Multilayer thin-film structures with high spatial

dispersion

Martina Gerken and David A. B. Miller

We demonstrate how to design thin-film multilayer structures that separate multiple wavelength chan-
nels with a single stack by spatial dispersion, thus allowing compact manufacturable wavelength mul-
tiplexers and demultiplexers and possibly beam-steering or dispersion-control devices. We discuss four
types of structure—periodic one-dimensional photonic crystal superprism structures, double-chirped
structures exploiting wavelength-dependent penetration depth, coupled-cavity structures with disper-
sion that is due to stored energy, and numerically optimized nonperiodic structures utilizing a mixture
of the other dispersion effects. We experimentally test the spatial dispersion of a 200-layer periodic
structure and a 66-layer nonperiodic structure. Probably because of its greater design freedom, the
nonperiodic structure can give both a linear shift with wavelength and a larger usable shift than the

thicker periodic structure gives.
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1. Introduction

Polychromatic light incident at an angle onto one of
the surfaces of a prism is dispersed within the prism;
i.e., light rays of different wavelengths propagate at
different angles in the prism. Rays exiting the
prism have a wavelength-dependent propagation an-
gle that is due to the prism geometry.! Conven-
tional prisms rely on material dispersion. Because
the change in refractive index with wavelength is
rather weak for transparent materials, the obtain-
able dispersion is limited. Previous research has
shown that photonic crystal structures can be used to
obtain much higher spatial dispersion.2-13 Photonic
crystals are artificial structures composed of one-
dimensional, two-dimensional, or three-dimensional
periodic arrangements of different materials.14 Be-
cause of the wavelength-scale feature sizes of pho-
tonic crystals, these structures exhibit a behavior
that is distinct from that of bulk materials. Wave-
length regimes with high dispersion have been ob-
served in theory and experiment for one-dimensional,
two-dimensional, and three-dimensional photonic
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crystals. As these artificial structures exhibit much
higher dispersion than the material dispersion of con-
ventional prisms, this phenomenon has been termed
the superprism effect.

In this paper we investigate the superprism effect
seen in one-dimensional thin-film structures. We
concentrate on one-dimensional thin-film structures,
as they can be easily and accurately fabricated with
well-known deposition technology. This makes
them interesting for commercial use and also for ex-
perimentally testing novel operation principles in
well-controlled structures. Furthermore, these sim-
pler structures also require less computation time
during the design process, allowing for the numerical
evaluation of a much higher number of different
structures. Thin-film structures can readily be fab-
ricated in nonperiodic sequences, which substantially
and usefully increases the range of structures that
can be investigated. As a future step, ideas result-
ing from one-dimensional structures can also be
transferred to two- or three-dimensional structures,
pointing at interesting directions of research.

In Section 2 we explore the superprism effect in a
100-period one-dimensional thin-film structure con-
taining two dielectric layers per period. We operate
the dielectric stack in reflection, performing two
passes through the stack as depicted in the schematic
in Fig. 1(a). Seen from the side, polychromatic light
is incident from the top left corner onto the periodic
dielectric stack. dJust outside the stop band (the
high-reflection spectral region), different wave-



Fig. 1. Operating schematics of four types of thin-film structures
that can be used for demultiplexing different wavelengths by spa-
tial beam shifting. The structure in (a) is periodic, and those in
(b)—(d) are nonperiodic. Polychromatic light is incident at an an-
gle from the top left corner. All structures are operated in reflec-
tion and demultiplex light by a wavelength-dependent shift along
the x axis. After exiting the structures, beams of different wave-
lengths propagate in parallel once again. For clarity, only two
different wavelengths are pictured in the schematics. (a) The
superprism effect for a one-dimensional photonic crystal (combined
here with a simple reflection off the right face). Different wave-
lengths propagate at different group-velocity angles within the
structure and are thus spatially shifted along the x axis. The
nonperiodic structure in (b) reflects different wavelengths at dif-
ferent positions along the z axis. Because the structure is oper-
ated at an angle, this wavelength-dependent penetration depth
leads to a spatial shift along the x axis. The structure in (c)
exhibits wavelength-dependent stored energy. Stored energy is
loosely equivalent to multiple bounces in the structure as indicated
here. Again, because of the operation at an angle, beams of dif-
ferent wavelengths are shifted by different amounts along the x
axis. Finally, the structure in (d) utilizes a combination of
wavelength-dependent penetration depth and stored energy to de-
multiplex polychromatic light.

lengths propagate at different group-propagation an-
gles within the thin-film structure. Therefore
beams of different wavelengths exit the dielectric
stack at different positions along the x direction. In
connection with ultrafast optics, this effect has been
called a spatial chirp.’> We experimentally observe
this spatial shift with excellent agreement with the-
ory. After exiting the dielectric stack, the beams
propagate parallel once again. This research is an
extension of our previous paper? with improved struc-
tures and analysis.

For application purposes, it is desirable to have the
ability to design the spatial dispersion with wave-
length to given specifications. A linear spatial dis-
persion with wavelength or frequency is, for example,
of practical interest for multiplexing or demultiplex-
ing devices. Unfortunately, the design space of a
periodic thin-film structure is very limited in that
only the period length, the materials, the distribution

of the materials in a period, and the incidence angle
can be chosen. Considering this limited number of
degrees of freedom, it is not surprising that all peri-
odic thin-film structures with two layers per period
exhibit a similar nonlinear spatial shift with wave-
length.

To achieve a linear spatial shift, we need to in-
crease the degrees of freedom. One possible ap-
proach would be to increase the number of layers per
period. For a sufficiently large number of periods,
the optical properties within such a structure do not
depend on the position in the structure, and the con-
cept of effective optical properties is valid.34 There-
fore increasing the number of layers per period is the
method of choice if the application requires a con-
stant phase velocity or group velocity within the vol-
ume of the structure, as, for example, for phase-
matching purposes. For other applications, only the
properties of the exiting light matter. In the case of
a wavelength demultiplexer, for example, only the
properties of the light along the exiting surface of the
structure are important. As long as beams of differ-
ent wavelengths are spatially separated at the exit
surface, it does not matter what happened to the
beams within the structure. This realization allows
us to consider a whole new class of highly dispersive
structures—nonperiodic structures with a high spa-
tial dispersion along the exit surface. Nonperiodic
structures have a much higher number of degrees of
freedom. In addition to the materials and the inci-
dence angle, we can choose all the layer thicknesses
independently. With such a high number of degrees
of freedom, we expect a much higher design freedom
as well.

The difficult task is now to devise a design that
fulfills the desired specifications, such as a linear
shift with wavelength, and, ideally, to deduce design
principles and physical understanding that permit
future designs. Considering that a 200-layer struc-
ture has more than 200 degrees of freedom, searching
the whole design space for an optimal structure is not
a feasible solution. Although spatial dispersion of
nonperiodic thin-film structures has not been inves-
tigated previously, several thin-film design methods
have been developed for temporal dispersion-
compensation purposes in femtosecond-laser
cavities6-20 and optical fibers.21-23 In Section 3 we
investigate the relationship between spatial and tem-
poral dispersion and show that methods used for de-
signing structures with temporal dispersion can be
modified to obtain spatial dispersion.

In Sections 4 and 5 we investigate two new meth-
ods for obtaining spatial dispersion and how such
structures can be devised using thin-film design tech-
niques developed for temporal dispersion compensa-
tion. In Section 4 we explore nonperiodic thin-film
structures that exhibit a wavelength-dependent pen-
etration depth or turning point as schematically
shown in Fig. 1(b). An example of such a structure
is a chirped mirror, i.e., a dielectric stack with a
position-dependent period length.16-18 Different
wavelengths are reflected at different positions along
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the z axis. Because the structure is operated at an
angle, this wavelength-dependent penetration depth
corresponds to a wavelength-dependent spatial shift
along the x axis at the exit surface. Therefore such
a structure can be used to demultiplex beams of dif-
ferent wavelengths by spatial beam shifting. In Sec-
tion 5 we analyze structures that have a wavelength-
dependent amount of stored energy. A simple
example of this type of structure is a Fabry—Perot or
Gires—Tournois resonator.22 These structures ex-
hibit a large amount of stored energy for a resonant
wavelength, whereas significantly less energy is
stored off resonance. The stored energy effectively
corresponds to multiple round trips in the cavity as
indicated figuratively in Fig. 1(c). Again, because of
the operation at an angle, beams of different wave-
lengths are shifted by different amounts along the x
axis at the exit surface. Note that, in the case of
stored energy, the beam shift can be larger than any
that can occur for a single reflection inside the struc-
ture [as in Fig. 1(b)].

Both analytical design procedures discussed in Sec-
tions 4 and 5 are based on a reduction of the degrees
of freedom to a smaller subset. For the design of a
200-layer structure, for example, not all possible 200-
layer structures are considered, just a subset. We
show that these methods can be used to design thin-
film structures exhibiting a linear spatial shift along
the x axis with wavelength. Furthermore, we inves-
tigate the limitations of these two analytical design
procedures. In Section 6 we explain how the most
general type of dispersive structure can be designed
using numerical optimization techniques.242° In
this procedure all the degrees of freedom are kept,
and a locally optimal structure is achieved. We find
that a dispersive thin-film structure obtained by nu-
merical optimization combines effects based on a
wavelength-dependent turning point with effects
based on stored energy. We verify in theory and
experiment that a linear shift with wavelength can be
obtained using such a structure and that it is larger
than can be obtained by a simple single reflection.
Finally, we end with conclusions in Section 7.

2. Superprism Effect in One-Dimensional Photonic
Crystals

Close to the stop-band edge, one-dimensional periodic
structures exhibit a rapid change in the phase-
velocity? and group-velocity2? properties with wave-
length. As we are here interested in the
propagation direction of beams, we need to consider
the group-propagation angle, which corresponds to
the direction of energy flow.3° Without a loss of gen-
erality, we can assume that the wave vector k has
components only in the x and z directions and is thus
given by k = Bx + Kz. For a periodic structure with
a sufficient number of periods, the dispersion prop-
erties of the structure can be modeled by Bloch theory
(see Appendix A).30:31 In this approach an infinite
structure is assumed, and the dispersion relation
among the wave vector K in the z direction, the wave
vector B in the x direction, and the frequency o is
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obtained by use of periodic boundary conditions.
The group velocity in the photonic crystal is given by
Eq. (1), where the group velocities v,, in the x direc-

203?0 and v, in the z direction are given by Egs. (2) and
vy = Vio(k) = v,X + v,.2, (1)
0w
] ”
Uy = 9o 3)
K B=const

The group-propagation angle 0,, is calculated by
use of Eq. (4):

6gr(("-)a B, K) = tanil(vgx/vgz)- (4‘)

All angles are taken with respect to the z axis. Thus
0, is 0° if the beam propagates along the z axis. In
the case that K and B are given as functions of the
frequency o and the incidence angle 6, we can trans-
form Eq. (4) into Eq. (5) by using a coordinate trans-
formation and carefully calculating the partial
derivatives:

0,,(0, w) = tan_l[— oK, w)/aB(e’ w)] . (5

a0 a0
This group-propagation angle is, of course, identical
to the one obtained when we take the normal n in a

wave-vector diagram plotting contours of constant
frequency2-9-30:

IK(0, o) ap(o, o)
- X + Z.
a0 a0

(6)

Finally, the exit position in reflection s, along the
surface of the dielectric stack in the x direction is
given by Eq. (7), where 6., can be calculated with
either Eq. (4) or (5):

s, = 2L tan(6y) = 2L(v,./v,.). (7

In a bulk material the group-propagation angle 6,
changes only slowly with wavelength. Therefore
beams of different wavelengths exit the material at
approximately the same position. Close to the stop
band in a periodic dielectric stack, though, the group-
propagation angle changes rapidly with wavelength.
Owing to this superprism effect, beams of different
wavelengths exit the material at different positions
and are spatially demultiplexed.® Figure 2 shows
the theoretically calculated and experimentally veri-
fied shift with wavelength obtained by use of a 100-
period dielectric stack.

The manufactured 100-period dielectric stack con-
sists of 150-nm alternating layers of SiO, (n = 1.456
at 880 nm) and Ta,0; (n = 2.06) with a total stack
thickness of 30 wm on a quartz substrate (n = 1.52).
A schematic of the experimental setup is shown in
Fig. 3. Light of a tunable laser is focused onto the
tilted sample under test. In a telescope-style setup
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Fig. 2. Experimentally observed superprism effect for a 100-
period dielectric stack for an incidence angle of 40°, p polarization,
and a spot size of 4.7 pm. Two exiting beams are observed. The
center positions of both beams are plotted as a function of wave-
length. One beam (crosses) is reflected off the front of the dielec-
tric stack owing to impedance mismatch and does not change
position as a function of wavelength. The second beam (circles) is
the real signal beam that propagates through the dielectric stack
twice. This beam shifts as a function of wavelength. The solid
curve shows the theoretically expected shift with wavelength cal-
culated by use of Bloch theory.

the exiting light is focused onto a CCD camera. Ow-
ing to the light propagation through a tilted plate, the
focal point in the plane of the light beams is different
from the one perpendicular to the plane. The cylin-
drical lens compensates for this difference, such that
both beam directions are focused on the CCD and the
beam appears circular. The CCD trace is observed
on the TV and oscilloscope as well as stored on a
computer for further data evaluation. A tunable la-
ser beam is incident on the dielectric stack through
the substrate. For an incidence angle of 40°, p po-
larization, and a spot size of 4.7 pm, two exiting
beams are observed (as well as a weak reflection off
the air—substrate interface). One beam is caused by
a reflection off the front of the dielectric stack owing
to the impedance mismatch and does not change po-
sition as a function of wavelength. The intensity of
this beam increases relative to the second beam as
the reflectivity of the stack increases closer to the
stop-band edge. The second beam is the real signal
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Fig. 3. Schematic of the experimental setup.
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Fig. 4. Group-propagation angle as a function of wavelength cal-
culated by use of Bloch theory with incidence angles of 40° (solid),
36.5° (dashed), and 43.5° (dash-dotted). For a Gaussian beam
with a spot size of 4.7 um at 880 nm and a center incidence angle
of 40°, the intensity has decreased to 1/e? for beam components at
incidence angles of 36.5° and 43.5°.

beam that propagates through the dielectric stack
twice as seen in Fig. 1(a). Figure 2 shows the center
positions of the beams as a function of wavelength.
The center positions are obtained by the fitting of the
data to a Gaussian beam shape and adjustment of
position, width, and amplitude. Excellent agree-
ment between the experimentally observed shift and
the theoretically expected shift along the x direction
is obtained for the shifting beam.

The small spot size used in the experiment is nec-
essary to prevent interference effects between the
reflection off the front of the dielectric stack and the
shifting beam. This small spot size also limits the
maximum amount of shift observed in the experi-
ment. Bloch theory predicts an increase of the spa-
tial shift to the stop-band edge at 901 nm with the
group-propagation angle approaching 90° and the
shift thus approaching infinity. In the experiment,
however, we observe an increase in the shift only to
around 892 nm. At larger wavelengths the beam
appears quite distorted, and no clear peak can be
determined. The reason for this discrepancy is that
Bloch theory is exactly correct only for an infinitely
wide beam as only one incidence angle is included in
the calculation. All spatially limited beams have a
larger angular content, corresponding to a range of
incidence angles.32 For a Gaussian beam with a
spot size of 4.7 pm at 880 nm and an incidence angle
of 40°, the intensity has decreased to 1/e? for beam
components at incidence angles of 36.5° and 43.5°.
As seen in Fig. 4, the stop-band edge is a function of
the incidence angle. Therefore different parts of the
beam are shifted by different amounts, leading to
beam widening and distortion. These distortions
limit the usable portion of the theoretically predicted
shift and clarify why we observed a beam shift up to
only 892 nm. At longer wavelengths, part of the
beam is already within the stop band, distorting the
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beam shape severely. This also explains why we
will aim in the following sections for a linear shift
with wavelength—for a linear shift with wavelength,
the beam shape at the exit surface is independent of
wavelength. Unfortunately, owing to the limited
number of degrees of freedom available, a one-
dimensional periodic dielectric stack with two layers
per period cannot be designed to exhibit a linear shift
with wavelength.

For the dispersive structure to be useful for appli-
cations, we furthermore need to eliminate the reflec-
tion off the front of the dielectric stack. This
reflected beam is lost power, and, as we are operating
close to the stop-band edge, this loss becomes signif-
icant. The reflection is due to an impedance mis-
match between the substrate and the periodic
dielectric stack that is caused mainly by the sudden
periodicity and not as much by the difference in re-
fractive index.!® The same problem occurs in corru-
gated waveguide structures and in fiber Bragg
gratings. In the case of corrugated waveguides, the
reflection can be eliminated by a tapering of the sur-
face relief,2 whereas in the case of apodized fiber
Bragg gratings, the refractive-index contrast is
slowly increased.333¢ To prevent the reflection off
the front of the thin-film stack, we could use a tapered
Bragg stack.’® In such a Bragg stack the periodicity
is slowly turned on when the amount of high-index
material in each period is increased. In Sections
4—-6 we will discuss the design of thin-film structures
that have a linear shift with wavelength and are
impedance matched to prevent loss.

3. Relationship between Spatial and Temporal
Dispersion

In this section we will explore the relationship be-
tween spatial and temporal dispersion characteris-
tics and justify why design methods used for
structures with temporal dispersion can also be ap-
plied in the case of spatial dispersion. Spatial dis-
persion manifests itself in a change of the beam exit
position s as a function of wavelength. Temporal
dispersion refers to the change in the group delay
Teroup UpPonN reflection as a function of wavelength.
The group delay is calculated when the shift s along
the x direction is divided by the speed of light v,, in
this direction. As shown in Eq. (8), we can rewrite
this expression in terms of the more commonly used
dependence on the phase upon reflection ¢,.q4 = 2LK
using Eq. (7):

S ap
Tgroup — =8
ng Jo K=const
= 9], % _ ad)reﬂ (8)
ow B=const ow B=const

In the case of a periodic structure, the relationship
among the wave vector K in the z direction, the wave
vector B in the x direction, and the frequency w is
obtained from Bloch theory as shown in Appendix A.
For a nonperiodic structure, we can use a standard
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transfer-matrix technique to relate K, B, and o.
This is demonstrated in Appendix B. Calculations
on test structures show that the group velocity v, is
approximately constant with wavelength, and the
group delay is thus proportional to the spatial shift.
This result is not completely surprising, as v,, is the
group velocity along the layers. In Appendix C we
prove that within a WKB-type approximation the
spatial shift and the group delay are exactly propor-
tional, as v,, is independent of wavelength. This
result provides physical insight and has practical
consequences. As spatial and temporal dispersion
are approximately proportional, existing structures
with temporal dispersion can be modified to obtain
structures with spatial dispersion. This is demon-
strated in the next two sections. Furthermore, we
see that a spatial shift with wavelength corresponds
at the same time to a temporal delay. If a temporal
delay is not desired, two structures with opposite
spatial dispersions can be used in series. With the
correct arrangement, this doubles the spatial shift
and removes the temporal delay between wave-
lengths. If, however, the temporal delay is desired,
the light could be backreflected through the same
structure, canceling the spatial shift and doubling the
temporal delay.

4. Dispersion Due to a Wavelength-Dependent
Penetration Depth

Temporal dispersion compensation plays an impor-
tant role in femtosecond lasers. Double-chirped
mirrors are well suited for femtosecond-laser cavities
as they have a broad bandwidth and can, at the same
time, be used to compensate for temporal disper-
sion.’® In a Bragg mirror, light is strongly reflected
only for wavelengths near the Bragg wavelength. In
a simple-chirped mirror, the Bragg wavelength is
slowly changed as a function of the position in the
stack. If the increases in the period length come
from the incidence side, longer wavelengths pene-
trate deeper into the structure and thus accumulate
more delay upon reflection. For the opposite chirp,
shorter wavelengths penetrate deeper, and the oppo-
site dispersion is obtained. As mentioned in Section
3, the sudden turn-on of the periodicity leads to a
reflection off the front of the dielectric stack. The
second chirp achieves impedance matching and pre-
vents this reflection. An analytical design of such
mirrors is possible by use of an exact coupled-mode
theory!® and a WKB-type approximation.20
Remember that temporal dispersion and spatial
dispersion are approximately proportional, and
therefore that same algorithm can be used to design
a structure with spatial dispersion. First, a struc-
ture with temporal dispersion is designed as de-
scribed in Ref. 20. A standard Bragg reflector may
follow the double-chirped mirror section to increase
the reflectivity to unity. This normal-incidence de-
sign is then modified for oblique incidence by our
taking into account that the Bragg wavelength Aj is
given by Eq. (9), where ny and n;, are the refractive
indices; dy and d; are the thicknesses of the high-
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Fig. 5. (a) Bragg wavelength as a function of the position in the
structure for five different 60-layer SiO,-Ta,0O; double-chirped
mirror designs. Layer data represented as follows: f = 0.5
(exes), f = 0.33 (crosses), f = 0.2 (squares), f = 0.1 (diamonds), f =
0 (circles). (b) The theoretical spatial shift as a function of wave-
length is plotted for an incidence angle of 45° and p-polarized light.
An approximately linear shift is observed for all five designs. The
dispersion increases with decreasing chirp in the Bragg wave-
length. The maximum dispersion is achieved with a single-
chirped Bragg stack (circles).

and low-index materials, respectively; and 6 is the
incidence angle in vacuum:

in(6)12) 2
Ap = Z(TLHdH[l - [SIZZ )} ]

{ |:Sin(6):|2}1/2)
+ nLdL 1 - . (9)
nr

Figure 5 compares the performance of five different
60-layer structures designed in this manner. Figure
5(a) shows the chirped Bragg wavelength as a func-
tion of the period number p calculated by use of Eq.
(10) and five different factors f:

800 nm

, : (10)
J1-0.02541 fp

Ng(p) =

By use of this chirped Bragg wavelength, the layer
thicknesses of the single-chirped structures are cal-
culated with Eqgs. (11) and (12):

Ap
dpsc(p) = iﬂ(e) 21/2»
-]

ng

(11)

A
drsc(p) = B(an)(e) 2\ 1/2 *
=[]

nr,

(12)

To achieve impedance matching, the first Py periods
are double chirped as given in Egs. (13) and (14):

\o(P 1.05
dne(p) = B(siDIf()e) 2N 1/2 (Pp) > (13)
=[5
H

. 2 1/2
}\B(p)_dHDC(p)nH 1 sin(0) }
ng

dipc(p) =

4nL[1 - [Sm(e)r}m
nr,

In our calculations, 25 of the 30 periods are double
chirped.

In Fig. 5(b) the spatial shifts as a function of wave-
length are plotted for the five designed structures.
For clarity the shift is plotted only up to the wave-
length at which it stops increasing. We see that all
five structures have an approximately linear shift
with wavelength as desired. Structures with a
larger chirp in the Bragg wavelength exhibit less
dispersion but show that dispersion over a larger
wavelength range. The maximum shift is approxi-
mately constant for the given allowed ripple. There
is a trade-off between the maximum shift and the
ripple35 in the shift for a given number of layers.
That is, we could design a structure with less ripple
and less shift or a structure with more ripple and
more shift, depending on the application require-
ments. As the dispersion increases with decreasing
chirp in the Bragg wavelength, the maximum disper-
sion is achieved with a simple Bragg stack (though
the ratio between high- and low-index material in a
period is still chirped for impedance matching).
Note that this linear shift appears within the stop
band of the single-chirped Bragg stack. It is not
identical to the nonlinear shift observed just outside
the stop band as discussed in Section 2. The double-
chirped mirror design algorithm cannot be used to
obtain a higher dispersion for the given number of
layers. This limitation of the dispersion is not a fun-
damental physical limit for layered dielectric struc-
tures. As we will see in Section 5, structures with
larger dispersion can be designed. Rather, the lim-
itation is due to the fact that in this algorithm the
degrees of freedom are limited, and only a subset of
all possible structures is considered. Specifically,

(14)
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(a) Physical layer thicknesses for a 200-layer SiO,—Ta,O5 double-chirped structure.
(b) Theoretically calculated shift as a function of wavelength at a 40° incidence angle and p polarization.

E field parallel to interface (a.u.)

0 5 10 5 20 30
Depth (um)

Layer data represented as follows: SiO,

(c) E fields parallel to the interfaces of the forward-propagating waves as a function of the position in the structure for four wavelengths—

780, 830, 880, and 930 nm. The vertical lines indicate the position of the interfaces between layers.
It can clearly be seen that light of longer wavelengths penetrates deeper into the structure, leading
Furthermore, the larger-than-unity field amplitudes for the longer wavelengths indicate additional

the structure extends from 0 to 28 pm.
to temporal and spatial dispersions.
dispersion that is due to stored energy.

the algorithm allows only for a monotonic change in
the Bragg wavelength. We can easily imagine that
releasing this requirement would allow for other
structures that might have a larger dispersion.

The calculations in Fig. 5 are done with the
transfer-matrix method given in Appendix B applied
to the center ray of the beam. This plane-wave ap-
proximation correctly predicts the behavior of a
Gaussian beam if the shift does not exhibit any rapid
changes with wavelength. Rapid oscillations in the
shift are indicative of interference effects between
different beams. An example is the periodic struc-
ture discussed in Section 2. The plane-wave approx-
imation predicts strong oscillations in the shift with
wavelength, but, with sufficient focusing, we actually
see two separate beams—one that is stationary, cor-
responding to a reflection off the front of the stack,
and one that changes position with wavelength.
These distinct beams cannot be predicted by the
plane-wave approximation, and the full beam behav-
ior has to be modeled. For the double-chirped struc-
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Light is incident from the left, and

tures discussed in this section, however, the plane-
wave approximation can be used as all reflections,
except the desired shifted beam, are suppressed suf-
ficiently well, and no rapid changes appear in the
dispersion. In particular, the reflection off the en-
tering side of the structure has been suppressed by
the impedance-matching chirp.

To visualize the origins of dispersion, we plot the
E-field amplitude of the forward-propagating wave as
a function of the position in the structure. Because
the structures we are discussing here are nearly
100% reflecting, the amplitudes of the forward- and
backward-propagating waves are nearly equal for
any specific wavelength. Interference effects be-
tween the forward- and backward-propagating waves
form a rapidly oscillating standing-wave pattern.
The amplitude of the forward-propagating wave out-
lines the envelope of this standing-wave pattern.
Figure 6(a) shows an example of a 200-layer double-
chirped structure. In Fig. 6(b) we see, as expected,
that the field penetrates deeper into the structure



with increasing wavelength, resulting in both tempo-
ral and spatial dispersion. Interestingly, the total
observed shift of 35 pm exceeds the maximum shift of
25 wm expected for a beam propagating all the way
through the 28-pm structure with an average refrac-
tive index of 1.6 and back. Thus the structure ex-
hibits additional dispersion that cannot be explained
by the penetration depth. This extra dispersion is
due to stored energy. In Fig. 6(c), larger-than-unity
E-field amplitudes correspond to energy buildup.
We observe that only the shortest wavelength plot
does not exhibit any energy buildup. For the other
wavelengths, the field forms an Airy-type standing-
wave pattern, as is usual for a linearly changing po-
tential. As will be explained in greater detail in
Section 5, stored energy results in dispersion, thus
explaining the larger-than-expected total shift in Fig.
6(b). Note also that this structure stores energy
without the use of a front mirror; rather, energy is
stored solely owing to the shape of the potential. In
other words, the structure stores energy without re-
quiring a resonant cavity in the conventional sense.
The position of the energy buildup changes continu-
ously with wavelength. This effect might be inter-
esting for future active and passive devices.

In conclusion, we demonstrated in this section that
structures with a wavelength-dependent penetration
depth exhibit spatial dispersion. An analytical de-
sign method based on a WKB-type approximation can
be used to obtain structures with a monotonically
increasing or decreasing shift with wavelength.20
This method is useful for broadband designs with
rather low dispersion, but it is not suitable for de-
signing structures with high dispersion. In Section
5 we will examine a different design method that is
particularly useful for narrowband designs with high
dispersion.

5. Dispersion Due to Stored Energy

In this section we investigate structures with disper-
sion that is due to a wavelength-dependent amount of
stored energy. Simple examples of this type of
structure are Fabry—Perot and Gires—Tournois reso-
nators.15-21.22.26 A Fabry—Perot structure consists of
a cavity between two partial reflectors. At the res-
onant wavelength the transmittance of the filter is
unity, and a maximum amount of energy is stored in
the cavity. A Gires—Tournois structure consists of
one partial reflector, a cavity, and a 100% reflector.
For this resonator the reflectance is unity at all wave-
lengths, though, again, the amount of stored energy
is maximum at the resonant wavelength. As one
moves from the resonant wavelength, the amount of
stored energy decreases. Because the amount of
stored energy is related to the effective number of
round trips in the cavity, these resonator structures
exhibit spatial dispersion as schematically depicted
in Fig. 1(c). The transmittance and reflectance for
the respective structures are unity only in the ab-
sence of absorption. For structures with absorption,
the loss is highest at the resonant wavelength be-
cause the beam executes the maximum number of

round trips. Resonators allow for high dispersion
over a narrow wavelength range. Unfortunately,
the degrees of freedom in the design of a single-cavity
resonator structure are very limited. For example,
in the case of the Gires—Tournois structure we can
choose only the reflectivity of the partial reflector and
the cavity thickness. Not surprisingly, the shape of
the dispersion is quite similar for all Gires—Tournois
structures. To match desired dispersion character-
istics more closely, one can increase the number of
cavities in the structure.

An analytical procedure for designing such
coupled-cavity filters by use of a digital lattice tech-
nique has previously been established for both micro-
wave filters36-38 and thin-film structures.223° We
are particularly interested in the design of all-pass
structures, i.e., structures with constant unity reflec-
tance and wavelength-dependent phase properties.
All-pass filters have been designed for temporal dis-
persion compensation.2123 Here we will show with
an example that the same technique can be used to
design structures with spatial dispersion. Our goal
is again to design a structure exhibiting a linear spa-
tial shift along the x direction with wavelength. The
example structure consists of five reflectors with four
cavities in between. The last reflector has unity re-
flectance. Thus the reflectance of the structure is
100%, neglecting any absorption. In the first stage
of the design, all cavity lengths are assumed to be
equal with a cavity round-trip time 7. The transfer
function of an all-pass filter with IV cavities is then
given by Eq. (15), where z ! = exp(—joT). A\f(z)is
the reverse polynomial of Ay(z) of order N:

N
1+ "
E D2 AN(2)

N - .
1+ E a,z " Anl2)
n=1

Hyp(z) =27 (15)

In the first step of the design process, a polynomial
Apn(2z) is determined such that the phase of Hp(2)
approximates the shape of the desired phase re-
sponse.2340.41  The resulting transfer function
H ,p(z) exhibits a periodic behavior with the period
given by the free spectral range FSR = 1/T.22 The
expected shift can be calculated by the choice of a
cavity round-trip time and a propagation angle in the
cavity. Figure 7 shows the influence of the optical
thickness of the cavity on the expected spatial shift
with wavelength. The shape of the dispersion is the
same for all three cavity lengths. The total shift
increases proportionally with the cavity length, while
at the same time the operating range decreases in-
versely with the length. Thus the dispersion is pro-
portional to the square of the cavity length.

After choosing an appropriate cavity length to ob-
tain the desired dispersion, we need to realize the
partial reflectors as thin-film structures. The reflec-
tion coefficients r; (i = 1 to 4, r5 = 1) of the reflectors
are deduced by use of an order-reduction technique.
Starting with order m = N, we reduce the order m of
the polynomial A,,(z) in each step by 1. The coeffi-
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Fig. 7. Expected shift for a four-cavity structure is plotted as a
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nesses (dash-dotted curve, L, = 1.7 pm; solid curve, L, = 2.9 pm;
dashed curve, L, = 5.8 pm). The same transfer function H,p(z) is
used for all calculations, and a group-propagation angle of 20° is
assumed in the cavity.

cients of the polynomial A,,(2) are a,, ;,qex- The al-
gorithm is given in Eqs. (16) and (17)42:
'N+1-m = _am,m, (16)
A,(2) = @A (2 )z ™"
A, _(z)= 1 _’ZA 3 . amn

Once the necessary reflection coefficients are deter-
mined, the reflectors can be designed with standard
thin-film design procedures. Another approach is to
approximate the reflectors by available quarter-wave
structures and correct for the error in the reflectivity
by modification of the individual cavity lengths.23
After the reflectors are designed, it is important to
subtract the optical thickness of each reflector from
the corresponding optical cavity length because the
reflector constitutes part of the round-trip time.
The necessity to implement the reflector within the
optical thickness of the cavity sets a lower limit on the
cavity thickness and thus on the maximum achiev-
able operating wavelength range. However, the
cavity length cannot be chosen too large, as field in-
terference is necessary for the operation of the device.
If the distances between the reflectors are too large, a
pulse is split into several pulses, and an optical rat-
tler is obtained.43

For our four-cavity example, we choose an optical
cavity round-trip length of 5.8 pm, Ta,0; as the cav-
ity material, s-polarized light, and an incidence angle
of 54°. This corresponds to a physical thickness of
2.6 pm for each cavity. After the reflectors are de-
signed, the resulting Si0,—Ta,05 thin-film structure
has 33 layers and a total thickness of 15.4 pm. In
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Fig. 8(a) the physical layer thicknesses are graphed.
The composition of this structure is given in Appen-
dix D. Figure 8(b) plots the resulting shift as a func-
tion of wavelength for this structure. A linear shift
is obtained over a narrow wavelength range, demon-
strating that this technique permits the design of
narrowband structures with high dispersion. In
Fig. 8(c) the E-field amplitudes parallel to the inter-
face of the forward-propagating wave are plotted as a
function of the position in the structure. For longer
wavelengths a larger amount of energy buildup oc-
curs in the structure. As discussed for the single-
cavity resonators, this wavelength-dependent energy
storage causes spatial and temporal dispersion. We
also see that, for a structure with more than one
cavity, part of the dispersion can be attributed to a
wavelength-dependent penetration depth.

In conclusion, we demonstrated in this section that
coupled-cavity all-pass filters can be designed to ex-
hibit linear spatial dispersion using a digital lattice
filter technique. Furthermore, the technique can be
employed to design structures with a nonmonotonic
shift as a function of wavelength. The major prac-
tical limitation we found in this approach is the ne-
cessity to design reflectors with very low reflectivity if
a larger number of cavities is desired. For example,
a linear eight-cavity design calls for five reflectors
with less than 10% reflectivity, of which three should
have less than 2% reflectivity. Therefore it becomes
quite difficult to design appropriate thin-film reflec-
tors for structures with a higher number of cavities.
As the only way to achieve a larger free spectral
range without decreasing the total spatial shift is to
decrease the cavity length and thus increase the
number of cavities, this technique is, in practice, lim-
ited to the design of narrowband structures. Again,
this is a limitation of this specific design technique;
by use of a different design technique, structures with
dispersion over a broad wavelength range can be de-
signed as discussed in Section 4. Only a subset of all
possible structures is considered in this section—
structures with large cavities separated by reflectors.

6. Structures That Employ a Combination of
Wavelength-Dependent Penetration Depth and Stored
Energy

In Sections 4 and 5 we discussed two methods for
designing the dispersion characteristics of thin-film
structures. Each method applies to a subset of all
possible structures—the method in Section 4 applies
to double-chirped structures and that in Section 5
applies to coupled-cavity structures. Although the
periodic structures in Section 2 do not have enough
degrees of freedom to allow for the design of a linear
spatial shift as a function of wavelength, both of these
methods have a sufficient number of degrees of free-
dom to obtain a linear shift at least within a certain
wavelength range. In this section we investigate
how a thin-film structure can be designed without
limiting the degrees of freedom by just considering a
specific type of structure. For fabrication purposes
it normally does not matter if the structure is double
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chirped, coupled cavity, or something completely dif-
ferent. More likely, the total thickness of the struc-
ture, the minimum and maximum thicknesses of
individual layers, and the choice of materials set the
limits to what can be fabricated. Therefore we
would ideally investigate all possible structures that
can be fabricated and find the one that most closely
matches our desired dispersion characteristics. Un-
fortunately, the computation time of this approach
becomes prohibitive for more than a couple of layers.
This is a common problem in the design of thin-film
filters with specified reflectance and transmittance
characteristics.24-29 Here we explore how numeri-
cal techniques developed for the design of thin-film
filters can be applied to the design of thin-film struc-
tures with spatial dispersion.

The design of thin-film filters is normally divided
into two steps. In the first step, a start design is
synthesized that approximately fulfills the required
characteristics.286 In the second step, numerical op-
timization procedures are used to gradually improve

This causes spatial and temporal dispersion. We also see that part of the dispersion can be attributed to a wavelength-

the performance of the start design.?® The perfor-
mance of a design is measured by a merit function
MF—a single number comparing the current design
characteristics with the desired design characteris-
tics.44¢ The definition of the merit function we use is
given in Eq. (18), where @; is the current value of a
quantity of interest, @,” is the target value of that
quantity, AQ; is the acceptable deviation, N is the
number of sampling points, and p is the norm used:

Q" - @, >/

AQ,

In the case of p = 2, the merit function is, e.g., the
root-mean-square difference between the current val-
ues and the target values of the quantities of interest.

The calculation of the merit function is by no
means limited to reflectance or transmittance values.
In the same manner, we can specify a desired spatial
shift as a function of wavelength and judge the per-
formance of the current design by sampling the shift

MFz(;ﬁ

i=1

(18)
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at different wavelengths. Therefore the same nu-
merical refinement techniques used to design thin-
film filters can be applied to the design of thin-film
structures with spatial dispersion. Any one of the
analytical methods discussed in Sections 2, 4, and 5
can be used to generate a starting design. In our
experience, the most important property of the start-
ing design is the elimination of strong ripple, i.e.,
provision of impedance matching. Rapid oscilla-
tions in the shift with wavelength are difficult to
remove by numerical optimization. We had more
success in starting with a low but constant dispersion
and increasing it during optimization. To ensure a
constant dispersion, we normally calculate the merit
function by employing a p norm with p between 6 and
10. This large p norm ensures an approximately
identical error in the shift for all wavelengths.45
Thus the resulting shift is, e.g., linear but offset from
the originally specified shift. The sampling points
have to be chosen close enough in wavelength to pre-
vent oscillations between the points. A spacing of
around 2 nm at 850 nm appears to work well.

We implemented six numerical optimization
techniques—golden-section search,*> secant meth-
od,%5 conjugate-gradient algorithm,*> Broyden—
Fletcher—Goldfarb—Shanno,45 damped least-squares
method,?® and Hooke and Jeeves pattern search.6
The first two methods are one-dimensional search
methods; i.e., the different parameters are optimized
sequentially. The other methods vary all parame-
ters simultaneously. All methods search for the lo-
cal minimum of the merit function. A lower nonlocal
optimum may be found, though, by e.g., one choosing
a large interval size of the golden-section search or by
taking large steps in the Hooke and Jeeves pattern
search technique. Our design algorithm uses the
different numerical optimization techniques sequen-
tially. This is successful, as a different design
method may find a lower minimum if one method is
stuck in a shallow local optimum. Numerical opti-
mization allows the design of structures with disper-
sion characteristics that cannot be achieved by use of
the analytical techniques discussed in the previous
sections.

As an example, we designed a 66-layer, 13.4-pm-
thick, thin-film structure with a linear shift over a
20-nm wavelength range around 830 nm. This type
of medium-wide wavelength range is difficult to
achieve with the double-chirped structures in Section
4 or the coupled-cavity structures in Section 5. We
used an impedance-matched Bragg stack as the start
design. We refined the design, specifying a linearly
increasing spatial shift for 20 different wavelengths.
The start structure had a reflectivity of 100%. To
keep the reflectivity high, we used a gold coating as
the last layer. To prevent loss, we could also specify
the last layers of the structure as a Bragg stack. In
our design algorithm we can set which layers are to
be changed and what the minimum and maximum
layer thicknesses are. This guarantees that the de-
sign can be fabricated. In the final design the min-
imum layer thickness is 57 nm, and the maximum
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thickness is 454 nm. The composition of this struc-
ture is given in Appendix D. In Fig. 9(a) the physical
layer thicknesses are plotted. Figure 9(b) shows the
shift as a function of wavelength for the designed
66-layer structure. A highly linear shift is obtained.
To investigate the origins of the observed dispersion,
we plotted in Fig. 9(c) the E fields parallel to the
interfaces as function of the position in the stack for
four wavelengths. We see that the penetration
depth increases for longer wavelengths and more en-
ergy is stored at the same time. Thus this general
structure relies on a combination of these two types of
dispersion.

To verify the validity of these dispersion concepts,
we experimentally tested the 66-layer SiOy—Tay,05
structure discussed in Fig. 9. The experiment is
again conducted with the setup depicted in Fig. 3.
In contrast to the experiment discussed in Section 2,
only one beam exits the structure, which demon-
strates the successful suppression of all other reflec-
tions by impedance matching. To obtain the center
position of the beams, we fitted the experimental data
to a Gaussian beam profile. Figure 10 plots the re-
sulting shift of the beam center as a function of wave-
length (circles). The theoretical shift is calculated
with a plane-wave approximation and the transfer-
matrix method (solid curve). The linear shift be-
tween 820 and 840 nm is clearly visible. As the shift
does not exhibit any rapid changes in this wavelength
range, the plane-wave approximation predicts the ex-
perimentally observed shift accurately. The rise
and fall in the shift for wavelengths larger than 840
nm explains why the plane-wave approximation is
not as accurate in this regime. The slight difference
between the shifts in Figs. 9(b) and 10 is due to the
fact that the first calculation includes the back-side
gold coating and the second does not. The overall
excellent agreement between the experimentally ob-
served shift and the theoretically expected shift con-
firms the above-discussed concepts for obtaining
spatial dispersion.

7. Conclusion

In this treatment we discussed four ways of designing
structures with high spatial dispersion. In Section 2
we demonstrated the strong spatial dispersion of pe-
riodic thin-film structures close to the stop-band edge
both in theory and in experiment. Unfortunately,
periodic structures with two layers per period do not
offer enough degrees of freedom for the design of
structures with desired dispersion characteristics,
e.g., a linear shift with wavelength. One way to
overcome this limitation is to increase the number of
layers per period. This method should be used if a
structure with constant effective properties is de-
sired. Here, however, we were more interested in
the aggregate transfer function from entering to ex-
iting the structure. That is, we wanted to design a
structure exhibiting a spatial beam shift along the
exit surface with wavelength. In that case, it does
not matter what happened to the beam within the
structure. Taking this into account, we are no
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dispersion is due to both a wavelength-dependent penetration depth and a wavelength-dependent amount of stored energy.

longer limited to periodic structures. Considering
that spatial and temporal dispersion are approxi-
mately proportional, we modified methods used for
temporal dispersion compensation to obtain spatial
dispersion. In Section 4 we showed that the
wavelength-dependent penetration depth of double-
chirped structures can be used to obtain spatial dis-
persion and that these structures are particularly
useful for broadband designs. In that section we
also found that nonresonant energy storage makes an
important contribution to the shift and that the ob-
tained shift cannot be explained from pure geometri-
cal reasoning. The coupled-cavity structures
discussed in Section 5 employ a wavelength-
dependent amount of stored energy to obtain disper-
sion and are effective for narrowband designs.
Finally, in Section 6 we demonstrated in theory and
experiment that structures that use a combination of
a wavelength-dependent turning point and stored en-
ergy can be designed using numerical optimization
methods.

Figure 11 compares the results obtained for the

periodic structure from Section 2 and the nonperiodic
structure from Section 6. The results are scaled to
the 1550-nm wavelength range for better comparison
with current commercial interests for telecommuni-
cation. The total amount of shift can be significantly
increased by one performing multiple passes through
the structure as discussed in Ref. 9. Figure 11
graphs the shift after one bounce and after eight
bounces. Eight bounces are well possible, as we
have demonstrated in Ref. 47. The nonperiodic
structure exhibits a total shift comparable with that
of the periodic structure. But the same shift is ob-
tained with just a third of layers, and the observed
shift is linear with wavelength, which is much more
desirable for practical applications. Furthermore,
the nonperiodic structure is essentially lossless as all
loss reflections (e.g., front-surface reflection) are sup-
pressed. This shows the great potential of nonperi-
odic structures as compact dispersive devices.
Thin-film structures with high spatial dispersion
are interesting as compact multiplexing and demul-
tiplexing devices, which separate beams of different
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Fig. 10. Experimentally observed spatial dispersion of a 66-layer
Si0,-Ta,0j dielectric stack with a total thickness of 13.4 um on a
quartz substrate for an incidence angle of 54° and p polarization.
The experimental shift of the peak (circles) as a function of wave-
length shows excellent agreement with the theoretical calculation
(solid curve).

wavelengths by spatial beam shifting.® The spatial
dispersion could also be converted into an angular
dispersion by a lens in sequence with the structure.
Therefore the device could be used for wavelength-
dependent beam steering. Future integrated pho-
tonic systems might use the discussed concepts to
obtain spatial dispersion. Furthermore, the ideas
considered here for one-dimensional thin-film struc-
tures can be transferred to two- or three-dimensional
structures. Two-dimensional photonic crystal struc-
tures fabricated by lithography, for example, are by
no means limited to periodic structures. As seen
here for one-dimensional structures, breaking the pe-
riodicity actually offers more design freedom and in-
teresting new physics. The difficult task is to design
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(theory)].
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two- or three-dimensional structures with the desired
characteristics. The coupled-cavity structures de-
signed by digital lattice techniques could be a good
starting point, as coupled-cavities in more dimen-
sions have been investigated previously for micro-
wave filters.36-38

Appendix A: Bloch Dispersion Relation

For an infinite periodic medium with two layers per
period, the dispersion relation is given by Eq. (A1).30
In this equation, K is the amplitude of the wave vec-
tor in the z direction of the periodicity, B is the am-
plitude of the wave vector parallel to the layers in the
x direction, n, and n; are the refractive indices, and
l, and [, are the layer thicknesses of the two different
materials:

2 1/2
cos[K(l, + 1,)] = cos”(? nu) - BZ] la]
» 2 1/2
X cos{ [ ( nb) - BZ} lb]
c
® 2 1/2
- A(B, w)sin{[(c na> - BZ] la]
» 2 1/2
X sinH(c nb) - 82] lb} . (A1)

A(B, w) is given by Eq. (A2) for TE polarization and by
Eq. (A3) for TM polarization:
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This calculation can also be used to model the disper-
sion properties of a finite bulk periodic medium, ne-
glecting all boundary effects.

Appendix B: Transfer-Matrix Dispersion Relation

For nonperiodic dielectric stacks the relations among
the incident, the transmitted, and the reflected fields
can be obtained by use of a standard transfer-matrix



method. Assuming that no light is incident from the
right side onto the stack and that the transmitted
field has unity magnitude, the incident and reflected
amplitudes on the left side of the stack can be calcu-
lated with Eq. (B1):

Einc L
( £ ) =Dy, PiD,,P:Dy5 . .. PNIDNI,N<O) .
refl
(BD

Here the calculation is set up in terms of the E field
parallel to the interfaces. The col(1, 0) vector on the
right allows for some (unit) amplitude of field leaving
the structure on the right but presumes no wave
entering from the right. This is common practice in
thin-film filter design, and the total field can easily be
calculated from the field parallel to the boundary.26
In Eq. (B1), P; and D, ,,, are the propagation and
interface matrices obtained from Maxwell’s equa-
tions. P;(B, w) is given in Eq. (B2), where n, is the
refractive index of layer i, d; is the layer thickness,
and c is the speed of light in vacuum:

n;
Nemmi(B, ©) = 7 o712 - (B7)
cB
wn;
Once the incident and reflected fields, E;,. and E, 4,

are obtained from Eq. (B1), the phase change upon
reflection can be calculated with (B8):

(breﬂ(B’ (1)) = arg[Ereﬂ(B7 (’J)] - arg[Einc(Ba (‘0)]
(B8)

Assuming a total stack thickness L, the wave vector
K(B, w) in the z direction is related to the phase
change upon reflection as given in Eq. (B9):

K(B, (x)) _ d)reﬂ(B: (-0) ]

oL (B9)

Appendix C: Approximate Calculation of 58/5w

Here we calculate 9B/dow under the assumption that
the interface matrices D, ;. ; in Eq. (B3) can be ap-

® 2 1/2
ol o
P(B, ©) = ‘ .

(B2)

The interface matrices D, ;. (B, w) given in Eq. (B3)
depend on the reflection coefficients r;; (B, ») and
the transmission coefficients ¢, ;(B, w) between ad-
jacent layers that are given by Eqs. (B4) and (B5):

_ 1 1 riiv1(B, o)
Dija(B, w) = tii1(B, w) rii1(B, w) 1 ’
(B3)
_ neff,i(Ba (")) - neff,iJrl(Ba (D)
ri,iJrl(B, ('0) B neff,i(Ba (1)) + neff,iJrl(Ba (1)) ’ (B4)
ti,Hl(B’ ) = 2nefﬂi(B, @) (B5)

n’eff,i(B’ (,0) + n’eff,i+1(B’ ('0) ‘

The effective refractive indices for the cases of TE
and TM polarizations are given by Eqgs. (B6) and (B7),
respectively.26 If the expression under the square
root becomes negative as, e.g., in the case of total
internal reflection, the sign of the effective refractive
indices has to be chosen carefully to prevent unphysi-
cal exponentially growing field amplitudes, though
the method does then model such situations correctly:

B 271/2
neff,TE,i(B’ 0) = ni|:1 - (m) } s (B6)

i

proximated by unity matrices. This approximation
is justified if the reflection of the interfaces between
layers is small. As shown in Ref. 18, WKB-type ap-
proximations can also be used for a wider class of
structures. In this case the phase change upon re-
flection is solely caused by the propagation matrices
P,. The approximated phase upon reflection ¢, is
then given by expression (C1):

® 2 1/2
Dapn(B, w)z—22{[(cni) —32} di}. D)

Thus the derivatives of the approximate dispersion
relation with respect to v and B are expressions (C2)
and (C3):

2
n;

ad)a r(Ba (’J) c '
ppai ~ 2 E r 27172 »
. B=const i n(2 _ E
L ' (1)
(C2)
Oapnl By ©) o
appr > W w
Zapprily T ~ -9
88 w=const Z |: 2 (BC) 2:| e
ni D
\ w
(C3)
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Using the rules for taking implicit derivatives, we get
the expression for JB/dw given in expression (C4):

B
Jw appr

_ _éd)appr/aw
a(bappr/aB

3|l
= 3fele 87T

(C4)

K=const

Substituting B = w/c sin(6), where 6 is the incidence
angle in vacuum, we can rewrite expression (C4) as
expression (C5):

2],
Y. ~ ¢ sin(6)
E {niQdi/[niZ - Sin(e)z]l/z}
X .
E_ {d;/[n? — sin(6)*]"%}
(C5)

K=const

We see that the resulting approximate expression for
9B/dw depends only on the incident angle and not on
the frequency. Thus dB/dw is independent of fre-
quency within this approximation. We found nu-
merically that 9B/dw is approximately constant for all
the structures with linear dispersion that we tested.
Furthermore, expression (C5) can be used to calcu-
late the correct constant to within a 20% error. A
more rigorous proof of this property still needs to be
performed.

Appendix D: Composition of the Designs Discussed in
Sections 5 and 6

Table 1. Composition of the Designs Discussed in Two Sections

Section

5 6 Section 6

Physical

Substrate  Layer Thickness Layer Physical
Material Number (nm) Number Thickness (nm)

Ta,05 1 188.0 35 58.0
SiO, 2 168.3 276.6 36 228.8
Ta,05 3 2954.0 188.0 37 57.0
SiO, 4 168.3 276.6 38 221.5
Ta,05 5 2967.0 188.0 39 61.0
SiO, 6 168.3 276.6 40 219.4
Tay,05 7 118.9 208.0 41 66.0
SiO, 8 168.3 380.6 42 207.0
Ta,05 9 2728.0 194.0 43 70.0
SiO, 10 168.3 380.6 44 199.7
Ta,05 11 118.9 218.0 45 75.0
SiO, 12 168.3 320.3 46 198.6
Tay,05 13 118.9 250.0 47 80.0
SiO, 14 168.3 2954 48 185.1
Ta,05 15 2495.0 278.0 49 84.0
SiO, 16 168.3 276.6 50 163.3
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Table 1. Cont’d

Section

5 6 Section 6

Physical

Substrate  Layer Thickness Layer Physical
Material Number (nm) Number Thickness (nm)

Tay,05 17 118.9 453.0 51 89.0
SiO, 18 168.3 286.0 52 171.6
Ta,05 19 118.9 453.0 53 93.0
SiO, 20 168.3 263.1 54 196.0
Tay,05 21 118.9 235.0 55 98.0
SiO, 22 168.3 311.0 56 164.3
Tay,05 23 118.9 245.0 57 98.0
SiO, 24 168.3 289.1 58 144.6
Ta,05 25 118.9 249.0 59 98.0
SiO, 26 168.3 276.6 60 205.9
Tay,05 27 118.9 254.0 61 98.0
SiO, 28 168.3 262.1 62 197.6
Ta,05 29 118.9 258.0 63 109.0
SiO, 30 168.3 257.9 64 175.8
Tay,05 31 118.9 263.0 65 104.0
SiO, 32 168.3 251.7 66 57.2
Tay,05 33 118.9  60.0
SiO, 34 168.3 241.3
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