream with 
a logical “1” surrounded by logical “0”s (see Fig. 4). Without a slow light device, 
the bit stream propagates through to the receiving space. With the slow light 
device, however, we want the bit stream to be shifted, so that the “1” appears in a 
later bit period. To obtain a delay of S bit periods, in the scattering in the slow 
light device we need to be able to control the amplitudes of at least S+1 
orthogonal physical functions in the receiving space, so that we can center a 
function representing a “1” in the (S+1)th bit period, and functions representing 
“0”s centered in the other S bit periods. We presumably control the amplitudes of 
these various functions by the design of the slow light device (the “scatterer”).   

In optics we typically consider pulses on a carrier frequency fc. Then we note 
that there will be two different but almost identical pulses that have essentially 
the same amplitude envelope, but that are formally orthogonal only because they 
have a carrier phase that differs by 90 degrees. Since typically we look only at 
the amplitude envelope, we then need to double the number of amplitudes we 
control in the bit periods containing logic “0”s, so that both of these pulses are 
“low” (i.e., logic “0”s). Likely we do not care about the carrier phase of the pulse 
in the desired slot, so we need not add in another degree of freedom to control 
that. In this case, therefore, we need to control 2S+1 orthogonal functions in the 
receiving space to delay a pulse or bit stream by S bit periods. 
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Figure 4. Illustration of a bit pattern delayed by 3 bit periods by scattering in a slow light 
device. In the design of the device, the scattering into a total of 4 bit slots has to be 
controlled so that the “1” appears in slot 4, and “0”s appear in each of slots 3, 2, and 1, 
hence requiring the control of 4 orthogonal functions in the receiving space2. 



One subtlety that we have to deal with in applying this limit is in the 
counting of available orthogonal functions as given by Eq. (25). Because we 
chose the receiving space to be arbitrarily long, we have included in M as 
separate possibilities the scattering not only of the pulse of interest, but also of 
every distinct delayed version of it. There are totn  such different delayed versions 
of the same scattering that fit in the receiving space. Since we need consider only 
one of these, we can remove the factor totn  below.  

We also previously noted that this number M is the number of orthogonal 
waves possible in the receiving volume that are also orthogonal to the “straight-
through” and “single-scattered” waves. At best, for a transmission device, 
considering these other two waves could at most add in two more available 
controllable degrees of freedom. Hence, we finally obtain for the upper limit to 
the number of accessible orthogonal functions in the receiving space for the 
scattering of a single pulse  

 max2
3

tot
c

L
M

 


   (26) 

Given that we need to control at least 2 1S   amplitudes to delay by S bits, we 
must therefore have 2 1totM S  . Hence, the maximum delay Smax in bit periods 
that we can have is 

 max max
1

2 2 3 c

L
S

 


   (27) 

Suppose, for example, we want to delay by 32 bits  (i.e., S = 32), we work 
with a layered structure of glass (r = 2.25 ) and air (r = 1 ) so max 1.25  , and 
we choose a center wavelength of 1.55 microns. Then 

 
max

1 2 3
43μm

2
cL S 


    
 

 (28) 

Note that this limit cannot be exceeded for a linear one-dimensional fixed 
glass/air optical structure, no matter how we design it; we would always need at 
least 43 m of thickness. 

1.4.3 Limit to dispersion of pulses 

We can also calculate in a similar way an upper bound to a structure that we wish 
to have separate out pulses of different center wavelengths to different delays in 
time. The counting of the required number of orthogonal functions here is 
somewhat more complicated, so we omit the details in this summary. In the end, 
we achieve a rather similar result to that above for the slow light result. In this 
case, the bound for the number NB of different wavelengths of pulses that can be 
separated in time is given by 



 max
3

2 2 3
B

c

L
N

 


   (29) 

for a transmissive device. Hence, with a similar calculation to that above for the 
slow light structure, we would have, for a device to separate pulses of 32 
different center wavelengths using a structure made of air and glass, that we must 
have the length 41.7 μmL  . Again this limit is independent of how we design 
this glass/air layered structure. 

1.5 Future directions 

The underlying limit to the performance of optical components, Eq. (20), is 
expressed in very general terms. It applies to any kind of linear wave interacting 
with a fixed medium, including scalar waves such as sound waves, vector 
electromagnetic waves, and even quantum mechanical waves. So far here we 
have only evaluated specific limits for one-dimensional structures, but again the 
general form here should also give limits for two-dimensional and three-
dimensional structures once the appropriate evaluation is performed for the 
quantity  †

GS SSN Tr G G  of Eq. (22) for the two- and three-dimensional 
Green’s functions for the relevant wave equations.  

We can therefore expect additional specific limits for two- and three-
dimensional optical structures. Since we have only considered one-dimensional 
structures so far, we have also only considered problems for optical pulses, 
because there is no different “position” other than a temporal one to which we 
can scatter waves when there is only one beam possible. With results for two- 
and three-dimensional situations, we could also examine limits to static scattering 
problems, such as limits to high-contrast holograms. Three-dimensional results 
for the vector electromagnetic case could also be particularly interesting for 
analyzing wireless communications in strongly scattering environments. In 
general, there is a broad range of additional wave problems to which we could 
apply this kind of approach to limits. 

1.6 Conclusions 

The body of work summarized here shows that there are many applications in 
optics for the idea of considering optics in terms of the number of orthogonal 
waves or communications modes that can be supported or generated in an optical 
system. Not only does this approach lead to a precise notion of the idea of 
diffraction limits, even beyond the simple plane-to-plane case of optical imaging 
or focusing to the case of volumes and near-field problems, but it also leads to 
well-defined and very general limits to the performance of optical systems and 
components. The new limit recently proposed1 to the performance of optical 
devices, even those made with arbitrary structures of high index contrast, gives 
us for the first time a bounding limit to the performance of linear optical devices, 
completely independent of how we design them. We look forward to many novel 
applications and implications of this approach and the resulting bounds in optics.  
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