Limits on the performance of dispersive thin-film stacks

Martina Gerken and David A. B. Miller

Dispersive thin-film stacks are interesting as compact, cost-effective devices for temporal dispersion
compensation and wavelength multiplexing. Their performance depends on the total group delay or
spatial shift that can be achieved. For general multilayer stacks, no analytic model exists relating the
performance to the stack parameters such as the refractive indices and the number of layers. We develop
an empirical model by designing and analyzing 623 thin-film stacks with constant dispersion. From this
analysis we conclude that, for given stack parameters, the maximum constant dispersion value is
inversely proportional to the wavelength range over which the dispersion is achieved. This is equivalent
to saying that, for constant dispersion, there is a maximum possible spatial shift (or group delay) that can
be achieved for a given material system and number of layers. This empirical model is useful to judge the
feasibility of dispersive photonic nanostructures and photonic crystal superprism devices and serves as
a first step in the search for an analytic performance model. We predict that an 8-channel wavelength
multiplexer can be realized with a single 21-pm-thick SiO,-Ta,0; thin-film stack. © 2005 Optical

Society of America
OCIS codes:

1. Introduction

Traditional thin-film coatings based on the amplitude
reflection and transmission properties of multilayer
stacks have been used successfully for many types of
application.! Recently, several groups have proposed
exploiting the phase properties of thin-film stacks
instead of the amplitude properties. The resulting
group-delay properties of normal-incidence thin-film
stacks have been designed for temporal dispersion
compensation in femtosecond laser cavities2-4 and
optical fibers.>~” We have demonstrated use of thin-
film stacks at oblique incidence for wavelength mul-
tiplexing by designing the phase properties such that
beams experience a wavelength-dependent effective
propagation angle or lateral shift in the stack. This
translates to a wavelength-dependent spatial beam
shift and demultiplexing at the output surface.s?
Such angle changes and the corresponding lateral
shifts are also closely related to group-delay phenom-
ena, as we discuss in Section 2. Figure 1 shows an
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example of such a device. Performing multiple
bounces off the stack increases the wavelength-
dependent spatial shift. The number of channels that
can be demultiplexed is calculated as the total shift in
the x direction divided by the spatial extent per chan-
nel.? Therefore the performance of the device is de-
termined by the total spatial shift that can be
achieved as well as by how accurately the desired
dispersion characteristics are matched.

For simple structures, e.g., Fabry—Perot or Gires—
Tournois resonators, an analytical relationship exists
among the stack parameters (refractive indices, num-
ber of layers, incidence angle, polarization), the dis-
persion profile, and the total spatial shift (or group
delay). Thus, for such simple stacks, the performance
is related in a straightforward manner to the stack
parameters. For general multilayer structures, on
the other hand, no analytic model exists. However, it
is obvious that, for example, a larger number of layers
will allow for a larger dispersion or a better match-
ing of the desired dispersion profile. The minimum
number of layers necessary to achieve the desired
dispersion characteristics is typically found in a trial-
and-error approach. To speed up the design process
and to quickly estimate the feasibility of specific dis-
persive devices, we introduce here an empirical
model relating the stack parameters to the achiev-
able performance for the case of multilayer stacks
with constant spatial dispersion. We developed the
empirical model by designing and analyzing 623 thin-
film stacks composed of different material systems,
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Fig. 1. Wavelength demultiplexer for a multilayer thin-film stack
with high spatial dispersion.

different stack thicknesses, and for operation at dif-
ferent incidence angles.

The paper is structured as follows. In Section 2 we
review the design of thin-film stacks with constant
dispersion. We automated the design process to gen-
erate a large number of different designs. In Section
3 we discuss the derivation of the empirical model by
analyzing the performance of 623 designed stacks. In
Section 4 we use the empirical model to estimate how
many channels can be demultiplexed with the device
in Fig. 1. We finish with conclusions in Section 5.

2. Automatic Design of Stacks with Constant
Dispersion

In this section we describe how we generate thin-film
stacks with spatial dispersion and analyze their per-
formance. To decrease the complexity, we limit the
design space to designs that have a center wave-
length of 1550 nm and operate at p polarization. Dif-
ferent center wavelengths can be obtained by simple
scaling whereas the effect of polarization still needs
to be investigated at a later time. Furthermore, we
consider only designs with constant dispersion, i.e., a
linear shift as a function of wavelength. We proceed
by specifying a constant dispersion value and specific
stack parameters for each design. Then we try to
generate the design that exhibits the desired disper-
sion value over the largest wavelength range. This is
the design with the best performance for the given
stack parameters as it has the largest total shift al-
lowing for the multiplexing of the largest number of
channels. We also calculate the standard deviation of
the design from constant dispersion as a measure of
the ripple.

Different algorithms have been developed to design
dispersive thin-film stacks. These include use of the
photonic crystal superprism effect in periodic stacks,8
the design of chirped stacks with the coupled-mode
theory,248 coupled-cavity stacks designed by digital
signal processing techniques,6-8 and numerical opti-
mization of arbitrary nonperiodic stacks.® We con-
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sider only dispersion effects that are due to the
multilayer structure of the stacks and we refer to it as
structural dispersion to distinguish it from material
dispersion, i.e., an isotropic change in the refractive
index with wavelength. As discussed in Refs. 10 and
11, structural dispersion is caused by a changing
amount of stored energy in the structure with
wavelength. Therefore the different design ap-
proaches are just different ways of achieving the
same goal—designing the amount of stored energy
with wavelength to obtain the desired dispersion
characteristics. Since the origin of the dispersion is
the same in all cases, we expect the achievable per-
formance (the maximum spatial shift or group delay)
to be independent of the design algorithm.

In the case of structural dispersion, the group ve-
locity v,, in the x direction along the layers stays
approximately constant, and the dispersion is pre-
dominantly due to a change in the group velocity v,,
in the z direction perpendicular to the layers. The
spatial shift s, and the group delay are related
by8,10,11

group

5 (1)
T =—.
group vgx

As discussed in Appendix A, we find that v,, is ap-
proximately constant in the case of structural disper-
sion in a broad range of layered structures, i.e., from
Eq. (A8):

1

- 2
vgx, appr - c Sln(e) (neﬁ), (2)

where (nZ) is a particular weighted average of the
square of the refractive index in the structure, an
average that does not depend on wavelength but only
on structural parameters and, to some extent, the
incidence angle in vacuum 6. ¢ is the vacuum speed of
light. Because the spatial shift and the group delay of
a stack are approximately proportional, all the re-
sults we derive here concerning the spatial shift as a
function of the stack parameters also apply to the
group delay. The device shown in Fig. 1 will exhibit
both spatial dispersion and temporal dispersion.®

In Ref. 8 we discussed that different design algo-
rithms are useful for different types of dispersion
characteristic. Periodic stacks have a limited design
freedom, and all periodic stacks have quite similar
nonconstant dispersion characteristics. Chirped
stacks are useful for broad wavelength range designs
and can be designed to have constant dispersion.
Coupled-cavity stacks are useful for narrow wave-
length range designs and can also be designed with
constant dispersion. Numerically optimized stacks of-
fer the greatest design freedom and can be designed
to have constant dispersion over any wavelength
range. Since we are interested in investigating a wide
variety of designs, we generate all designs using nu-
merical optimization even though the design process



is slower compared with the analytic design ap-
proaches.

To apply numerical optimization, we must first
generate a starting design. We use impedance-
matched Bragg stacks as the starting designs.+8 This
starting design has unity reflectance and negligible
dispersion in the design region. Reflections off the
front of the stack are suppressed by the impedance
matching. This starting design is then improved by
numerical optimization. The performance of the de-
sign is measured by a merit function MF—a single
number comparing the current design characteristics
with the desired design characteristics.'2 The defini-
tion of the merit function we use is given as

p\1/p
e

where @); is the current value of the quantity of in-
terest (for example, the shift at a specific wave-
length); Q! is the target value of that quantity; A, is
the acceptable deviation; NV is the number of sampling
points; and p is an integer number, usually called the
p norm. In the case of p = 2, the merit function is, e.g.,
the root-mean-square difference between the current
values and the target values of the quantities of in-
terest. The goal of numerical optimization is to min-
imize the merit function MF and thus optimize the
performance of the design. Different values of p lead
to somewhat different optimized designs with differ-
ent characteristics; for example, using larger values
of p can reduce the ripple in the shift in the resulting
designs, though it can lead to designs with the shift
somewhat offset from the desired value.

We implemented five numerical optimization
procedures—the Golden Section search optimization
technique and the secant method, as well as the con-
jugate gradient algorithm, the Broyden—Fletcher—
Goldfarb—Shanno Algorithm, and the Hooke and
Jeeves pattern search technique.8:13-15 The first two
are one-dimensional search algorithms; for the last
three methods, techniques are used that vary all the
design parameters simultaneously. With all tech-
niques, merit functions are used to measure the per-
formance of a design and achieve performance
improvements. Furthermore, all techniques search
for the local minimum of the merit function. A lower
nonlocal optimum can be found, however, by, e.g.,
choosing a large interval size in the Golden Section
search optimization technique or by taking large
steps in the Hooke and Jeeves pattern search tech-
nique. For a comparison of the performance of the
different techniques, see Refs. 10 and 13. During the
refinement process with our algorithm, we use the
various methods in the sequence given in Table 1.
The algorithm is performed either one or two times
for a given set of parameters using a p norm of six in
the merit function. This sequential use of methods is
successful, as a different design methods may find a
lower minimum if one method is stuck in a shallow
local optimum.
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Table 1. Sequence of Algorithms for Numerical Optimization

Refinement Algorithm Iterations
Hooke and Jeeves pattern search 2
Conjugate gradient algorithm 2
Secant method 1
Hooke and Jeeves pattern search 2
Golden Section search 1
Broyden-Fletcher—Goldfarb—Shanno 2

Figure 2 shows an example of a generated 40-layer
Si0,-Ta,05 stack for an incidence angle of 40° and a
dispersion of 0.57 pm/nm. We do not list layer se-
quences here, since many different designs were gen-
erated (see Ref. 8 for a more detailed discussion of
specific designed stacks). We can see that the speci-
fied dispersion, i.e. the specified slope, is obtained
only over a limited wavelength range and that the
shift is offset in absolute value from the specified
shift. The p norm of six results in an equalization of
the error, since larger errors dominate the merit func-
tion. This forces a constant dispersion even though it
may be offset from the specified value. Since we are
interested only in the relative shift with wavelength,
the offset is irrelevant.

To compare different designs, we implemented an
algorithm for finding the wavelength range over
which the specified dispersion is achieved. For the
example in Fig. 2, the specified shift is obtained over
a wavelength range of 32.7 nm. The design in Fig. 2
also exhibits dispersion for shorter wavelengths. This
dispersion is not relevant for our analysis, as we want
to estimate over which wavelength range we can
achieve a specified dispersion value. To obtain the
maximum wavelength range, we specify the disper-
sion to be constant over a larger wavelength range
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Fig. 2. Forty-layer SiO,-Ta,05 design for a 40° incidence angle.
The dispersion was specified as 0.571 pm/nm.
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Table 2. Distribution of the Design Parameters for the
623 Analyzed Designs

Standard
Parameter Minimum Maximum Mean Deviation
Layer number 40 200 97 51
Physical thickness 5.7 60 22 11
L (pm)
Refractive index 0.9 5.6 2.3 0.88
Average index 71,, 1.1 4.0 2.0 0.6
Index contrast An 0.06 4.0 1.0 0.8
Incidence angle 6 20 60 40 7.3
(deg)
Dispersion 0.04 86 3.2 6.7
Caisp (pm/nM)
Wavelength range 0.3 160 32 24
AN (nm)
Total shift As (wm) 0.13 730 59 100

than the one we actually expect to be possible. Once
we determined an initial empirical model, we used it
to estimate the possible wavelength range and spec-
ify a constant dispersion over double the expected
wavelength range for all the following designs.

To measure the quality of the design, we calculate
the standard deviation of the design compared to the
line with the specified dispersion over the valid wave-
length range. For better comparison of designs, we
use the relative standard deviation, i.e., the standard
deviation divided by the total shift in the valid wave-
length range. The relative standard deviation for the
design in Fig. 2 is 8.5%. The designs generated here
have a rather large relative standard deviation since
we wanted to generate as many acceptable designs as
possible in the given amount of computation time.

3. Empirical Model of the Maximum Shift

Using the automated design process described in Sec-
tion 2, we generated a total of 760 different designs
including 190 designs with 40 layers, 49 with 60 lay-
ers, 379 with 100 layers, 22 with 120 layers, and 120
with 200 layers. Each design had a different set of
design and material parameters. The refractive indi-
ces, the incidence angle, the number of layers, and
the specified dispersion characteristics were varied.
The pure computation time for these designs was
approximately 1100 h or 45 days with all algorithms
implemented as MathCad programs and using a Pen-
tium III 750-MHz computer with 256-Mbytes RAM.
In this section we present the results derived from
the analysis of these designs.

We filtered out 137 designs as they had a relative
standard deviation of more than 25%, leaving 623
results to be analyzed. The distribution of the stack
and operation parameters of the remaining designs is
given in Table 2. Note that we did not limit our anal-
ysis to existing material systems, but also used fic-
tional refractive-index combinations assuming that
the refractive indices are constant over the wave-
length range of interest and that no absorption oc-
curs.
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For the acceptable 623 designs, we evaluated the
relationship among the specified constant dispersion
value cg;p, the wavelength range AN over which the
dispersion is achieved, and the stack and operation
parameters. From this analysis we find that the max-
imum achievable wavelength range (AMN),.. can be
estimated by

1 An
(A)\)max = 16 L 9 Sln(e); (4)

Cdisp Nayg

where An is the refractive-index difference between
the two stack materials, n,,, is the arithmetic average
of the refractive indices, L is the total stack thickness,
and 0 is the incidence angle in vacuum. We can see
from this empirical model that the wavelength range
is inversely proportional to the dispersion. Thus, for
linear shift with wavelength, the predicted total shift
As after one bounce off the stack is not a function of
the dispersion, but depends only on the stack param-
eters as shown in Eq. (5):

An
AS = Cdisp(A)\)max = ].6 L 9 Sln((')). (5)

avg

To demonstrate how we derived this empirical
model, let us consider the influence of the average
refractive index on the total shift. Figure 3(a) plots
the shift as a function of the average refractive index
for all the designs. We can clearly see that the shift
decreases with increasing average refractive index. If
the model in Eq. (5) is correct, dividing the shift by
the model should result in a normalized shift inde-
pendent of the average refractive index. Figure 3(b)
plots the shift divided by the model. Indeed no clear
dependency is visible for a changing average refrac-
tive index. Since this is a numerical method, not all
values are exactly unity, but there is some distribu-
tion of the values.

After looking at Fig. 3(b) the reader may not be
fully convinced that Eq. (5) is indeed a good model for
the shift. As a comparison, Fig. 4 plots the normalized
shift for two wrong models. Figure 4(a) assumes the
shift to be inversely proportional to the refractive
index, and Fig. 4(b) assumes the shift to be inversely
proportional to the refractive index cubed instead of
the correct inverse proportionality to the refractive
index squared.

In Fig. 4(a) a decrease in the shift as a function of
the average refractive index is clearly visible. In Fig.
4(b) an increase of the shift with the average refrac-
tive index can be seen. Thus a shift that is inversely
proportional to the square of the average refractive
index seems indeed to be the best model. As we are
basically guessing a model here based on a numerical
data set, there is room for error and improvement.
Maybe, for example, the average refractive index is
really inversely proportional to the refractive index to
the power of 2.1. As this result is close to the guessed
one, we cannot conclusively decide either way from



800
%-H‘
+
600
+ 4
— te
g‘ + + +
~ 400
e ++
'-"_:= %
w
200
0 . D W e @ . o
1 1.5 2 25 3 35 4

Average refractive index
(@

]

Tt ey

Shift / Model

25 3 35 4

1 15 2
Average refractive index

(b)

Fig. 3. Dependency of the shift on the average refractive index
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the given data. An analytical model is needed to an-
swer this question satisfactorily.

The shift model of Eq. (5) predicts that the product
of dispersion cgy, and wavelength range (AN),,, is
constant for a given set of stack parameters. There-
fore, if we divide the wavelength range A\ of a de-
signed stack by the theoretical shift As in Eq. (5), we
should obtain 1/c4,. To demonstrate the perfor-
mance of this model, Fig. 5 plots the value of A\ of the
designed stacks as deduced directly from the numer-
ical calculations on each stack [i.e., not from the em-
pirical model, Eq. (4)] divided by the theoretical As
[from Eq. (5)] as a function of the dispersion cy;,. The
thick solid line represents the 1/cyy, behavior we
would expect if our empirical model is correct, and all
designs were as good as the approximate maximum
wavelength range (AMN),.. that our model predicts
[Eq. (4)]. Designs below the thick solid line are worse
than the model, i.e., they have a smaller than pre-
dicted wavelength range, and designs above the line
are better than the model. For comparison the per-
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Fig. 4. Two poor models for comparison. (a) Assuming the shift to
be inversely proportional to the average refractive index, (b) as-
suming the shift to be inversely proportional to the refractive index
cubed.

formance of the eight designs with constant disper-
sion discussed in Ref. 8 is also shown.

Figure 5 clearly shows that there seems to be a
physical limit to the wavelength range over which a
specific constant dispersion can be achieved. It can-
not be pure chance that we did not find any design
with a significantly higher wavelength range than
predicted by Egs. (4) and (5). Designs can always be
worse, since the automated design process may have
failed. The high number of designs close to the max-
imum theoretical line shows, however, that our de-
sign procedure works quite well. Therefore the result
of this numerical investigation is that, for a linear
shift with wavelength, the product of dispersion and
wavelength range has an approximately constant
maximum value that depends only on the stack pa-
rameters and not on the specified dispersion of the
stack.

We can also see from Fig. 5 that a stack with any
constant dispersion value between 0.04 and
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a function of the specified dispersion. The thick solid line repre-
sents the expected value from the model of Eq. (5). Designs below
the line are worse than the model and designs above the line are
better than the model. The diamonds represent the fraction of the
623 designed stacks with less than 10% relative standard deviation
and the plusses represent the stacks with 10—-25% relative stan-
dard deviation. The large circles are the chirped designs discussed
in Ref. 8, the X is the numerically optimized design in Ref. 8, and
the square is the coupled-cavity design in Ref. 8.

86 pm/nm can be designed using the algorithm given
in Section 2. A stack with low dispersion can be op-
erated over a broad wavelength range, whereas a
stack with high dispersion shows this dispersion only
over a narrow wavelength range. Since the number of
channels that can be demultiplexed with the device
shown in Fig. 1 is determined by the total shift di-
vided by the spatial extent per channel, both the
broad and the narrow wavelength range designs will
allow for the same number of channels for a given set
of stack parameters. The difference between the de-
signs is that one has widely spaced channels whereas
the other has a close channel spacing.

It is interesting to note that the chirped stacks, the
coupled-cavity stack, and the numerically optimized
stack discussed in Ref. 8 all exhibit a similar perfor-
mance. They all lie slightly below the model. This
may be due to a trade-off between the ripple in the
shift and the total shift. As the designs in this paper
are generated automatically, they may not be as flat
as the designs discussed in Ref. 8. Intuitively, it
seems that a very flat design uses part of the avail-
able design degrees of freedom to achieve this flat-
ness. Thus those degrees of freedom are not available
to obtain a larger total shift. Furthermore, we did not
check the transmission loss of the automatically de-
signed stacks under the assumption that the trans-
mission loss can be eliminated by specifying both
shift and reflectance values in the merit function or
by adding dedicated mirror layers to the stack that
are not modified during refinement. Again, guaran-
teeing unity reflectance consumes some of the de-
grees of freedom that could otherwise have been used
for a larger total shift. Therefore we do expect that
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there should be a trade-off among total shift, ripple,
and transmission loss that has not been analyzed
here. Once the acceptable ripple and transmission
loss have been defined, we expect the total shift to
obey a relationship similar to the empirical model of
Eq. (5).

As discussed in Section 2 and in Appendix A, the
spatial shift and the group delay are approximately
proportional in the case of structural dispersion.
Therefore the same argument holds for the wave-
length range over which a given constant temporal
dispersion can be achieved. Substituting Eq. (5) into
Eq. (1) we obtain a model for predicting the total
group-delay difference for a given set of stack param-
eters. For the case of normal incidence we take into
account that the sin(0) term appears in both the ex-
pression for the shift As and the group velocity v,, and
thus cancels. Explicitly, from Eq. (1) and substituting
from approximation (2), the maximum variation At in
group delay on reflection that could be induced ap-
proximately linearly with wavelength is

_As An 1 — L
At = T@; ~16 L gvg sin(0) m (neff) ~16 An E,
(6)

where in the final step we made the additional sim-

plification of assuming that n2,, and (nZ;) are of com-
parable size (the assumption is good for structures
with small to moderate index contrast). This result
suggests a simple limit on the amount of linear
group-delay compensation that could be engineered
in a multilayer dielectric structure, with the limit
essentially depending linearly only on the magnitude
of the refractive-index variation available and the
length of the structure. Again, we expect a trade-off
among the total group-delay variation, ripple, and
transmission loss. Causes of group-delay ripple in
chirped mirrors have been discussed in Ref. 16.

4. Maximum Number of Channels of the Spatial
Demultiplexer

We now discuss one specific example of the useful-
ness of this empirical model. The model allows us to
estimate the number of channels that can be demul-
tiplexed with the device shown in Fig. 1. In Ref. 9 we
found that for a device with a single focusing lens the
maximum number of bounces off the stack is limited
by beam broadening and that the maximum number
of channels N s 1S given by

As  sin()[1 — sin(0)*/n?]
Nchannels = 1 + )\7

, (D

2ccross talk

where 6 is the incidence angle in vacuum, X\, is the
center wavelength of the device, and n, is the refrac-
tive index of the substrate. c.. st determines the
cross talk between adjacent channels. For c .o taic
= 2, the adjacent channel cross talk is approximately
—15dB, for cepstax = 3.2 it is —30 dB, and for



Ceross talk = 3.8 1t 1s —40 dB. Inequality (7) shows that
the maximum number of channels is proportional to
the maximum shift As after one bounce off the stack.
Substituting the empirical model of Eq. (5) for As, we
obtain

S

An sin(9)?
Nchannels =1+ — T Sln(e) 1-— 2 .

2
)\c Ceross talk Navg

(8)

It is interesting to note that for a given set of mate-
rials, incidence angle, and adjacent channel cross
talk, everything on the right-hand side of inequality
(8) is fixed except for the ratio of the stack thickness
L to the center wavelength \.. From inequality (8) we
conclude that, given the choice of a material system,
we should choose materials with a large index con-
trast and a small average refractive index. In this
model only the stack thickness and not the number of
layers seems to matter. That is somewhat misleading
since the layer thickness should likely always be of
the order of a quarter wavelength. Therefore fixing a
stack thickness also fixes the number of layers
needed. It is interesting to note that the number of
channels scales as the thickness divided by the wave-
length. Thus scaling a design to a different wave-
length in the same material system does not change
the number of channels, just as we would expect.

For a cross talk of —40 dB, a 45° incidence angle,
and alternating SiO, (n; = 1.45) and Ta,0; (ny
= 2.09) layers on a quartz substrate (n, = 1.52), the
number of channels can be estimated by

L
Nsio, 10,05, 45o =1+ 0.53 I (9)

(4

We calculate from inequality (9) that a 21-pm stack is
necessary to demultiplex eight channels around
1550 nm using the device in Fig. 1. Such a stack can
be fabricated with today’s thin-film deposition tech-
nology allowing for a compact, cost-effective wave-
length multiplexing device that requires only a single
multilayer stack.

5. Conclusions

We have generated and analyzed a set of 623 differ-
ent designs with constant dispersion to derive an
empirical model relating the stack and operation pa-
rameters to the performance. From this analysis we
concluded that the wavelength range over which a
specified constant dispersion is achieved is inversely
proportional to the value of the dispersion for given
stack parameters. Furthermore, we have presented
numerical evidence that the product of dispersion
and wavelength range, i.e., the total spatial shift or
the total group-delay difference, has a maximum
value that is proportional to the stack thickness
(number of layers) and the refractive-index difference
and is inversely proportional to the square of the
average refractive index. We have also proposed a

simple semiempirical model for the maximum linear
variation in group delay possible in layered dielectric
structures.

The empirical model developed here allows us to
quickly estimate the possible performance of a design
with spatial or temporal dispersion. We can use it to
choose a material system and the necessary number
of layers for a given design task, as well as to compare
the performance of a designed stack with the theo-
retical maximum performance. This research is a
first step in the search for an analytic model relating
the limits to performance to the general parameters
of the materials and size of the stack. The fact that all
623 designs approximately fall near or below our sim-
ple empirical model is strongly suggestive that an
analytical limit model exists and suggests that it
could be productive to look for such a model. In the
development of an analytic model, the results can be
compared with the numerical data presented here.
Again, given the variety and large number of struc-
tures investigated numerically, we expect the empir-
ical model to be valid for all types of one-dimensional
photonic nanostructure. This work is also suggestive
that similar empirical or analytic relationships will
exist for the dispersion in two- and three-dimensional
periodic photonic crystals!” and nonperiodic photonic
nanostructures more generally.

Appendix A: Relating Spatial and Temporal Dispersion

In this appendix we explore the relationship between
spatial and temporal dispersion characteristics. Spa-
tial dispersion manifests itself in a change of the
beam exit position s, as a function of wavelength as
shown in Fig. 1. Temporal dispersion refers to the
change in the group delay 7,,,,, as a function of wave-
length. We are considering here the shift and the
group delay in reflection. A similar study can be per-
formed for the case of transmission. The group delay
in reflection is calculated by dividing the shift s, along
the x direction by the effective group velocity v,, in
this direction or equivalently by dividing twice the
thickness L of the stack by the group velocity v,, in
the z direction. As shown in Eq. (A1) we can rewrite
this expression in terms of the more commonly used
dependency on the phase upon reflection ¢, using
Eq. (A2):

S, B 2L . oK
Tgmup B Tgx e % K=const B ng B 2 % B=const
a re:
_ Obren ’ (A1)
oo B=const
d)reﬂ =2LK. (A2)

In the case of a periodic structure, the relationship
among the wave vector K in the z direction, the wave
vector B in the x direction, and the frequency o can be
obtained from Bloch theory.8 For a nonperiodic struc-
ture we can use the transfer-matrix technique to re-
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late K, B, and w.? For a nonperiodic stack and a finite
periodic stack, K is the effective wave vector for the
reflected light. Since the structure is not periodic, K is
not constant throughout the stack. The group veloc-
ities v,, and v,, are in this case also effective quanti-
ties, i.e., they represent the total effect of the stack,
but are not constant within the stack. Therefore, by
calculating the group delay 7, we obtain the total
time elapsed from entering the stack to exiting the
stack, but we cannot determine how much delay the
light incurred in each part of the stack.

Equation (A1) shows that the shift experienced by
a beam of light is related to the group delay in reflec-
tion by the group velocity v,, along the layers. Here
we are interested in the dispersive properties of mul-
tilayer stacks, i.e., the change of the shift and the
group delay with wavelength. To relate spatial and
temporal dispersion, we therefore need to investigate
the change of the group velocity v,, with wavelength.
First, we calculate the group velocity in a WKB-type
approximation.

The WKB approximation (also called the semiclas-
sical or quasi-classical approximation in quantum
mechanics) states that if the local wavelength \(z),
which is linked to the local wave vector K(z), changes
slowly with z, the accumulated phase change can be
calculated by integrating the wave vector K(z) from
the start position z; to the end position z,.1819 This
result is exactly true for uniform media as well as
infinite periodic media, where the wave vector K is
obtained from Bloch theory and is independent of z.
The resulting phase is given by Eq. (A2). The WKB
approximation has previously been applied to calcu-
late the accumulated phase change of a chirped
Bragg stack.2° Here we use the WKB approximation
to obtain an approximate phase upon reflection ¢,
for a general multilayer stack.

As the local wave vector K(z) is not known a priori
in this case, we use the wave vector corresponding to
a uniform medium with refractive index n; for the ith
layer. Even though this is strictly only a good approx-
imation for low-index contrast stacks, we have found
empirically that it is quite good for many structures
of interest. Replacing the WKB integral by a sum, the
approximated phase upon reflection ¢,,, is then
given by approximation (A3), where d; is the layer
thickness of the ith layer in the stack:

o \2 1/2
d)appr(B, ('0) ~—2 2 {|:(C ni) - B2:| dz} (A3)

Using Eqs. (A2) and (A3) we therefore obtain the
approximate dispersion relation of Eq. (A4) for the

approximate wave vector K,,,. in the z direction:

1 o \2 172
Kappr(B, w)= - L 2 {|:<C ni) - BZ:| dl} (A4)

Again, this is an effective wave vector for the overall
effect of the stack, not a local wave vector. The deriv-
atives of the approximate dispersion relation with
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respect to w and B are Eqgs. (A5) and (A6). Here it is
assumed that the refractive indices n; are indepen-
dent of frequency, which is quite correct for the typ-
ical dielectrics used in multilayer thin-film stacks. If
the refractive indices do depend on frequency, the
derivatives have to be modified accordingly as dis-
cussed in Ref. 10:

n;
KB, )| 1 ¢ &
PN B:const_ _Z; ) & 271/2 (>
n; ®
(A5)
B,
0K (B, ®) B 1 )
aB w=const Z; 2 BC el
(o))
(A6)

Using the rules for taking implicit derivatives,2! we
obtain Eq. (A7) for v, app
K, ,,r=const

o l50)
Vgr,appr - \ 0@ /00, appr

— 0K, e/ 00
B aKappr/6B

3 -]

sl

Substituting B = w/c sin(0), where 0 is the incidence
angle in vacuum, Eq. (A7) is rewritten as

1 (66)
Vgx, appr oo appr

> {n?dy/In? — sin(0)*]"?}

2y _ i
) E {d/[n? — sin(0)%1V?) (A9)

K=const — m (E), (AS)

where

We can see that the resulting approximate expression
for v,y appr depends only on the incidence angle and
not on the frequency. Thus v,, .., is independent of
frequency within this approximation. We found nu-
merically that v,, ., is approximately constant for
many of the structures that we evaluated, even
though the constant value might be different from the

one calculated with Eq. (A8).
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