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Abstract—We investigate the transmission properties of a sub-
wavelength plasmonic slot waveguide. We show that the trans-
mission can be accurately calculated using the characteristic
impedance of the propagating mode. Using such a model, we show
that it is possible to design devices without extensive 3-D Finite-
difference time-domain (FDTD) computer simulations. We illus-
trate the approach with calculations of an asymmetric Fabry–Perot
germanium photodetector based on the slot waveguide geometry,
showing predicted detector efficiencies as high as 69% despite
metallic losses.

Index Terms—Optical planar waveguide components, photode-
tectors, plasmons.

I. INTRODUCTION

INTEGRATED photonic components that allow propagation
of an optical mode at subwavelength size scales are ex-

pected to play an important role in bridging the gap between
optics and electronics in highly integrated optoelectronic cir-
cuits. The properties of propagating modes have recently been
investigated for several plasmonic structures, such as the metal
nanowire [1]–[3], metal nanoparticle arrays [4]–[6], and metal
slot waveguides [7]–[10]. In particular, metal slot plasmonic
waveguides were shown to support guided modes with high
confinement at infrared wavelengths [7]–[10]. Such structures
seem promising for guiding into subwavelength nanoscale pho-
todetectors, as they support a high integration density and prop-
agation lengths in the range of a few microns.

In design of optoelectronic circuits based on this geome-
try, it is desirable to calculate the transmission and reflection
properties when waveguides with different parameters are con-
nected together. The coupling between waveguides of differ-
ent geometries has recently been studied for 2-D plasmonic
waveguides of various geometries [11]–[14] and 3-D metal
strips [15], [16]. However, the design of complex 3-D struc-
tures typically requires extensive computational efforts with
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Fig. 1. Metal slot plasmonic waveguide cross section where light propagates
in the z-direction.

computer-aided tools such as the finite-difference time-domain
(FDTD) method.

In this paper, we investigate the transmission and reflection
properties of the guided modes in metal slot plasmonic waveg-
uides in propagation through a series of waveguide sections
with different core materials. Fig. 1 shows a cross section of
a metal slot plasmonic waveguide structure where the region
indicated by εm is metal, ε1 and εc are both dielectrics. This
waveguide supports a bound mode where light propagates in
the z-direction (normal to the plane of the figure). We show
that a model that uses the characteristic impedances of different
sections together can be used to calculate the transmission and
reflection properties of such waveguides, even though the metal
properties are quite different from those of similar guides in
the microwave regime and significant loss must be included in
the analysis. We then show that this model allows the design of
complex waveguide structures with desired properties at a mini-
mal computational effort by applying this technique in design of
a photodetector based on an asymmetric Fabry–Perot resonator
embedded in the waveguide.

II. CHARACTERISTIC IMPEDANCE MODEL

We use a transfer matrix approach that relies on the impedance
of the mode to describe the behavior of the fields as they prop-
agate through a series of different waveguides. We note that
this model is analogous to the mode-matching approach in mi-
crowaves where multiple modes might be considered [17], [18].
However, in the case of the slot waveguide, there exists a range
of parameters where the waveguide supports only one bound
propagating mode. For such structures, it is possible to use
a transfer matrix to relate the coefficients of the forward and
backward versions of the propagating mode in a linear fashion,
along with the transmission and reflection coefficients at each
of the discontinuities along the propagation direction.

Considering only the fundamental mode of each waveguide,
we build a network model for the propagation of the fields
throughout the whole structure. Applying the boundary condi-
tions of continuity of the tangential electric and magnetic fields
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reduces to
(Ai + Bi) = Ci,i+1(Ai+1 + Bi+1) (1a)

(Ai − Bi)
Zi

= Ci,i+1
(Ai+1 − Bi+1)

Zi+1
(1b)

where Ai and Bi are the amplitudes of the forward and back-
ward propagating modes, respectively. Elements with subindex
i are located before the junction (i.e., to the left of the junction
for waves incident from the left), while those with subindex
(i+1) are located after the junction. Zi is the characteristic
impedance of the waveguide. Ci,i+1

is the coupling coefficient
that can be calculated by the mode overlap at the junction of
the waveguides as

Ci,i+1 =
∫

S

⇀
e i+1 ×

⇀

hi · n̂ dS (2)

where
⇀
e i and

⇀

hi is the normalized tangential electrical field
in the ith cross section, respectively, n̂ is the propagation
direction, S is the entire cross section of the junction, and it is
assumed for our model that

∫
S

⇀
e i+1 ×

⇀

hi · n̂ dS∫
S

⇀
e i ×

⇀

hi+1 · n̂ dS
≈ Zi+1

Zi
. (3)

For the structures under investigation, we find from simulations
that this approximation is valid to about 5%.

The fields are normalized such that∫
S

⇀
e i ×

⇀

hi · n̂ dS = 1. (4)

At the junction between two waveguide cross sections, we
obtain a transfer matrix Ti,i+1

that relates the forward and back-
ward propagating modes as[
Ai

Bi

]
=

[
1/τ ρ/τ

ρ/τ 1/τ

] [
Ai+1

Bi+1

]
=

[
T (1, 1) T (1, 2)
T (2, 1) T (2, 2)

]
= Ti,i+1

(5)
where

τ =
2Zi+1C

−1
i,i+1

Zi + Zi+1
(6a)

ρ =
Zi+1 − Zi

Zi + Zi+1
. (6b)

The impedance of the mode is related to the effective permit-
tivity εeff and the propagation constant γ by

Zi =
√

µ

εeff ,i
=

jωµ

γi
. (7)

In lossy waveguides, the propagation constant γ = α + jβ is
complex, and so, the characteristic impedance of the waveguide
is also complex.

The propagation through a waveguide of length L can be
modeled (for the specific approach, we take later of calculating
from the “right” to “left” in the structure) as

Pi =
[

exp (γLi) 0
0 exp (−γLi)

]
. (8)

Several sections of waveguides can be modeled by a transfer
matrix analogous to that of a standard transmission line by
alternating junction matrices and propagation matrices as[

Ai

Bi

]
= Ti,i+1Pi+1Ti+1,i+2Pi+2 · · ·Ti+n−1,i+n

[
Ai+n

Bi+n

]

= Ti,i+n

[
Ai+n

Bi+n

]
. (9)

Thus, by knowing the propagation constants of a given waveg-
uide section, the transmission properties of an arbitrary waveg-
uide can be calculated.

III. NUMERICAL MODELS

We used a 2-D full vectorial mode-solving approach as pro-
posed by Lusse et al. [19] to solve for the properties of the actual
propagating modes in each waveguide where the properties of
materials are different, hence obtaining the necessary parame-
ters to use in transfer matrix methods. With appropriate initial
conditions, these calculations can be executed in a few minutes
on a personal computer.

We also used FDTD simulations to verify the values of
the propagation constants obtained by the mode-solving ap-
proach [20]. The FDTD uses magnetic and electric walls at
symmetry planes to reduce the computation effort. Convolution
perfectly matched layers (C-PMLs) surround the structure in all
directions. For these simulations, the guide is excited by a mag-
netic dipole located in the core region of the waveguide with a
sinusoidal signal wrapped in a Gaussian envelope.

Our study focuses on gold as the metal. We model the gold
as a Drude metal and its permittivity is given as

ε(ω) = 1 −
ω2

p

ω2 + iγpω
(10)

where ωp = 1.204 × 1016 rad/s and γp = 1.375 × 1014 rad/s
[21].

The propagation constants from the FDTD were calculated
by observing the phase variation and the decay of the mode
along the propagation direction. While no attempt was made to
mitigate numerical dispersion in the grid, we found a difference
in propagation constant of less than 2% between the FDTD and
the mode-solving approach. To minimize numerical artifacts in
comparing our transfer matrix results to the full FDTD simula-
tions of the structure, we used the propagation constants from
the FDTD simulations in calculations involving the impedance
model, though we believe, given the agreement between the two
approaches, that the faster mode-solving approach is otherwise
generally sufficient.

The effective refractive index neff is related to the imaginary
part of the propagation constant γ as neff = βc/ω. The prop-
agation length Lp is defined as the length for which the field
intensity attenuates by a factor of (1/e) and is related to the
real part of the propagation constant γ as Lp = 1/2α. The sur-
rounding material was silicon dioxide for all simulations with
a refractive index of 1.44. The dimensions of the waveguide
core (a × b) were 80 nm × 80 nm (see inset in Fig. 2). The
core of the waveguide was filled with silicon dioxide, silicon,
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Fig. 2. Effective refractive index for different filling materials in the core.
The inset represents the cross section of the slot waveguide structure. The core
region has permittivity εc . (The germanium loss is taken as that at 1.3 µm).

Fig. 3. Propagation length for waveguides with different filling materials in
the core. (The germanium loss is taken as that at 1.3 µm).

or germanium. Silicon was taken to have a refractive index of
3.52. Germanium was modeled with a complex refractive index
of 4.23 + 7.8 × 10−2j, which corresponds to a power loss ab-
sorption coefficient of αG = 7540 cm−1 [22]. (For simplicity
of simulation, the germanium loss was taken independently of
frequency, though the loss does drop off relatively abruptly for
wavelengths longer than ∼1.5 µm, and there is a slow rise for
wavelengths progressively shorter than ∼1.5 µm. This particu-
lar loss number is characteristic of germanium at a wavelength
of 1.3 µm).

The propagation constants found with the mode-solving ap-
proach for the slot waveguides with different materials filling
the core are shown in Figs. 2 and 3. For these dimensions, there
exist only one propagating bound mode above cutoff. This mode
is quasi-TEM with dominant Hy and Ex fields, i.e., the electric

Fig. 4. Fabry–Perot structure. (a) Perspective view of the structure. (b) Top
view of the structure.

field is primarily polarized “horizontally” from one strip to the
other and the magnetic field is primarily vertical (see Fig. 1 for
coordinate directions).

IV. REFLECTION FROM A FABRY–PEROT STRUCTURE

As a specific structure of interest also for potential appli-
cations, e.g., in photodetectors, we consider first a single-slab
Fabry–Perot structure embedded in a plasmonic slot waveguide.
The structure is shown in Fig. 4. It consists of a slot waveguide
where the core region has a different permittivity εc for a given
length L. The dimensions of the waveguide are (a × b) =
80 nm × 80 nm. The metal used is gold, and extends to infinity
in the positive and negative x-directions. The ambient material
is silicon dioxide, with a refractive index of 1.44. The waveg-
uide core region is filled with silicon of length varying between
100 and 800 nm. The refractive index of silicon was taken as
3.52, and the silicon is presumed lossless in this simulation. We
examined the calculated power reflected from the structure as
we varied the cavity length L.

The power reflected at the front surface of the silicon in a
full FDTD simulation of this structure was deduced from the
standing wave electrical field amplitudes. We use the abso-
lute value of the electric field at position z = zmax , where it
has a maximum amplitude, and at position z = zmin , where it
has minimum amplitude (assuming propagation in the forward
z-direction and z = 0 as the front surface of the silicon). We
find the reflected power using the ratio of the maximum elec-
tric field |E|max at position zmax and the minimum electric
field |E|min at position zmin . Defining this ratio as

R =
|E|max

|E|min
(11)

the reflected power is given as

|ρ| =
R exp (−zmin/2Lp) − exp (−zmax/2Lp)

R exp (zmin/2Lp) + exp (zmax/2Lp)
(12)

where Lp is the propagation length for a silicon dioxide core
waveguide.

We calculated the reflected power expected from the
impedance model as

|ρ|2 =
∣∣∣∣T (2, 1)
T (1, 1)

∣∣∣∣
2

. (13)

We compare the results of the FDTD simulations to those
from the characteristic impedance model. Fig. 5 presents the
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Fig. 5. Reflected power from a Fabry–Perot structure at λ = 1.3 µm as a
function of the length of the silicon core section.

Fig. 6. Reflection spectrum of a Fabry–Perot resonator for a length of 650 nm.

reflection as a function of length for a wavelength of 1.3 µm. In
Fig. 6, we show the reflected spectrum as a function of wave-
length in a cavity length L of 650 nm. We note that the reflec-
tion as calculated from the characteristic impedance model well
describes the behavior of the device. The reflection measured
in FDTD simulation was a few decibels lower than what was
calculated by the impedance model. This discrepancy can be ex-
plained by presuming that power is also coupled into radiation
modes and higher order modes below cutoff that are excited at
the discontinuities and that were not taken into consideration in
our single-mode transfer matrix impedance model.

We calculated the reflection from a structure with two separate
pieces of silicon within the guide as a function of their separation
distance Lgap . In this case, the pieces of silicon are effectively
operating as mirrors, forming a Fabry–Perot resonator between
them, a resonator that should tune as this separation distance is
varied. The two pieces of silicon have the same cross-sectional
dimensions (80 nm × 80 nm) and are each 100 nm long. The re-
flection at 1.3 µm as a function of the separation length between
the two cavities is shown in Fig. 7. The model well describes the
reflection of the structure to a few decibels, and again, we expect

Fig. 7. Reflection spectrum of two coupled Fabry–Perot resonators at λ =
1.3 µm as a function of their separation distance Lgap .

Fig. 8. Asymetric Fabry–Perot structure. (a) Perspective view. (b) Top view.

that the difference between the model and the FDTD simula-
tions may be the result of radiation modes that are neglected in
the model.

This transfer matrix model based on the calculated complex
mode impedance of the plasmonic metal slot guides, thus offers
a useful approach at a greatly reduced computing cost compared
to full FDTD simulations of the structure.

V. DESIGN OF STRUCTURES USING THE CHARACTERISTIC

IMPEDANCE MODEL

We can apply the impedance model to design a germanium-
based photodetector at 1.3 µm. The design consists of an asym-
metric Fabry–Perot resonator using the first piece of germanium
as the front reflector and the primary absorbing region, followed
by a back reflector that is designed by alternating different ele-
ments of germanium with silicon dioxide spacers, nominally in
the form of a Bragg reflector structure (see Fig. 8).

The structure had the same cross section as the one depicted
in Fig. 2, with dimensions a × b of 80 nm × 80 nm. We
used SiO2 as the surrounding material, with refractive index
of 1.44. At 1.3 µm, the germanium has a complex refractive
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Fig. 9. Reflection at the front surface of an asymmetric Fabry–Perot structure
for a photodetector length L of 260 nm.

index of 4.23 + 7.8 × 10−2j, which corresponds to a power loss
absorption coefficient in bulk germanium of αG = 7540 cm−1

as before.
The back reflector was designed by considering unit cells of

the Bragg reflector structure. The unit cell consists of a cross
section with silicon dioxide in the core for a propagation length
of LA , followed by a similar structure but filled in the core
with germanium for a propagation length of LB . The unit cell
was designed such that no field would propagate through the
entire structure if the unit cell were repeated a large number of
times. For the given refractive indexes of silicon dioxide and
germanium, a length of 190 nm for both LA and LB would
create a Bragg back reflector at 1.3 µm.

Using the characteristic impedance model, we then calculated
the length of the photodetector L that would maximize the ab-
sorbed power in this cross section. For a length of 260 nm, the
impedance model shows that the amount of reflected power is
less than 1% when two unit cells are used as the Bragg back
reflector (as in Fig. 8). The amount of power reflected from
the asymmetric Fabry–Perot as a function of the wavelength is
shown in Fig. 9. We note that the model correctly predicts the
shape of the reflection spectrum and its minimal value at 1.3 µm.
The FDTD simulations also showed a reflected power of less
than 1% at that wavelength.

The amount of power absorbed in this device by different
portions of the structure is shown in Fig. 10, as calculated by
the FDTD. There are two loss mechanisms in this structure: the
loss due to attenuation of the propagating fields in the metal and
the absorption in the germanium semiconductor that contributes
to photocurrent. The fraction of power absorbed into a given
volume can be calculated from the power flowing into this closed
surface less the power flowing out of it.

At 1.3 µm, 30.9% of the power was absorbed in the metal past
the front surface. The germanium elements, which represent a
volume of 4.1 × 10−3 µm3 absorbed 69.05% of the total power.
The first section of germanium, which consists of a cube of
80 nm × 80 nm × 260 nm absorbed 54.1% of the incoming
power. Also, the absorption peak occurs at 1.3 µm, where the

Fig. 10. Absorbed power in the asymmetric Fabry–Perot photodetector. (The
germanium loss is taken as that at 1.3 µm).

photodetector was designed to operate. Assuming full quantum
efficiency, this detector would have a responsivity of 0.72 A/W
at 1.3 µm.

Such a device could be fabricated from germanium on insula-
tor wafers by first patterning the germanium, and subsequently,
depositing metal with a liftoff process. The two metal stripes
on each side of the germanium could be used to bias the pho-
todetector and create a metal–semiconductor–metal junction.
Light could be coupled at the end of the device by a dielectric
waveguide or an optical fiber, or by a nanometallic scatterer lo-
cated close to the waveguide, though such coupling mechanisms
remain subject for further investigation.

VI. CONCLUSION

We presented a simple model to account for the transmis-
sion properties of a plasmonic metal slot waveguide with dis-
continuities in the propagation direction. We showed that this
model accurately modeled the properties of interconnected slot
waveguides with different materials filling the core region. This
model can be readily applied to design structures without ex-
tensive time-domain simulations. As an example, we designed
an asymmetric Fabry–Perot waveguide photodetector with min-
imal front surface reflection. The designed photodetector ab-
sorbed 69% of the incident power in a volume 4.1 × 10−3 µm3 .
We also, therefore, conclude that useful nanoscale photodetec-
tors will be possible by such techniques, and we expect that such
devices would have a large electrical operating bandwidth due
to their physical size and a corresponding small capacitance.
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