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Multilayer Thin-Film Stacks With Steplike
Spatial Beam Shifting
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Abstract—This paper demonstrates the use of a single mul-
tilayer thin-film stack for generating custom-engineered spatial
dispersion, i.e., spatial shift as a function of wavelength. Based on
group-velocity effects similar to the superprism effect observed
in photonic crystals, this thin-film grating (TFG) device allows
for multiplexing or demultiplexing multiple wavelength-divi-
sion-multiplexed (WDM) channels using a single nonperiodic
thin-film stack. We designed a four-channel TFG for coarse WDM
applications with 20-nm channel spacing and flat-top passbands.
This paper shows that flat-top passbands correspond to a steplike
spatial beam shifting with wavelength. The influence of a finite
beamwidth on the passband shape is discussed using Fourier
decomposition of the beam into plane-wave components. The
paper concludes with experimental results for a three-channel
TFG demonstrating steplike beam shifting.

Index Terms—Demultiplexing, multiplexing, spatial dispersion,
thin-film.

I. INTRODUCTION

LONG-HAUL optical transmission systems use wave-
length-division multiplexing (WDM) to increase the data

transmission rate by encoding different channels with different
wavelengths. Recently, coarse WDM (CWDM) has been
emerging in local or metro optical networks. CWDM systems
typically have four to 16 channels with channel spacings around
20 nm in the wavelength ranges around 0.8, 1.3, or 1.55 m.
Such systems create a strong need for compact and cost-ef-
fective wavelength multiplexing (MUX) and demultiplexing
(DEMUX) devices.

MUX/DEMUX devices in current use include diffraction
gratings, arrayed-waveguide gratings (AWGs), fiber Bragg grat-
ings (FBGs), and thin-film filters [1]–[3]. Diffraction gratings
and AWGs are particularly interesting for high-channel-count
systems, as they allow the multiplexing of many channels
using a single device. For cost-effective lower channel count
systems, thin-film filters or FBGs are typically preferred, due
to their lower initial cost and the possibility of upgrading the
channel count progressively. FBGs and thin-film filters are
1 2 devices, i.e., they have one input and two outputs. For an

-channel system, separate devices are needed, leading
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Fig. 1. Schematic of four-channel TFG.

to cascading losses and a more complex module assembly as
the number of channels is increased.

Previously, we suggested the use of group-velocity effects in
multilayer thin-film structures to separate multiple beams of dif-
ferent wavelengths by spatial beam shifting, as depicted in Fig. 1
[4], [5]. The thin-film stack is designed such that beams of dif-
ferent wavelengths incident at an angle onto the stack are spa-
tially shifted along the direction upon reflection. The spatial
offset between different wavelengths is increased by performing
multiple bounces through the structure. This thin-film grating
(TFG) device concept is by no means limited to four channels.
Depending on the dispersion characteristics of the multilayer
thin-film stack and the beam size, more channels can be multi-
plexed or demultiplexed. The TFG utilizes well-known thin-film
fabrication technology while at the same time eliminating the
need to cascade devices, as in the case of traditional thin-film
filters. This promises cost reduction, easier assembly, and re-
duced losses. In this paper, we investigate how to design a TFG
with the desired passband-shape characteristics.

II. STEPLIKE SPATIAL BEAM SHIFTING

The key component of the TFG in Fig. 1 is the thin-film stack
with high spatial dispersion, i.e., a large spatial shift in the di-
rection with wavelength. In [4], we have shown that the photonic
crystal “superprism effect” of a periodic dielectric stack results
in high spatial dispersion close to the stopband edge and can be
used for multiplexing WDM channels. Such a periodic dielec-
tric stack exhibits a nonlinear spatial shift along the direction
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Fig. 2. Experimental intensity (linear scale, arbitrary units) as a function of
position and wavelength for eight bounces off a 66-layer nonperiodic stack at
54 incidence angle and p-polarization.

with wavelength. Therefore, if the outputs Out 1, Out 2, Out
3, and Out 4 in Fig. 1 are equally spaced, the channel spacing
cannot be equal in wavelength.

In order to obtain equal channel spacing, we investigated the
design of nonperiodic thin-film stacks exhibiting a linear shift
with wavelength and thus constant dispersion [5], [6]. Fig. 2
plots the beam intensity as a function of position and wavelength
for eight bounces off a nonperiodic 66-layer stack. The stack
composition is given as Design L in Appendix C. These are ex-
perimental results for a 54 incidence angle and p-polarization.
Due to the oblique incidence angle, this device is polarization
sensitive and only works for p-polarization. The intensity de-
creases with wavelength as the stack itself is more transmissive
for longer wavelengths, and the mirror on the stack side shown
in Fig. 1 was not applied. Fig. 2 shows that this device exhibits a
total shift of approximately 100 m and can separate four wave-
length channels by their Gaussian beamwidths [6].

The center wavelengths to of the different channels
are indicated in the figure. The horizontal lines represent the
spatial boundaries between channels. Since the beam shifts lin-
early with wavelength, the beam has a different center position
for each wavelength. Thus, only the center wavelength of
the th channel is exactly centered on Out . If the channel drifts
to an off-center wavelength, the beam position changes, and the
coupling efficiency to Out is reduced. In the case of a Gaussian
beam profile, the passband shape is also Gaussian for a device
with constant dispersion.

A theoretical Gaussian passband shape is depicted in
Fig. 3(a). For practical WDM systems, we ideally want a
flat-top passband shape, as shown in Fig. 3(b). This allows for
a drift in the channel wavelength without incurring loss. In
order to obtain a flat-top passband shape, we need to design a
steplike shift with wavelength. Such a steplike shift results in
a range of wavelengths to be shifted to the same exit position.
Therefore, if the output is located at this position, there will be
no loss for any wavelength within the range.

A TFG exhibiting a steplike shift with wavelength can be de-
signed employing methods similar to the ones described in [5].

Fig. 3. Schematic of (a) a Gaussian passband shape compared with (b) a
flat-top passband shape (transmission refers to the energy transfer from input
to output).

Numerical refinement [7] is used to gradually improve the per-
formance of a start design until the structure matches the de-
sired characteristics sufficiently well. To prevent reflections off
the interface between the substrate and the thin-film stack, we
use a “tapered” Bragg stack as the start design [8]. In such a
Bragg stack, the periodicity is slowly “turned on” by increasing
the amount of high-index material in each period. The desired
dispersion characteristics were solely obtained using numerical
refinement. We also tried analytical coupled-cavity design tech-
niques [2], [9] but did not achieve good results due to the large
number of cavities needed to approximate a steplike function.

Using numerical optimization, we designed a four-channel
flat-top TFG with 20-nm wavelength spacing and channel center
wavelengths at 1510, 1530, 1550, and 1570 nm, which is par-
ticularly well suited for CWDM systems [10]. The design has
100 alternating layers of SiO and Ta O

with a total stack thickness of 33.1 m. The stack is de-
signed for operation through a quartz substrate at
45 incidence angle and p-polarization. Only the first 80 layers
were modified during refinement to obtain the desired disper-
sion characteristics. The last 20 layers were fixed as a Bragg
stack to achieve high reflectance. The lowest reflectance is 96%
after a single bounce, corresponding to a maximum intrinsic
loss of 28% after eight bounces assuming a 100% mirror on
the substrate side. More periods could be used to further de-
crease the loss due to transmission. This device likely has neg-
ligible absorption loss. The stack composition is given as De-
sign S in Appendix C. Fig. 4 plots the theoretical performance
of the four-channel design obtained using a plane-wave transfer
matrix calculation [5]. The steplike shift as a function of wave-
length is clearly visible in Fig. 4(a).

III. INFLUENCE OF THE FINITE BEAMWIDTH

As seen in Fig. 1, we need to focus the incident beam to
spatially separate beams of different wavelengths. For a smaller
Gaussian spot size of the focussed beams, less spatial shift is
necessary for demultiplexing. Next, we will investigate the
influence of the beamwidth on the spatial shift with wavelength.
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Fig. 4. CWDM four-channel TFG. (a) Theoretical shift and (b) reflectance
after eight bounces off the 100-layer stack at 45 incidence angle and
p-polarization (plane-wave calculation).

Appendix A discusses how a beam can be decomposed into
plane waves with different incidence angles. Only a limited
range of these angular components has a significant intensity.
Thus, the input angular range of can be approximated by
the drop of the intensity to as given in

(1)

is the incidence angle in vacuum, is the incident wavelength
in vacuum, and is the Gaussian spot size, i.e., the beam ra-
dius. Equation (1) shows that a smaller spot size corresponds
to a larger angular range . Since the spatial shift is a function
of the incidence angle and the wavelength (and the polarization),
different components of a beam of finite width will incur a dif-
ferent spatial shift. This can potentially lead to beam distortions,
and the effect is more severe for beams with a larger range of an-
gular components, i.e., beams with a smaller Gaussian spot size.
To investigate the influence of the change in incidence angle on
the spatial shift, Fig. 5 plots the shift as a function of wave-
length for incidence angles of 44.4 , 45 , and 45.6 . From (1),
we find that a 0.6 angular range corresponds to the -in-
tensity width of a Gaussian beam with a 50- m spot size.

Fig. 5 shows that a change in the incidence angle shifts the
curve while approximately maintaining the curve shape. In re-
gions of constant dispersion, i.e., where the shift is linear or con-
stant with wavelength, such a shift in the curve corresponds to
a change in the focal length but does not distort the beam. If,
on the other hand, the dispersion is not constant, beam distor-
tions occur as different angular components of the beam have
different focal lengths. We conclude that beam distortions will

Fig. 5. Shift as a function of wavelength for incidence angles of 44.4 (dotted),
45 (solid), and 45.6 (dashed–dotted).

TABLE I
RELATIONSHIP BETWEEN SPOT SIZE, ANGULAR RANGE, AND WAVELENGTH

RANGE AT 1540 nm, 45 INCIDENCE ANGLE, AND v = 0:3c

be minimal, as long as all relevant angular components of a fi-
nite-width beam see the same dispersion, which corresponds in
the case of a step design to all components being on the same
“step.” From Fig. 5, it follows that at the short-wavelength edge
of a “step,” angular components with a smaller incidence angle
already experience the shift of the next lower “step,” and simi-
larly, at the long-wavelength edge, larger incidence angle com-
ponents already see the next higher “step.” Therefore, the useful
wavelength range of a “step” is limited by the beamwidth. We
see that a beam of finite width essentially probes the spatial shift
over a range of wavelengths.

To quickly approximate the behavior of a designed structure
for different beamwidths, we find the following approximation
useful:

(2)

This equation relates the change in the incidence angle to
the shift of the curve in wavelength . is the speed of light
in vacuum, and is the group velocity in the direction. (Ap-
pendix B provides more background on this approximation.) We
have discussed previously that the group velocity along the
layers is approximately constant for many structures of interest
[5]. Therefore, the proportionality factor in (2) is approximately
constant, and the “probed” wavelength range is proportional to
the angular range of the beam. Table I gives three examples
of the relationship between spot size, angular range, and wave-
length range. The group velocity is set to 0.3 times the speed
of light.

From Table I, we see that for a beam with a spot size of 50 m,
the different beam components probe approximately 4 nm of
the design around the incident wavelength. Remember that the
incident light is assumed to be monochromatic and that this



GERKEN AND MILLER: MULTILAYER THIN-FILM STACKS WITH STEPLIKE SPATIAL BEAM SHIFTING 615

Fig. 6. Shift as a function of wavelength at 45 incidence angle for a plane
wave and Gaussian beams with 15-, 30-, and 50-�m spot size.

probing is due to the different angular components. As the de-
sign in Fig. 4 is quite flat over a 4-nm wavelength range around
the channel center wavelengths, we expect all angular compo-
nents of 50- m beams to see the same spatial dispersion. Toward
the edge of the band of zero dispersion, the beams will become
broadened, however, as some of the angular components see a
different spatial dispersion. Therefore, the whole range that is
flat for the plane-wave calculation in Fig. 4 may not be usable
for beams of finite size.

As a 50- m beam probes a 4-nm wavelength range, fea-
tures smaller than this wavelength range will be averaged out.
For a 15- m beam, features smaller than 14 nm will be av-
eraged out. Considering this, we cannot expect the design in
Fig. 4 to work well with a 15- m beam. To model the prop-
agation of a beam of finite width through the device, we use
the Fourier decomposition technique described in Appendix A.
Each plane-wave component of the beam is propagated sepa-
rately through the thin-film stack, and the resulting output beam
is obtained by summing the individual components. The center
position of the beam is obtained by performing a Gaussian beam
fit varying the beam amplitude, center position, and width. Fig. 6
plots the shift of the beam center position as a function of wave-
length for incident plane waves and three different beam sizes.
Indeed we see that for a 15- m incident beam, the steplike shift
is completely averaged out, while it is clearly visible for the 30-
and 50- m beam size. This shows explicitly that in designing
a TFG with a steplike shift, we have to take care to use a suffi-
ciently large spot size.

IV. EXPERIMENTAL RESULTS

The four-channel CWDM design shown in Fig. 4 is not yet
fabricated, but we have performed preliminary experiments
demonstrating a three-channel steplike spatial beam shifting.
The 66-layer stack (Design L in Appendix C) discussed in
Fig. 2 exhibits a steplike beam shifting for a 48 incidence
angle. Fig. 7(a) shows the experimentally measured intensity

Fig. 7. Three-channel TFG. (a) Experimentally obtained intensity (linear
scale) as a function of position and wavelength for eight bounces off a 66-layer
stack at 48 incidence angle and p-polarization. Peak intensity is normalized
to unity for each wavelength. (b) Comparison between experiment and
plane-wave theory.

Fig. 8. Systems using stacks with high spatial dispersion. (a) Combination
of two stacks with opposite dispersion can be used to obtain spatial dispersion
without temporal dispersion. (b) System providing temporal dispersion without
spatial dispersion. This system could also be used to manipulate channels of
different wavelengths independently.

as a function of position and wavelength for eight bounces at
48 incidence angle, p-polarization, and an incident beam size
of 18 m. The intensity at each wavelength is normalized to
unity, as this structure was not designed for high reflectance
at 48 and shows significant loss. Nevertheless, the agreement
between the experimentally observed shift and the theoretically
expected shift as seen in Fig. 7(b) is promising. The steplike
spatial shift is clearly visible, and after eight bounces, the steps
are sufficiently high to separate the different channels by their
beamwidth.

V. SEPARATING SPATIAL AND TEMPORAL DISPERSION

As discussed in [5], stacks with spatial dispersion exhibit tem-
poral dispersion at the same time. For short-pulse operation, it
may be important to eliminate this temporal dispersion. Fig. 8(a)
shows how a combination of two stacks with opposite disper-
sion can be used in series to cancel the temporal dispersion while
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doubling the spatial dispersion. This would require the design of
a second structure with opposite dispersion. On the other hand,
backreflection through the same stack can be used if a system
with temporal dispersion (but no spatial dispersion) is desired,
as shown in Fig. 8(b). Replacing the mirror by a modulator array
or another optical element, the different wavelength components
can be modulated independently. This system can easily be ex-
tended to a two-dimensional array by using the dimension per-
pendicular to the plane of the page. This concept is applicable
to both the step dispersion discussed in this paper and also the
other forms of dispersion (linear and nonlinear) discussed pre-
viously.

VI. CONCLUSION

In conclusion, we demonstrated how a single thin-film stack
with high spatial dispersion can be used to multiplex or demul-
tiplex multiple wavelength channels. We explained that a linear
spatial shift with wavelength corresponds to a Gaussian pass-
band shape. In order to obtain a more desirable flat-top pass-
band shape, we designed thin-film stacks exhibiting a steplike
spatial shift with wavelength. We discussed the influence of a
finite beamwidth on the device performance.

This TFG device is particularly interesting for CWDM ap-
plications as it can be fabricated cost-effectively using well-
known thin-film filter fabrication technology. Furthermore, it
eliminates the need to cascade multiple devices as in the case
of thin-film filters and FBGs, promising an easy and compact
module assembly. TFGs are also interesting for any application
requiring compact dispersive elements. We have demonstrated
that the dispersion characteristics of a multilayer thin-film stack
can be designed flexibly to fit the given requirements. Other dis-
persion profiles besides a linear or a steplike shift as a function
of wavelength can be easily generated.

APPENDIX A
SIMULATING BEAMS OF FINITE WIDTH BY

FOURIER DECOMPOSITION

Here we discuss how the propagation of finite-width beams
through a thin-film stack can be calculated using a Fourier de-
composition technique [11]. The thin-film stack is considered
as a system that propagates an input field from
an input position to an output position . If
the reflection of a beam off a thin-film stack is considered, the
input and the output positions coincide, and the incident field

is given by the forward-propagating beam, while
the output field is the reflected beam. The task
is to calculate the output field at any output position for an arbi-
trary input field and an arbitrary stack.

For linear space-invariant systems, the incident field can be
decomposed into elementary components; these can be propa-
gated individually, and the output field is obtained by summing
the propagated individual components. For sufficiently small in-
tensities, a thin-film stack is a linear system. Furthermore, it is
space invariant, since the direction transfer function only de-
pends on the difference between the input position and
the exit position , not on the absolute position along
the stack. We limit ourselves here to propagation of the beam in

Fig. 9. Direction cosines � and 
 for propagation in the x–z plane. k is the
wave vector.

the – plane and assume that the beam is not focused in the
direction. As seen from Fig. 1, such an elongated beam shape
does not reduce the device functionality, and it prevents mixing
of the different polarization components.

One possible decomposition of the incident field
is obtained by performing the spatial Fourier transform given by
[11]

(3)

The inverse Fourier transform expresses the field as a function
of the Fourier components , as follows:

(4)

From the integrand of (4), we see that the Fourier transform
decomposes the E-field into plane waves with amplitudes

and wave vectors in the
direction. The spatial frequency is related to the directional
cosine depicted in Fig. 9 by

(5)

Thus, we see that the integration in (4) corresponds to the
summation of plane waves with amplitudes
propagating in different directions in the – plane. We can cal-
culate the plane-wave amplitudes as a function of
using e.g., a transfer matrix method [5]. The transfer function
relating to is called , as shown
in

(6)

Therefore, we can now calculate at any point in the
– plane by propagating the individual Fourier components

and summing them up after propagation as given in

(7)

For practical purposes, we will replace the continuous Fourier
transform in (7) by a discrete Fourier transform, as shown in (8),
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where is the directional cosine of the th component, and
is the angular separation of the different components.

(8)

Due to the discrete nature of the Fourier transform (8), the re-
sulting E-field is repetitive in space. The repetition distance
is given by

(9)

If the E-field of interest is limited in space or can be approx-
imated by a spatially limited function extending over a spa-
tial distance smaller than , the discrete Fourier transform
(8) combined with a spatial filter of width correctly re-
constructs the original field. Solving (9) for , we obtain the
minimum required angular sampling distance. This is the Whit-
taker–Shannon sampling theorem well known from information
theory [11], [12].

Equation (10) gives the field at the beam waist for a beam
propagating at an angle with respect to the axis with a
Gaussian field distribution perpendicular to the direction of
propagation in the – plane. is the spot size, and is the
E-field amplitude.

(10)

The Fourier components of this beam are given by

(11)

Substituting (6) and (11) into (8), we can calculate the E-field
at any position in the thin-film stack for an incident Gaussian
beam. Remember that this beam is not a true Gaussian beam
as we did not consider the beam focusing in the direction.
Instead, here we are modeling a beam with a Gaussian field
distribution in the plane of propagation and an infinite width
in the direction. This analysis can be extended to the general
case following [11].

APPENDIX B
RELATIONSHIP BETWEEN A CHANGE IN INCIDENCE ANGLE

AND A CHANGE IN INCIDENCE WAVELENGTH

The wave vector in the direction, the wave vector in
the direction, and the frequency are related by the dispersion
relation [5]. Let us assume that we have the dispersion relation
given in the implicit form

(12)

and are related to and as given in

(13)

(14)

Performing a variable transformation from to , the
partial derivatives of the dispersion relation with respect to and

are given by

(15)

(16)

Finally, the partial derivative relating and is calculated in
[13]

(17)

is the group velocity in the direction . Approxi-
mating differences by differentials, we obtain the relationship
between a change in incidence angle and a change in inci-
dence wavelength as given in (2). Note that the sign in (17)
is different since we consider in (2) the shift of the curve, not
a change in the incidence wavelength. Also note that the par-
tial derivative in (17) is not for a constant beam shift, but for
a constant wave vector . Nevertheless, we found (2) a very
useful approximation for estimating the behavior of the shift
with wavelength for a change in the incidence angle .
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TABLE II
COMPOSITION OF DESIGNS

APPENDIX C
COMPOSITION OF DESIGNS

The composition of designs is shown in Table II.
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