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We propose a new type of mechanism for enhanced optical nonlinearities and intrinsic optical bistability that relies
on the combination of intrinsic feedback due to local field effects and excitonic resonances in semiconductor
crystallites. These effects will be further enhanced by quantum confinement in small crystallites.

Lately the prospect of digital optical processing has
excited much interest in the study of optical switches
and logic elements based on optical bistability and
related effects. The operation of these devices gener-
ally requires the combination of a strong optical non-
linearity and a feedback mechanism.!? Most often
optically bistable devices use an external cavity to
provide the necessary feedback. However, internal
feedback based on light-induced modification of the
intrinsic properties of nonlinear media has been con-
sidered,?® and some examples of this class have been
demonstrated.?

In this Letter we propose a novel approach to optical
bistability that exploits the combination of intrinsic
feedback and enhanced nonlinearities that we antici-
pate for semiconductor quantum dots (QD’s), i.e., mi-
crocrystallites with dimensions of the order of the car-
rier’s de Broglie wavelengths.

Optical bistability due to local field effects in bulk
material was considered previously.*®¢ Local field ef-
fects in small particles arise from dielectric confine-
ment; they are qualitatively different from those seen
in bulk material and are responsible for surface-en-
hanced Raman scattering’ as well as for the large non-
linearities of metal- and semiconductor-doped glass-
es.39 Excitonic behavior observable in many semi-
conductors at low temperature is enhanced by quan-
tum size effects in microstructures with dimensions of
the order of or smaller than the bulk exciton Bohr
diameter. For example, large room-temperature non-
linearities have been observed in semiconductor quan-
tum-well structures in which, because of the confine-
ment in ultrathin layers, excitons become quasi two
dimensional.!® Even larger enhancement of excitonic
nonlinearities is expected in one- and zero-dimension-
al quantum confined systems.

The field inside a small particle whose dimensions
are small compared with the optical wavelength but
large compared with atomic dimensions is related to
the external field by E,, = fE,., where the local field
factoris given by f = [1 + A(e — 1)]"L, e = ¢; + ies i
the bulk dielectric constant relative to the surround-
ing medium, and A is the so-called demagnetization
factor, which depends only on the geometry of the
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particle. For a small sphere, A = 1. Thus the inten-
sity inside the particle is I;, = FI,y, with
A—2

F=|fl*= ,
(e, =14+ A2+ ¢,2

(1)

and the particle exhibits an absorption governed by
the imaginary part of effective dielectric constant; & =
FEz.

The structure of the electronic levels of microscopic
semiconductor particles (compared with that of the
bulk material) is radically modified by both dielectric
and electronic confinement. For particles that consist
of more than a few tens of atoms, the effective mass
approximation should hold, and quantum size effects
appear whenever the dimension of the particle be-
comes comparable with the de Broglie wavelength of
the carriers. In this case extended electronic states
are forbidden by the quantum confinement, and elec-
tronic bands transform into a set of discrete levels.!2
Excitonic interaction will produce shifts in the optical
transitions, but it will not affect the discrete level
structure of the optical spectrum.

Excitonic optical nonlinearities in bulk semiconduc-
tors arise from many-body effects.!?> However, in two-
dimensional systems, photocarrier-induced direct
Coulomb screening is already strongly reduced, and
the mechanisms governing the optical nonlinearities
are the Pauli-principle-related phase-space filling (or
-state filling) and exchange interaction.l” As the di-
mensionality is further reduced to total confinement
in QD’s, photocarrier screening becomes completely
negligible and only the Pauli-principle state filling
effect remains active. Consequently, the absorption
saturation of a given interband transition, although
excitonic, will behave as a simple two-level absorber,
with the absorption saturated when the upper state is
(half) occupied. Further details on the theory of sat-
uration of a QD will be published elsewhere.!®

In summary, we can expect the absorption spectrum
of QD’s to consist of a set of discrete lines with en-
hanced oscillator strength and saturation governed by
energy-level occupation. Consequently it is legiti-
mate to model the dielectric constant close to an exci-
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Fig. 1. Universal shape of the local intensity factor profile
near a Lorentzian resonance. Asshown in the upper part of
the figure, far from resonance (on both sides) the field in the
particle is smaller than outside; near the resonance on one
side the field is concentrated in the particle, whereas on the
other side the field cannot penetrate the particle.
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tonic resonance by a background plus a saturable two-
level resonance.!®

In what follows we examine the effect of dielectric
confinement on a small particle with a dielectric con-
stant of the form

c=c +8 o+1

1+8+J
where ¢, is the dielectric constant of the background; ¢
is the normalized detuning, which can be written as é =
(2 — w)/T in terms of the optical frequency » and of
the resonance frequency @ and width T'; 8 is the reso-
nance contribution to the dielectric constant; and J =
I/1, is the intensity normalized to the saturation inten-
sity.

Let us first consider the behavior of F for € given by
Eq. (2) at very small excitations, i.e., J = 0. When
expressed in terms of the shape-renormalized nonres-
onant susceptibility, k = ex — 1 + A™1, F is found to
have the well-known Fano—Beutler profile!?

(2)

1+ 8
T 1+ (5 — 26,)°

where F.. = A~2/k2is the local intensity factor far from
the resonance. The characteristic detuning 8o = —f8/«
measures the resonance oscillator strength relative to
the nonresonant contribution. Cast in this form, the
profile of F is universal; it is plotted in Fig. 1. Far
from resonance (e; > 1, e ~ 0), the field inside the
particle is smaller than outside (F < 1). However,
large changes occur in a small range around the reso-
nance. For small negative values of § (photon energies
above the resonance), the field is concentrated inside
the particle, whereas immediately on the other side
(i.e., photon energies below the resonance), the field is
actually expelled from the particle.

The mechanism for intrinsic optical feedback can
now be described. In the presence of saturation the

3
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dielectric constant inside the particle depends on the
intensity. If the intensity is changed the local field
factor is modified; this in turn changes the intensity
inside the particle, which changes the dielectric con-
stant, and so on. First this increases the dependence
of ¢ on the incident intensity, hence giving enhanced
optical nonlinearities. Furthermore, depending on
the value of the detuning, the feedback can be positive
or negative; hence the appearance of regions of optical
bistability. Although we consider here the specific
case of Lorenzian resonance, it is most likely that this
m%chanism would hold for other functional forms of
R

The correct description of saturable crystallites re-
quires some care. The intensity inside the particle is
the local intensity, so in the expression of the dielectric
constant, Eq. (2), J should be replaced by FJ, where F'
is given by Eq. (3) and, in J = I/I;, I is now the external
intensity. This determines the self-consistent condi-
tion that the dielectric constant must satisfy:

e=¢, +0 0+i . 4)

-2
1+ 42 AT
(e, —1+A7H)2+ €5
In the case of Lorentzian functional form, Eq. (2), an
analytical solution of this equation can be found.

In order to study the behavior of the QD response,
we have solved Eq. (5a) by using parameters approxi-
mately equal to those of CdS (a compound that has
been shown to form microcrystallites with evidence of
enhanced excitonic behavior from quantum size ef-
fects,1920 although we will use only the bulk parame-
ters here as a worst case. We assume spherical QD’s.
In Fig. 2 we have plotted the frequency dependence of
¢sand ¢ for J = 20 (heavy lines) and for comparison for
J = 0 (light lines). Away from resonance as well as for
small positive 8, little saturation occurs. Far from
resonance this straightforward behavior is enhanced
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Fig. 2. Plots of the frequency dependence of the real and
imaginary parts of the dielectric constant for J = 20 (heavy
lines) and for J = 0 (light lines). The material parameters
have the rounded-up values of CdS: ¢. =6, =0.4 meV, Q
= 9.555 eV, and 8 = 40 (corresponding to an oscillator
strength '8 = 1.6 X 10~1).
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Fig. 3. Plots of (a) the imaginary part of the dielectric
constant, of (b) the local intensity factor, and of (c) the
imaginary part of the effective dielectric constant in a CdS
spherical QD as a function of the light intensity normalized
to the saturation intensity.

only by the value of F < 1. However, at resonance and
immediately close to it, for § > 0 the absence of satura-
tion is due to the fact that the field does not penetrate
the QD’s. For small 3 < 0, for which the field is
attracted into the QD’s, the strong effect of dielectric
confinement is apparent; both ¢; and ¢, exhibit strong
saturation and even become multivalued functions.
We have plotted in Fig. 3 the quantities ez, &, and F
versus intensity for three values of the detunings § =
—1, =2, —3. The characteristic bistability S shape is
seen on the curves for § = —1, —2, whereas for § = —3
the detuning is too large and the curve shows only a
kink. Close to resonance the local field factor is
strongly dependent on both & and JJ; thus & can show
enhanced or reduced variations compared with €o.
Because of the reversal of sign in ¢, the orientation of
the sense of the S in the ¢, curve is opposed to that of
the two other ones. Finally, even at detunings where
intrinsic bistability is not possible strong absorptive
nonlinearity can occur, an interesting aspect in its own
right. To evaluate the magnitude of these effects we
use the CdS parameters and assume a 102 filling
factor. We find that, without assuming further quan-
tum confinement enhancement of the oscillator
strength over that of the bulk, a change of several
hundreds of inverse centimeters in the absorption co-
efficient at the bistability transition or in differential
gain are easily obtained.

In conclusion, we have identified a new type of en-
hancement of optical nonlinearity and intrinsic opti-
cal bistability that arises from the combination of local
field effects from dielectric confinement and saturable
excitonic resonances in semiconductor particles. Fur-
thermore, we predict that these effects will be greatly
enhanced when the particles are so small that they also
exhibit quantum confinement. This mechanism pre-
sents a number of novel features. It should be observ-
able in single crystallite, thus avoiding inhomogeneous
resonance broadening due to size fluctuation. It

should be also observable if the particles are arranged
in a matrix. In this case the interaction among parti-
cles can become large enough to produce coherent
effects. However, the main conclusions of this Letter
should remain valid since the principal consequence of
particle interaction is to renormalize the geometrical
factor A.2!

We are pleased to acknowledge stimulating discus-
sions with A. Ashkin, L. Brus, and S. Schmitt-Rink.

Note added in proof: Since the original submission
of the manuscript of this Letter to another journal a
paper has appeared?? that discusses a similar optical
bistability occurring close to plasmon resonances in
microparticles.
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