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Effect of low-power nonlinear refraction on laser-beam
propagation in InSh
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By use of an expansion in Gaussian functions we solve the problem of the propagation of a laser beam that has been
passed through a thin slab of nonlinearly refracting material. We compare the theoretical results for beam profile
with experimental measurements for the semiconductor InSh and confirm that self-defocusing has been observed
by D. A. B. Miller, M. H. Mozolowski, A. Miller, and S. D. Smith [Opt. Commun. 27, 133 (1978)]. The deduced
value for the nonlinear refractive index at ~5 K is —6 X 1075 cm2 W1 at 1886 cm™!. This implies a third-order op-
tical nonlinearity x® ~ 1072 esu, much larger than any previously reported for a solid.

Miller et al.! recently reported the first observation
of various striking nonlinear optical effects in InSb
obtained by using a cw CO laser. In particular, a
Gaussian beam, having passed through the sample, was
found to have developed a complicated profile, which
was power dependent (see Fig. 1). This was tentatively
attributed to nonlinear refraction. We here present a
simple theory for the effect of nonlinear refraction on
beam propagation and show that it can indeed account
for observed profiles. We thus establish the sign of the
appropriate nonlinear coefficient n, and estimate its
magnitude, which we find to be exceptionally high.
This coefficient is defined by

n(r) =n; + nal(r), (1)

where n is the refractive index and I(r) is the beam in-
tensity at position r.

In the geometric-optics approximation, the only ef-
fect of the nonlinear refractive index is to produce a
phase shift, which varies across the beam profile. This
1s a good approximation for low powers and large beam
diameters. According to the theory that follows, the
criterion for its validity is

I, <1, (@)

where L is the thickness of the sample, wq is the (e 2
intensity) beam radius, and I, is the peak beam inten-
sity.

We also assume that the sample is placed at the waist
of the incident beam, as in the case of the measurements
with which we make comparison, although this is not
essential for the tractability of the theory.

Given these assumptions, we are left with the problem
of the propagation in the z direction of a beam that
emerges from the crystal at z = 0 with an amplitude
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E(r,0) = E(0,0) exp

(3)
The phase-shift parameter x is related to ny by
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where w is the radiation frequency and « is the linear
absorption coefficient.

The key to the solution of the problem is to expand
Eq. (3) as follows:
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where the radius of each of the individual Gaussian
terms is given by w,, 2 = we?/(2m + 1). In this way, we

express the initial beam profile as a sum of Gaussian
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Fig. 1. Experimental transmission and far-fieldbeam width
(defined as the diameter at half peak intensity) against peak
intensity. Laser line, 1882 cm™1; spot diameter, 208 um; InSh
sample 7.5 mm long, antireflection coated on both ends,
Np—N4 ~ 3.8 X 1074 cm—3 (n-type); temperature ~5 K.
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beams of decreasing radius, and the propagation of such
beams is described straightforwardly by the theory of
Kogelnik and Li.2 At distance z, the beam becomes

B » (jx)m 22 \-1/2
E(r,z) —E(0,0)% m' (1 +w)
2 T hrl
X exp |- — ’Z(Z)—ngkr(z)—ipm(z)], )

In this formula, w,, is the beam radius of the mth
Gaussian beam, given as a function of z by wp(2) =
wm(0) [1 + (22/d,»2)]V/2, and similarly R,,(z) = z{1 +
(dn2/22)], Pn(z) = —tan~1(z/d,,). The parameter d,,
is the diffraction length, given by d,, = [kw,,(0)%/2],
where k is the wave vector in free space. [The in-
equality (2) results from the comparison of sample
thickness with such a length within the sample, defined
for the value of m that makes the largest contribution
to Eq. (6)].

Note that the sum over Gaussian beams is turned
inside-out in the far field to become a sum over Gaussian
beams of increasing radii.

For a general z, this series must be re-summed nu-
merically to give the new beam profile. However, for
the center of the beam, in the far-field limit (r = 0,
z — ), it can be summed analytically, to give
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Here erf is the error function, also expressible in
terms of the Fresnel integrals.?> This expression has
pronounced oscillations as a function of x and hence
may be a suitable object of future measurements.

[As an alternative to expanding E(r,0) in terms of
Gaussian modes of differing spot sizes, Eq. (5), it is
possible to make an expansion in terms of the
Laguerre-Gaussian modes of equal spot size. These are
described by Kogelnik and Li.>2 Such an expansion is,
however, less satisfactory than that now given because
one must perform integrations to obtain the expansion
coefficients and because the series does not converge so
well as Eq. (5).]

Before using this propagation theory for InSb we
must show that the observed nonlinear absorption!
cannot readily explain all the beam-shape distortion.
We have measured the overall transmission and the
gross width in the far field of an initially Gaussian? laser
beam passed through an InSb crystal (Fig. 1). The
absorption clearly saturates,>® and this could change
the beam shape by giving higher transmission in the
beam center (giving effective narrowing in the near field
and consequent broadening in the far field). There is
indeed an alteration in the beam width correlated with
the change in absorption. However, in the region above
~50 W/cm?2, the beamwidth increases strongly while the
transmission shows very little change. This is evidence
that the beam-shape distortion in this region is refrac-
tive rather than absorptive. Nonlinear absorption can
be included in the present theory, and an effect ~0.02
cm W™ (corresponding to the observed residual non-
linearity of absorption) gives only a small correction.

We have taken data for relatively low powers, for
which the structure in the beam profile is most easily
understood and where the validity criterion [Eq. (2)] is
satisfied, and compared it with theory in the near and

far field (Fig. 2). The initial beam can be considered
as consisting of merely two terms in Eq. (5), and it is
thus easy to see how Eq. (6) gives the near- and far-field
profiles. The best fit has x = 3.5 (self-defocusing).
Self-focusing (x = —3.5) gives an almost identical far-
field profile (omitted for clarity), but the near field is
in obvious disagreement with experiment.

Using Eq. (4) and noting that the sample has a mea-
sured effective linear absorption coefficient of ~0.9
cm~!in the regime of interest, we infer a value for ny of
—6 X 1075 cm2 W1 for radiation of wave number 1886
cm~! (12 em™! from the band gap) at ~5 K, corre-
sponding to self-defocusing.

The conclusion that the effect observed here is self-
defocusing has important consequences for the micro-
scopic mechanism. Since in InSb (for photon energies
below the band gap) the refractive index increases as the
band-gap energy approaches the photon energy and the
band-gap energy reduces with temperature, the re-
fractive index should increase with temperature. For
a Gaussian beam this should lead to self-focusing if
thermal effects are the dominant mechanism. Fur-
thermore, thermal effects would not lead to a functional
form for n as in Eq. (1) (because of thermal conduction)
so that the propagation theory described here would not
apply; therefore the reasonable agreement of experi-
ment and theory (in the near and far field), based on Eq.
(1), is further evidence that the mechanism is not
thermal. One likely explanation, which does predict
strong self-defocusing, is that, just as linear absorption
at frequencies above the band edge influences (by
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Fig. 2. Experimental (solid lines) and theoretical (broken
lines) intensity profiles (a) in the near field at 7 cm from the
sample and (b) in the far field at 189 cm. Data for 130-mW
beam of 1.67-mm spot diameter on laser line at 1886 cm™1;
InSb sample and temperature as for Fig. 1. Theoretical
profiles are shown for the self-defocusing condition (x = 3.5,
dashed lines) in the near and far field and for the self-focusing
condition {(x = —3.5, dot-dashed line) in the near field to
emphasize that the experimental results originate from a
defocusing. In the far field, the focusing and defocusing re-
sults are practically identical. The theoretical and experi-
mental plots are normalized to give the same power levels.



causality) the linear dispersion at all frequencies, then
nonlinear absorption above the edge influences the
nonlinear dispersion at all frequencies, and in particular
at frequencies marginally below the edge. Indeed at the
power levels used, a measure of saturation is expected
above the edge.”® The theory of the resulting band-gap
resonant self-defocusing is discussed elsewhere.6? We
note that equivalent experimental results have been
reported for gases,! self-defocusing occurring at
frequencies just below absorption lines.

We note also that further evidence that this effect is
refractive has been obtained in recent observations of
optical bistability and differential gain in nonlinear
Fabry—Perot devices using InSb as the nonlinear me-
dium. !

We are grateful to W. Firth and W. Kaiser for their
expert advice.
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