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Abstract

In this article we review the experimental and theoretical investigations of the
linear and nonlinear optical properties of semiconductor quantum well structures,
including the effects of electrostatic fields, extrinsic carriers and real or virtual

photocarriers.
Contents . PAGE
1. Introduction . 89
2. Linear optical properties 91
2.1. Excitons in semiconductor quantum wells : 91
2.2. Effects of electric fields . 104
2.3. Effects of doping 121
3. Nonlinear optical properties 141
3.1. Effects of real electron-hole populations 142
3.2. Effects of virtual electron-hole populations 160
3.3. Effects of electric fields 175
4. Conclusions 179

1. Introduction

The development of sophisticated growth techniques for layered semiconductor
structures has stimulated a large body of new work in semiconductor physics over the
last fifteen years or so. Undoubtedly, much of this interest was further stimulated by
the possibility of novel physics and applications in electronic transport. New physical
phenomena such as the integer and fractional quantum Hall effects have been
discovered in inversion channels and heterostructures, and the first heterostructure
electronic devices, such as modulation-doped field-effect transistors and heterojunction
bipolar transistors, are now being commercially exploited. Linear optical spectro-
scopic techniques, such as absorption, luminescence and modulation spectroscopy,
have for a long time been important tools in understanding the basic physics of
semiconductor materials. Also over the last fifteen years or so, semiconductor optical
and optoelectronic properties have become of increasing technological importance in
their own right. The ever-growing application of semiconductor diode lasers and
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related optoelectronic technology in communications and consumer products has
helped to give yet further impetus to research on semiconductor optical properties.
III-V semiconductor heterostructures have benefited particularly; direct band-gap
materials and layered heterostructures are both essential for efficient laser diodes,
even with ‘bulk’ semiconductor materials, Quantum well laser diodes, further enhanced
by the quantum confinement in ultrathin layers, are now of serious practical interest
also. The successes of semiconductor optoelectronics and promising physical mech-
anisms and novel devices using quantum-confined structures have, furthermore,
enlivened the debate over possible applications of optics for other functions such as
logic and switching in communications and computation.

This article reviews the physics of the optical properties of semiconductor micro-
structures, with emphasis on quantum wells and on the consequences of electric fields
and carrier populations created either optically or by doping. The growth of interest
in the physics of optical effects in confined semiconductors, especially over the last six
years, is a result partly of the technological climate discussed above and also of a
happy coincidence of several other factors including: the availability of high-quality,
sophisticated, layered I1I-V structures; advances in the performance and convenience
of short-pulse laser technology; and advances in physical understanding of many-
body effects in semiconductors in general. The emphasis on quantum wells here is a
reflection both of the availability of experimental samples, and of the fact that, being
essentially a single-layer structure, the quantum well is one of the simplest structures
showing clear quantum confinement effects. Quantum wells have therefore served as
a useful model system for quantum confinement. Where possible, in this article we
attempt to extrapolate to higher-dimensional confinement, although there is little
experimental data here because of the lack of a suitable flexible and reproducible
fabrication technology. Other structures with quantum confinement effects in one
direction, such as superlattices with strong quantum-mechanical coupling between
adjacent layers, are now starting to receive more interest for their optical properties,
although the volume of work is still relatively small.

It is important to emphasize at the outset that quantum confinement and layered
structures produce not only quantitative but also qualitative differences in physics
from that in bulk structures, which is of course another major motivation for the
interest in them. There are many examples of these differences. The optical absorption
spectrum breaks up into a series of steps associated with the quantum-confined
electron and hole levels. Excitonic effects become much stronger because of the
quantum confinement, giving clear absorption resonances even at room temperature.
The relative importance of direct Coulomb screening and exchange effects is quite
different in quantum wells (the Coulomb screening is relatively much weaker), giving
very different optical saturation behaviour. Modulation doping, which is only possible
with layered structures, allows high concentrations of electrons without any impurity
scattering, leading to the observation of Fermi-level correlation singularities, a phenom-
enon (to our knowledge) never clearly observed in bulk semiconductors. Electro-
absorption is totally different from that in bulk semiconductors because of the con-
finement of the excitons, resulting in very large shifts of optical absorption peaks (the
quantum-confined Stark effect). Semiconductors already offer an interesting laboratory
to study hydrogenic systems at very high density and high electric fields through the
nonlinear optics and electro-optics associated with excitons; quantum confined struc-
tures allow us to extend this laboratory to include confinement to within less than one
hydrogenic diameter, a regime currently totally impossible with an actual hydrogen atom.
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In this review, we start with a summary of the basic linear optical properties of
quantum wells and related higher-dimensional structures, such as quantum ‘wires’
and ‘dots’ (or ‘boxes’) (section 2.1). We will concentrate throughout the article on the
interband optical properties, although intersubband effects are now starting to receive
more attention. Section 2.2 on the effects of electric fields on the linear optical
properties requires a basic understanding of section 2.1, but otherwise can be read
independently of the rest of the article because many-body effects are not involved
here. It attempts to give a consistent picture of electroabsorption in quantum confined
structures that can also be related to bulk electroabsorption. In sections 2.3 and 3.1,
we have treated the effects of carrier populations on the optical properties in a unified
manner, whether the carriers are of a single species created by (modulation) doping
(section 2.3) or are created optically (section 3.1), because the physics is funda-
mentally linked by the many-body theory and effects, even although the doped effects
are linear optics and the optically-created effects are nonlinear optics. Section 3.2
covers the effects of virtual populations (which can only be created optically) on the
optical properties, continuing the many-body formalism and showing that, except for
relaxation, virtual populations behave and obey the same physics as real ones. Finally
in section 3.3, we examine nonlinear optical effects in the presence of an electric field,
including both ‘real’ and ‘virtual’ population phenomena. We draw our conclusions

in section 4.

2. Linear optical properties
2.1. Excitons in semiconductor quantum wells

In this article, we are mainly interested in III-V heterostructures that interact
strongly with photons of energy close to their band gap. Hence we shall consider only
so-called type-I structures, for which the bottom of the conduction band and the top
of the valence band occur in the same material. Furthermore, since we are interested
in the effects of reduced dimensionality on the optical properties, we shall concentrate
on optical processes involving electronic excitations which are well confined in the
low-gap material. Such a strong confinement occurs for large band-gap discontinuities
at the hetero-interfaces and for low-gap layers spatially well separated. We shall call
the low-gap layers quantum wells (QWs) and the large-gap layers, barrier layers
(BLs). A sketch of a multilayer structure that consists of a stack of alternate QWs and
BLs is shown in figure 1. For the case of strong confinement, which we are considering,
the interaction between the lowest energy states of adjacent QWs is negligible. Thus,
for the most relevant optical processes in the vicinity of the gap, it is possible to
consider the QWs as independent. In direct gap semiconductors, the optical tran-
sitions close to the fundamental gap are governed by excitonic effects, that is, the
final-state interaction between photoexcited electrons and holes plays an important
role. The correct description of optical processes in type-I structures should therefore
account for both excitonic and confinement effects. This is a very difficult task, which
has not yet been completed, but numerous experimental investigations have been
performed yielding a large amount of reliable data, so that the main features of linear
optical effects in type-I structures are relatively well known. They have been explained
with satisfactory accuracy by models based on the effective mass approximation
(EMA). To introduce the main results as physically as possible we shall proceed as
follows. Since exciton wavefunctions are built up from combinations of electron and
hole single-particle wavefunctions, we first summarize the effects of confinement on
the single-particle states. Then we will consider excitonic effects in the ideal limit of
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Figure 1. Schematic of a GaAs/AlGaAs multiple quantum well structure.

a pure two-dimensional motion of electrons and holes with a 1/r Coulomb interaction.
Finally, we will consider the case of real QW structures; we will present some typical
experimental data and discuss how the two idealized situations described first must be
combined and amended to explain the experimental results.

In QWs the electrons (¢) and holes (h) are free to move in the plane of the layers
(x, y) whereas their motion along the normal to the layers (2) is strongly affected by
the potential discontinuities at the interfaces. Although in the best current hetero-
structures the band gap can experience large discontinuities over distances of the
order of the primitive cell parameters, it is found that the single-particle states are well
described within the EMA. According to this approximation, the carrier dynamics are
determined by the band parameters of the bulk compounds, such as the effective
masses. When the Coulomb interaction is neglected, the motions in the plane and
along the normal are independent.

To get a general insight into the effects of confinement on the single-particle states,
it is useful to consider first the idealized case of a cuboidal sample limited by infinitely
high potential barriers. The sample dimensions L,, L, and L, are comparable to
the characteristic lengths governing the carrier dynamics; namely the de Broglie
wavelength or Bohr radius. It is customary to call such a sample a quantum box (QB)
because quantum size effects occur in all directions. We will derive the energy
structure of a QB and follow the evolution to higher dimensions by letting the length,
width and height go to infinity. The electron and hole wavefunctions are sinusoidal
inside the sample and vanish outside; they can be written as

2. = VNS OWEE), @1.1)
with y&"(z) = (2/L,)"*sin (k,2) and similar expressions in the other two directions.
The wavenumbers are quantized according to k; = /L), j = %,y 2, both for
electrons and holes. They form a complete orthogonal set with a discrete spectrum,

E. . = E + EN + E* + E3N, (2.1.2)

where E, is the band gap and the confinement energies in the three directions are
E,,‘,*‘ = (-rrn,/L,)’/(zm,,.,), m, and m,, being the electron and hole effective masses (in the
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j direction if the medium is anisotropic). (Throughout the article i = kg = lisused.)
Owing to the orthogonality of the wavefunctions, optical transitions obey the selection
rule that the electron and hole quantum numbers must be identical, that is, only
transitions with (n,, n,, n,)* = (n,, n,, n,)* are allowed. The corresponding zero-
dimensional (0D) joint density of states (DOS) consists of a series of J-functions,

W) = 2 ) 8@ — Epnm, — Ennn)s 2.1.3)
Ry My 0y
. where the factor 2 in front of the sum accounts for spin degeneracy. The above
formulae are used in elementary text books to discuss energy levels in periodic media.
A one-dimensional (1D) sample or ‘quantum wire’ is obtained by letting the length,
say L,, go to infinity. Then the wavenumbers, k,, span a continuum and the energy
associated with it becomes E,f;" - k2/(2m, ). The resulting one-dimensional DOS per
unit length is <
@) = ~@mn S @-E - E, - B, - B\ - E)7% 214
2.“, s x 'z x 'z
where m is the electron—hole reduced mass (m~' = m.' + mi'). ¢'°(w) exhibits
van Hove singularities at the onset of each transition. For a ‘quantum well’ sample,
one has to let in addition the width of the sample, say L,, go to infinity. Now k, and
k, span a two-dimensional continuum and E;* + E;* - (] + K)/(2m,y). The
two-dimensional (2D) DOS per unit area is

P = EZ 8w — E, - E, — E), (2.1.5)

where 6(E) is the Heaviside function (8 = 0 forE < 0, =1for E > 0). The 2D DOS
has a step-like structure with constant plateaus for each of the allowed nt = n}
transitions. Finally, the usual three-dimensional (3D) behaviour is obtained when the
height goes to infinity as well. Thenk = (k. k,, k.) spans a 3D continuum and the
e and h energies are simply E:;'_’,,,_,., - EJ2 + k*/(2m, ). The 3D DOS takes on the
well known form

Plw) = #(M)”’(w - E)'2. (2.1.6)

The evolution of the joint DOS from 0D to 3D is clear. The discrete lines of the 0D
system become more and more densely packed as one of the sample dimensions
becomes larger. When the sample becomes infinite in one direction, the corresponding
states finally merge to form a continuum. (An example of this evolution as it affects
the absorption spectrum is given below in figure 16 for a GaAs-like quantum box
(Miller et al. 1988).) In figure 2 we show an example of a 2D and a 3D DOS. In this
simplified case, at the onset of each transition, the 2D DOS is equal to the 3D DOS.

Let us now consider the case of real semiconductor QWs for which the confine-
ment potential corresponding to the conduction and valence band discontinuities,
AE,,, is finite. The wavefunctions can now penetrate the barriers and in each band
there is only a limited number of confined states with energies smaller than AE,,. The
wavefunctions are sinusoidal in the QW and exponentially decreasing in the BL
(Ando et al. 1982). In analogy with the infinitely confined case, these states can still
be labelled by a ‘normal motion’ quantum number, n, = 1,2, ... . There are also
states with energy larger than the band discontinuities. They form extended (3D)
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Figure 2. Single-particle density of states in 3D and in an infinite quantum well with
thickness L,.

continua in which the density of states shows resonances at specific energies analogous
to resonances of an optical cavity (Bastard 1984).
The wavefunctions in the z direction, :;", obey the 1D Schrédinger equation,

_i__l._a_'l’_::.g. VouZaWEE = Esbyct 2.1.7
aze.h zme,h aze.h eh\leh /¥, — n, ¥n, s <l

where ¥, ,(2..,) is the structural potential that describes the band discontinuities. In
equation (2.1.7) the masses m, , depend on z since they are not the same in the QW
and in the BL. The resulting boundary conditions describe the conservation of the
probability density and probability current across the hetero-interfaces (Bastard and
Brum 1986). The solution of equation (2.1.7) is straightforward. The quantum number
n, which labels the states of the discrete spectrum has a simple interpretation. It
determines the number of nodes, (n, — 1), of the wavefunctions nﬁ:;“ . These states are
less bound than the corresponding states of the infinite well and their number is equal -
to one plus the number of states of the infinite well with energy smaller than AE, ,.
A sketch of the potential variation in the z direction and of a set of corresponding
wavefunctions is shown in figure 3.

The motion in the plane of the QW is very simple for the electrons which originate
from the non-degenerate I minimum of the bulk conduction band. For them, the
in-plane wavefunctions are planc waves with a parabolic dispersion corresponding to
the buik effective mass, m,. The behaviour of the holes is much more complicated. In
bulk II-V compounds the top of the valence band consists of a J = 3 upper valence
band multiplet and a J = 1 lower valence band which is depressed by the spin—orbit
splitting (Luttinger and Kohn 1955, Dresselhaus et al. 1955). The J = 3 bands are
degencrate at the zone centre, but are separated for k > 0 because of the smaller
curvature of the J, = + 3 (heavy hole; hh) component as compared with that of the
J, = + 1 (light hole; Ih) one. A correct description of the holes should treat on equal
footing the k * p perturbation and the confinement. This can be done only numerically.
Sticking to our approach, we will proceed by successive approximations to get an
insight into the physics involved and only then will we give the results of some full
numerical treatments.
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Figure 3. Potential variation and single-particle wavefunctions normal to the quantum
well plane.

Near the zone centre, the dispersion of the J = 2 multiplet is described by the
Luttinger Hamiltonian (Luttinger 1956),

H = 5”1—10[@. + Sy = 21 (BF2 + K+ k)

_ ayy(k ik, + Kk, + BTN + L @18

where 7, 1 ; are the Luttinger parameters and m, is the free electron mass. For most
of the ITI-V heterostructure growth, the epilayers are such that the normal is along
one of the bulk crystal axis (used as substrate), that is z / [001]. One sees from
equation (2.1.8) that in this direction the masses in the bulk corresponding to the
J,= +landJ, = % 3 components are m, = me/(y: L 2y,) respectively. If one uses
these masses in equation (2.1.7) to calculate the energies of the holes in the z direction,.
it is found that the confinement lifts the degeneracy of the upper multiplet giving two
separate bands,a J, = + 3 hh subband with m, p = me/(n — 272) andaJ, = +1}
Ih subband with m,,, = m/(y, + 272)- For example, in the case of an infinite well,
the energies of the first hh and lh states at k., = 0 are EM™ = (w/L,)*/(2m, ) and
EM = (w/L,)}/(2m,). To gain insight into the origin of the complex in-plane
behaviour, let us first neglect the effects of the confinement on the dispersion and
assume for a moment that the hh and lh do not interact. Then, putting k, = k, = 0
and k, # 0 in equation (2.1.8), one finds from the Luttinger Hamiltonian that the th
and hh have a parabolic dispersion with a reversal of curvature. The corresponding
MAasses are My, mon = mo/(y, F v,), that is, in the plane the light hole (J, = 1)is
heavier than the heavy hole (J, = £ 3). Within this oversimplified approximation,
the two bands will cross for some k, , > 0. Again for the infinite well, the results can
be expressed analytically. In this case the band crossing occurs at kK = m,/2/L,. This
situation is of course unphysical and, when one accounts for the k* p terms and the
confinement potential, the crossing is removed. The resulting anti-crossing produces
a strongly non-parabolic in-plane dispersion with rather flat hh bands and band
mixing (Chang and Schulman 1983), that is, in each band the character of the hole
close to k = 0 is reversed for k » m/2/L,. The full diagonalization of the hole
Hamiltonian is complicated but straightforward and must be carried out numerically
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Figure 4. In-plane valence band dispersion against wave-vector for two GaAs/Aly;GagrAs
quantum wells (L, = 100, (a) and 150 A, (b)). The dashed lines show the dispersion when
band mixing is neglected. (After Bastard and Brum (1986).)

(Ekenberg and Altarelli 1984, Broido and Sham 1985, 1986, Bastard and Brum 1986).
The main results confirm the above intuitive discussion. This is shown in figure 4
where valence band in-plane dispersion curves of 100 and 150 A GaAs QWs calculated
by Bastard and Brum (1986) are presented. The solid lines give the non-parabolic
behaviour of the n, = 1 hh and 1h and the n, = 2 hh. It is seen how the n, = 1 hh
band is flattened; furthermore, because of the strong effect of the n, = 2 hh band, the
n, = 1 Ih band exhibits a camel-back shape (Ekenberg and Altarelli 1984). The
dashed lines indicate the parabolic dispersion and show the band crossing that would
occur if the hole subbands did not interact. .

The strength of optical transitions is given by the product of the square of
the interband dipole matrix element (lero|?), the e-h envelope function overlap
integral and the joint DOS, ¢(w). Thus, within the single-particle picture, the
absorption spectrum consists of a set of continua corresponding to transitions
between the various valence and conduction subbands. For a 2D parabolic dis-
persion valid close to k = 0, we can use equation (2.1.5) for the joint DOS. The
absorption spectrum compriscs a series of steps for thehh — eandth — ¢ transitions
with height m/n, where m is the proper reduced e-h mass (m~' = m;' + M)
Close to k = 0, where the hh and lh character is well defined, the squares of the
interband dipole matrix elements from the hh and Ih subbands to the e subbands
are proportional to § and } respectively, when the optical field is polarized parallel
to the plane of the QW, and proportional to 0 and 1 for a field normal to it. Owing
to the difference of masses, the e and h wavefunctions do not penetrate equally
into the barriers, causing a breakdown of the An, = 0 selection rule. However, the
n., # ny, transitions usually remain weak. They are often referred to as ‘forbidden

transitions’.
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The absorption spectrum is of course modified by the e-h Coulomb interaction.
In bulk semiconductors, this interaction produces a hydrogenic series of excitonic
peaks below the band edge, and a correlation enhancement in the continuum above
it. The exact deseription of excitons in confined structures is complicated and a
number of simplifying approximations are necessary to make the problem tractable.
Throughout this article we shall use natural units of energy and length which we will
express in terms of the 3D Rydberg R = (¢ m)/(2€) and Bohr radius ag = € [(mé?),
where ¢, is the static dielectric constant of the medium and m is the e-h reduced
mass.

As in the case of single-particle states, we will first make some general comments
on the effects of reduced dimensionality on the electrostatic interaction before
specializing to QW. Let us note first that the form of the Coulomb potential itself may
be substantially modified if the microstructure is embedded in a medium with a very
different dielectric constant. These local field or image force effects can be important
if the dielectric discontinuity is large (Bottcher 1973, Brus 1986). The general expression
of the Coulomb interaction between two charges in a layer thinner than the 3D Bohr
radius has been discussed by Keldysh (1979). He showed that its functional form is
significantly affected if the dielectric constant of the layer and the surrounding
medium are very different. However, if they are close, the Coulomb interaction varies
indeed like r~', except for very short distances. Luckily the QWs fabricated up to now
consist of alternate layers (QW and BL) of materials with very close dielectric
constants. In this case there is no dielectric confinement, only the particle motion is
modified. Consequently, we will limit ourselves to the ideal case of € and h interacting
through an I(r) = €/(€r) potential, assuming that the QW is surrounded by a
medium with identical dielectric constant.

For a cuboidal sample of dimension L, the Coulomb energy varies as L~" whereas
the confinement energy varies as L-2. Hence, as the size decreases the Coulomb
energy becomes relatively negligible. In the limit of microscopic cuboids the Coulomb
interaction is too weak to affect the wavefunctions which are almost completely
governed by the confinement (Brus 1986, Schmitt-Rink et al. 1987, Bryant 1987, 1988).
It is natural to call this situation the ‘regime of strong confinement’. In addition, when
the Coulomb force produces bound states onc can view the bound e-h pairs as
‘Coulomb confined’ systems. The notion of strong confinement results then from the
comparison of the Coulomb confinement with that due to the crystal potential. If we
consider now the cases where the particles are free to move in 1D, 2D or 3D, the
Coulomb attraction is fully effective in these directions and even if the other directions
are in the strong confinement regime, there will be excitonic effects. The Coulomb
potential is singular at r = 0; therefore if ¢ and h have a non-zero probability to be
at the same point in space, the energy is infinite. As shown below, this singularity can
be dealt with in 2D and 3D but it produces some difficulties in the 1D case. If the e-h
relative motion is described by the wavefunction ¢(r), the radial probability to have
the e and the h at a relative distance r is P(r)dr = | (") d,pr, where d,pr is the element
of volume in n = 1,2 and 3D. In 2D and 3D this gives Ppp(r) = 2mr|¢(?)! and
Pp(r) = 4nr | (r)I? respectively. Therefore, even if (r = 0) # 0, the probability of
having the two particles at the same place vanishes. This explains why the binding
energy of hydrogenic s states is finite in 2D and 3D. Conversely, in 1D the element
of volume does not appear in the relative probability distribution, Pp(x) = [P,
giving an infinite binding energy for s states (Loudon 1959, Haines and Roberts 1969).
To avoid this difficulty one has to remove the singularity of the Coulomb potential
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by introducing a cut-off in the potential, namely /(x) = 1/(x + x,) (Loudon 1959).
It is then found that the binding energy and wavefunction of the ground state depend
critically on the cut-off distance x, (Haines and Roberts 1969). Luckily such difficulties
do not appear in 2D which we consider now.

The theory of excitons in 3D semiconductors is extremely well documented
(Knox 1963, Dimmock 1967); it turns out that for the case of a pure 2D motion and
I(r) = €/(€,r), the e-h interaction can also be solved exactly (Shinada and Sugano
1966). It is found that the 2D and 3D cases are formally similar. In the next
paragraphs, in order to follow the effects of reduction of dimensionality on the exciton
structure, we will discuss the general framework of the formalism and establish
parallels between the most relevant quantities in the two cases.

Excitonic states can be expressed as a linear combination of e-h pair states

[pair) = c (k.)ey (ky)lgD, (2.1.9)

where ¢, (k. ,) are electron and hole creation operators and |g) is the crystal ground
state with an empty conduction band and a full valence band. To discuss optical
transitions, it is convenient to make a transformation to the centre of mass and
relative motions. This introduces the wave-vector of the centre of mass, K = k. + k,,
that is, the ‘total’ momentum of the pair, and k = (m,k. — m.ky)/(my + m.) which
is the Fourier conjugate of the relative distance coordinate (r = r, — ry). In optical
transitions we can neglect the photon momentum, so that for photogenerated excitons
K = 0,k = k., = —k,, and we can write for the exciton wavefunction

Xa> = Zd’.(k)&* ®)ex (—k)|g>. (2.1.10

To simplify the notations we do not mention explicitly spin composition and indices.
#.(k) is the exciton wavefunction in k-space; it obeys the Schrodinger-Wannier
equation describing the e-h relative motion in k-space (Haug and Schmitt-Rink
1984),

E$,(K) = (e + €)Pa(k) — gz(k - k)¢, (k"), 2.1.114)

where E, is the relative motion energy, €.w = E;/2 + k*/(2m,,) are the single-particle
energies, and /(q) is the bare e-h Coulomb interaction expressed in k-space, Ip(q) =
amé*leyq” and Lp(q) = 2meé?/€,q, screened only by the static dielectric constant of the
material, ;. The expressions for /(g) differ in the two cases because of the dependence
of Fourier transforms on dimensionality. The index n runs over the discrete (bound
states) as well as over the continuous (scattering states) spectrum. To prepare the
discussion on nonlinear optical processes, let us rewrite equation (2.1.114) in a
slightly different form. We introduce the unperturbed Hamiltonian describing the
relative e-h motion, H?, = [€4 + €] — I(k — k’), and write

Z[H.t.. — EbJn(k) = 0. (2.1.115)

In most of the theoretical texts on linear absorption of excitons (Knox 1963, Dimmock
1967) one returns to the r-space representation at this point of the discussion. This is
done by a Fourier transformation of the exciton wavefunction and the Schrédinger
equation. In real space the exciton wavefunction is ¢,(r),

é.() = Zcxp(ikw)d’.(k). (2.1.12)
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¢,(r) obeys the well known hydrogenic Schrodinger equation and all discussion is
usually limited to the r-space representation where the analogy with the hydrogen
atom can be fully exploited. Of course, the two representations have the same physical
content and, as shown in the next sections, it is better to stay in k-space for treating
the nonlinear optical processes and many-body effects associated with large densities
of carriers. The reason for this is that in crystals only kis a ‘good quantum number’
so that the exclusion principle and other fundamental mechanisms that affect the
_ excitons are more naturally expressed in k-space. For example, let us consider the

excitonic effects on the strength of optical transitions. They are determined by the
square of the matrix element of the dipole operator

Fo= er(k)c,(k)c..(—k)

between the crystal ground state and the exciton state,
IKgIFXa P = Z $a(k)rc (k) Z 2k Ire k). (2.1.139)

It is customary to assume that r., (k) is a slowly varying function of k (i.e. R <€ E,)
that can be taken out of the sum in equation (2.1.13a),

IKEIFX P ~ Il Z . (k) Z PHK) = Irallgar = OF. (2.1.13D)

Although the form of equation (2.1.13 b) given in the last line is the most commonly
used, it is very difficult to generalize it to the case of band occupation by carriers due
to doping or photoexcitation. On the contrary, as shown in the next sections the form
given in the first line is most suitable for natural extensions.

Using equation (2.1.13b) to calculate the linear optical susceptibility, x, one
obtains the well known Elliott formula (Elliott 1957),

_ 2O ga(r = O)F
x = 2r,l ) _—_E. 13 (2.1.14)
The absorption coefficient is obtained from the imaginary part of x through a(w) =
[4w)/[en(w)) Im x, where n(w) is the refractive index. This implies that the e-h
correlation produces strong peaks in the absorption spectrum, at the energies of the
s exciton states with zero angular momentum for which |¢,(r = O)I # 0. The usual
interpretation of this result is that the absorption is enhanced by the e-h correlation
in proportion to the increased probability of finding the electron and hole at the same
site. The optical spectrum is thus directly determined by the energies and wave-
functions of the s states. The solution of the hydrogenic Schrodinger equation in 2D
gives for the bound state encrgies E® = E, — Ri(n - 1)* (Shinada and Sugano
1966) as compared with the 3D result E® = E, — R/n’. The wavefunction of the 1s
state which determines the onset of absorption is

2\? 2 2r
f? = (;) Z;CXP(— a—n) (2.1150)

__(2m)'"*(as/2)
PR (k) = mjm (2.1.15b)

in r-space and
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in k-space. Let us recall for comparison that in 3D the corresponding functions are

o) = (?),',?B,-,exp<— é) (2.1.160)
8 12 32
k) = %. (2.1.165)

Several points are worth noting:

(i) in 2D the first (1s) exciton is more bound (E® = E, — E, = E, — 4R) then
in 3D (EX = E, — R), hence the 1s-excitonic enhancement is larger.

(ii) conversely, the e-h overlap at r = 0 in the excited states (n > 1) decreases
more rapidly in 2D than in 3D since |¢,(0) = (2n — 1)7%|¢,,(0)? in 2D,
whereas in 3D |$,(0)F = (n)~°|,,(0).

(iii) the 2D Bohr radius of the exciton determined by the wavefunction equation
(2.1.15)is a, = ag/2so that E, x @ = (2m)™' = R x & as in 3D.

(iv) in 2D the charge density maximum occurs at ap = ay/4 whereas in 3D it
occurs at ayp = a, so that in both cases 2B, x a,, = 2R x ayp = é¥e,.

This shows that in both dimensions the position of the maximum charge density is
determined by the equilibrium between electrostatic and kinetic energies (i.e. the virial
theorem).

The excited states merge into a quasi-continuum (n > 1) that continuously
connects to the true continuum of unbound states. The wavefunctions of these
unbound states can also be determined exactly; they describe the residual e-h
correlation in the scattering states above the ionization limit (n = o0). The complete
expressions are quite complicated, but they reduce for the quantities of interest for the
optical spectra to

2

$i°(r = 0) = T+ op(—oma b’ 2.1.17)
_ _ 2/agk
16:°(r = O)F = M=o~z (2.1.18)

Let us note that the dimensionless e-h relative momentum agk also measures the
normalized detuning from the gap, ggk = (0 — E,)/R. The effects of correlation at
and above the gap are very important. In 2D, for @ = E,, |#i°(r = 0)? = 2, and
even 10 Ryd above the gap, (0 — E))/R = 10, |¢°(r = 0)? is still 30% above the
single-particle limit.

Putting together the theoretical descriptions of ideal cases that we have analysed
so far, we can infer that the absorption spectrum of QW structures consists of two
series of steps with flat density of states corresponding respectively to the hh — ¢ and
lh — e transitions from the valence subbands to the conduction subbands. Each
transition exhibits exciton peaks at its onset and a correlation enhanced continuum
above (Dingle et al. 1974). Unfortunately, if one wishes to go beyond this general
picture and determine quantitatively such parameters as the exciton binding energy
and lineshape, these models are too oversimplified to be useful. Strictly speaking they
do not apply quantitatively to real semiconductor QWs. However, for a number of
reasons they are a good starting point.

There are a numbser of difficulties in rigorously treating excitons in real QWs. The
first one is related to the e-h interaction in QWs with finite well width for which the
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correct expression of the Coulomb force is —&/(el? + (z. — 2,)']"). This shows
that the Coulomb interaction couples the motions along the normal and in the plane
of the layer, that is, the different conduction and valence subbands. It is customary
to neglect this coupling among the various subbands and in particular the coupling
between the light and heavy hole. This is justified in the regime of strong confinement
perpendicular to the layers, that is, as long as the energy separation between subbands
is much larger than the exciton binding energy. Thus, this approximation holds for
the subbands with different n, and narrow wells, but it is questionable when applied
to light and heavy holes of the same series. As discussed above, in the strong
confinement regime the motion of the particles along the normal is governed by the
confinement potential and the Coulomb interaction mainly affects the motion in the
plane.

The second difficulty is related to the holes; we have seen that their degeneracy is
lifted, giving two series of well separated subbands. Correspondingly, at the onset of
each transition exciton resonances appear associated with the heavy hole (hh) and the
light hole (lh) respectively. The problem of choosing in-plane masses for each hole to
describe the relative e-h motion has not been solved. The usual approach is to
‘average’ the valence subband dispersion (over the distribution ¢(k)) to define a ‘mean
effective mass’ for each hole, and to usca parabolic dispersion in the exciton Wannier
equation to describe the e-h correlation. The corresponding values of the hole masses
found in the literature are quite often a matter of personal taste.

Most of the theoretical determinations of the exciton binding energy performed
so far use variational calculations, starting from well behaved wave functions to
minimize the e-h Hamiltonian (Lee and Lin 1979, Miller et al. 1981b, Bastard et al.
1982, Greene and Bajaj 1983, Greene et al. 1984, Bauer and Ando 1987, Miller et al.
1985a). In the infinite well depth approximation, if trial wavefunctions inseparable in
z.» and (x, )., are used, a smooth variation of the binding energy from 4R to R is
found for L, /ag varying from 0 to o, in good agreement with physical intuition. In
practice, this does not apply to real QWs because, in the case of finite well depth, the
penetration of the € and h wavefunctions into the barrier material increases as
L,/ag — 0, so that for very thin wells the exciton tends toward the 3D exciton of the
barrier material or of the superlattice formed by the thin.layers embedded in the
barrier material. Then the binding energy tends toward the corresponding Rydberg,
(Greene and Bajaj 1983, Greene et al. 1984). Nevertheless a significant enhancement
of the QW exciton binding energy is predicted, with a maximum in the range
3R < E, < 2Rfor} < L,/ay < 1.Figure 5 shows an example of the dependence of
the hh and lh exciton binding energy on well thickness in GaAs/Al,Ga,_,As QWs
calculated by Greene and Bajaj (1983) and Greene et al. (1984) for three well depths.
The curves for the infinite well show a monotonic increase as L, — 0; conversely, the
curves for AE, ~ 228 and 114meV and AE, ~ 152 and 76 meV, corresponding to
aluminium contents in the BL x ~ 0-3 and 015, have a maximum at E, ~ 2R (i.e.
E, ~ 9meV) for L,/ag ~ 0-4.(i.e. L, ~ 50 A).

It is time to examine some experimental results. In figure 6, the absorption
spectrum of a high quality GaAs sample 1 pum thick is compared with the spectrum
of a GaAs QW structure. The QW structure consists of 50 periods of 100 A GaAs QWs
and 100A Al,;Gay,As BLs. The difference is striking. The spectrum of the GaAs
sample shows a steep edge, with a bump which is the remnant of the exciton peak at
300K, and a smooth continuum above. The spectrum of the QW sample shows the
onset of absorption shifted by the confinement followed by three plateaus that
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Figure 5. Variation of the exciton binding energy in a GaAs/AlL,Ga,_,As quantum well, as
a function of quantum well thickness. The solid lines correspond to the heavy-hole
exciton and the dashed lines to the light-hole exciton. Curves for the three well depths
are shown: an infinite well; AE,; ~ 190meV and AE, ~ 380meV corresponding to
x ~ 0-15 and 0-3 respectively. (After Greene er al. (1984).)
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Figure 6. Comxa.rison of the room-temperature absorption spectra of high-quality bulk and
L, = 100A quantum well GaAs samples. The bump at the onset of the bulk spectrum
is the remnant of the exciton resonance. The quantum well spectrum shows the onset of
absorption shifted by the confinement, followed by excitons and plateaus corresponding
ton, = 1,2 and 3. The n, = 1 hh and Ih excitons peaks are remarkably well resolved.
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correspond to the n, = 1, 2and 3 transitions. Before each plateau exciton resonances
are seen. For n, = 1 the hh and Ih exciton peaks are remarkably resolved at this
temperature, the n, = 2 and 3 hh excitons are still well resolved but the n, = 2 lh
resonance appears-just as a bump above the hh peak and the n, = 3 is not resolved.
In the n, = 1 continuum just before the n, = 2 exciton one can distinguish a kink
which corresponds to a forbidden transition. It is worth noting that the total thickness
of active material in the QW sample is half that of the GaAs sample showing the
enhancement of the absorption strength due to the confinement. The rather wide
width of the resonances is not only due to the high temperature, but it has also
contributions that originate from imperfections. This is shown in figure 18 (a) where
the absorption spectra of an IngGag s As/Ing; Alys; As quantum well structure
measured at 12, 200 and 300K are presented. This structure consists of 100 periods
of 100 A QWs and 100 A BLs grown lattice-matched on an InP substrate. The spectra
show how the resonances sharpen and increase as the temperature is lowered. At the
lowest temperature the exciton peaks are still broad. This is due to unavoidable
imperfections such as monoatomic fluctuations in the layer thickness, strain due to
small lattice mismatch, interface defects and suchlike which produce the inhomo-
geneous broadening seen at low temperature (Weisbuch er al. 1981, Hegarty and
Sturge 1985). For not too narrow wells (L, ~ 100 A) the absorption profile is well
fitted by exciton peaks with Gaussian lineshape and broadened 2D Sommerfeld
enhanced continua (Chemla ez al. 1984). Investigation of the temperature dependence
of the broadening of the hh-exciton (Chemla et al. 1984, Weiner et al. 1985a, Livescu
et al. 1988) shows that its width varies as the density of LO phonons,

+ Tio
exp(wpo/T) — 1

nrT) = I (2.1.19)

In equation (2.1.19), I; is the width due to the inhomogeneous broadening and I
measures the interaction with polar LO phonons which are therefore identified as the
dominant temperature mechanism reducing the exciton lifetime. The very large width
of the n, > 1 excitons, and in particular of the n, = 2 Ih exciton, is most likely due
to intersubband coupling. Because these resonances are above the continuum of the
n, = 1 excitons, their lifetime is reduced by any intersubband scattering such as
Coulomb interaction or phonon scattering. The coupling to a continuum of states can
induce a Fano lineshape as discussed recently by Broido et al. (1988).

It is interesting to note that excitons are still resolved at room temperature even
in InGaAs QWs, although the gap of bulk InGaAs is half that of GaAs. This is a
consequence of the increasing binding energy even in this low-gap material and a
remarkable compensation of two effects. The 3D exciton binding energy scales
roughly with the gap owing to the dependence of the effective masses on E,. This gives
a binding energy of the exciton in bulk InGaAs (~ 2-8 meV) about twice smaller than
in GaAs (~4-2meV) and correspondingly it is very difficult to observe excitons in
bulk InGaAs even at low temperature. However, as noted in a previous paragraph,
the binding energy is inversely proportional to the Bohr radius. Since the dielectric
constant, €, is roughly the same, the Bohr radius in InGaAs (~ 300 A) is thus about
twice that in GaAs (~ 140 A). The confinement in QWs of the same thickness is thus
more effective for the low-gap compound and the increase in binding energy due to
the confinement compensates for the reduction due to the lower gap. Typical values
are E, ~ 6meV in InGaAs and E, ~ 9meV in GaAs for L, = 100A.



104 S. Schmitt-Rink et al.

Finally, it is worth noting that the excitons at room temperature are very ephemeral.
If one interprets the temperature dependent broadening as a reduction of life time due
to collisions with LO-phonons, one finds that excitons live only 400 fs in GaAs QWs
and 250 fs in InGaAs QWs. The interpretation of this short life time is that because
the LO phonon energy (~ 36 meV in both materials) is much larger than the exciton
binding energy every collision ionizes the exciton, releasing an e-h pair with a
substantial excess energy. At high temperatures the large density of LO phonons
increases the collision frequency, hence the functional form of the exciton linewidth
given by equation (2.1.13). At room temperature the absorption of a photon thus
creates an exciton which almost immediately collides with an LO-phonon producing
a free e-h pair. This sequence of events causes unusual dynamics in the ultrafast
nonlinear optical response of QW structures which will be discussed in section 3.1.

2.2. Effects of electric fields

It is well known that electric fields affect the linear optical properties of bulk
semiconductors near the optical absorption edge. For example, the first and best
known mechanism was the Franz-Keldysh effect (FK) (Franz 1958, Keldysh 1958),
which correctly predicts the growth of a weak absorption tail at photon energies
below the nominal bandgap energy with applied electric field. It is natural to ask
therefore what will be the electroabsorption effects in QWs and other confined
structures, and what relation will they bear to the mechanisms already known for butk
semiconductors. In the discussion that follows, we will see that, just as in the bulk, the
inclusion of excitonic effects is crucial for the understanding of the electroabsorption,
both from quantitative and qualitative points of view, and current understanding does
explain the basic electroabsorption effects, at least in QWs.

QW electroabsorption differs from that of the bulk in several ways; most
importantly, the mechanisms are very different depending on whether the electric field
is parallel or perpendicular to the QW layers, with qualitatively different behaviour
for the perpendicular field case (the quantum-confined Stark effect (QCSE)) (Miller
et al. 1984a, 1985a, Brum and Bastard 1985). The QCSE has received a lot of atten-
tion for devices (Miller 1987) because it is a very large electroabsorption effect even
at room temperature, allowing low-energy optical modulators and switches, and it
operates under technologically convenient conditions; it is compatible with laser
diodes and semiconductor electronics in wavelengths, powers, voltages and materials.
We will not discuss devices at any length here, concentrating instead on the physics.
In this section, we will attempt to explain the physical mechanisms of electroabsorp-
tion in quantum wells and to relate them to bulk effects (Miller ef al. 1986 a). We will
attempt to summarize some of the recent work in this active resecarch areca. We will
also extend the theory to confinement in quantum ‘wires’ and quantum ‘boxes’ or
‘dots’ (QD) (Miller et al. 1988).

To understand the QW theory, we will try to present a consistent theoretical
picture that can explain electroabsorption in bulk semiconductors, quantum wells and
more highly-confined structures. We start by noting that the optical absorption, that
is, the imaginary part of the optical susceptibility, can be represented rather generally
by a relation of the form

Imy < ) KelfiX,)é(@ — E,), @2.1)
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as discussed for equation (2.1.13-14). In all cases, the evaluation of the absorption can
be reduced to:

(i) solving for all possible electron-hole pair states [X,) and their energies E, by
solving the relevant Schrodinger equation (which in the present case will also
include an applied electric field);

(ii) evaluating the dipole matrix elements as above; and
(iii) summing as above.

We state this explicitly to emphasize that this is a complete prescription within our
approximations, and we can use it to solve for electroabsorption in all dimensions,
with or without inclusion of excitonic effects; this is true even although the qualitative
explanations of various electroabsorptions are often explained most easily using
apparently different descriptions (e.g. the Franz-Keldysh effect is often explained as
photon-assisted tunnelling between bands (Franz 1958)) that are formally equivalent
to this prescription. Treating only Wannier excitons, we may remove Iro |* as essen-
tially a constant in equations (2.2.1) or (2.1.14), and we will henceforth omit it in this
section.

For three dimensions we transform to centre of mass and relative motion
coordinates and obtain

Imy o« ), 6,¢r = OFé(@ — Ev), (2.22)

as in equation (2.1.14). Note that this standard transformation already simplifies the
problem because the centre of mass motion is always zero from momentum conser-
vation in direct optical transitions; this remains true even in the presence of field since
the field does not affect the centre of mass motion because the pair is neutral overall.

To treat the Franz-Keldysh effect, we have to solve the Schrodinger equation for
an electron-hole pair in a static electric field, neglecting the electron-hole Coulomb
interaction (i.e. no exciton effects); this neglect decouples the motion in the direction
of the field (say the z direction) from that in the other coordinate directions, leaving
those motions as plane waves, and the only non-trivial equation to be solved is for the
relative motion in the direction of the field, giving

(— 2—]; g;— + er) o(z) = E¢(2), (2.23)
where z = z, — z, and F is the electric field. This equation may be solved exactly
(Tharmalingam 1963), giving a continuous spectrum of encrgies with Airy functions
as the wavefunctions, and an explicit formula can be obtained for the Franz-Keldysh
absorption. Although it is not obvious, this treatment is equivalent to the description
of the Franz-Keldysh effect as photon-assisted tunnelling between valence and
conduction bands tilted by the field. This correctly predicts the growth of a weak
absorption tail below the bandgap energy, and oscillations in the spectrum above the
bandgap energy, although the absolute magnitude of the absorption is significantly
underestimated (Dow and Redfield 1970).

We can proceed to include excitonic effects by adding the Coulomb interaction.
As before, the centre of mass motion may be neglected, but now all directions of
relative motion are coupled. Now we must solve

vZ

&
[_ YT er] o) = Eb(r). @24
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This equation can be solved using numerical or WKB techniques (Ralph 1968, Dow
and Redfield 1970, Blossey 1970, 1971, Merkulov and Perel 1973, Merkulov 1974).
Important conclusions from such an analysis are:

(i) a weak absorption tail below the bandgap and oscillations above the bandgap
are retained, as in the Franz-Keldysh effect;

(ii) additionally, the exciton line is broadened strongly by the field, for fields of
the order of the classical ionization field of the exciton, and dominates the
electroabsorption near the bandgap;

(iii) the magnitude of the absorption spectrum near the edge is much larger than
predicted by the Franz-Keldysh effect.

The broadening of the exciton line can be understood as an uncertainty principle
effect (Merkulov and Perel 1973, Merkulov 1974); soon after the exciton is created,
it is destroyed by field ionization, and hence its energy resonance is broadened by
lifetime broadening. There is a small shift of the peak of the exciton line to lower
energy, but this is restricted to ~ 10% of the binding energy before the broadening
becomes very severe (Dow and Redfield 1970, Schultheis et al. 1987). The three-
dimensional case is thus well understood both with and without excitonic effects.
In moving to the situation in quantum wells, we cannot usefully transform to
centre of mass and relative motion coordinates in the direction perpendicular to the
layers, because now the absolute position of electron and holes is relevant since we
have introduced ‘walls’ and associated absolute position boundary conditions. The
centre of mass description was more useful in three dimensions because the crystal is
implicitly assumed infinite in all directions, and absolute position is irrelevant. Even
without field, there is no analytic solution for the exciton wavefunction in a finite quan-
tum well. If, however, we are in the strong confinement approximation as discussed
in section 2.1, where the confinement energies of the electron and the hole are large
compared with the Coulomb energy (a reasonable approximation for quantum wells
significantly narrower than the three-dimensional exciton Bohr diameter), then we
can approximately separate the wavefunction into a product (Miller et al. 1985a)

(M) = ;2 W (2)02 (r,,) 2.2.5)

where ¢, (z.) and Y. (2,) are the electron and hole particle-in-a-box wavefunctions in
the z direction and ¢;’ (r,,) is the relative motion electron-hole wavefunction in the
plane of the quantum wells. (In this section, we will explicitly use r as the three-
dimensional electron-hole separation and r, to refer to the in-plane separation). The
wavefunction separation is possible because we assume that the Coulomb attraction
between electron and hole is not strong enough to perturb the motion in the 2
direction. We can still transform to centre of mass and relative motion coordinates in
the quantum well plane because the crystal is still assumed infinite in this direction,
with the centre of mass motion still being irrelevant for optically created excitons by
momentum conservation. Now the absorption can be written

Imgoc Y KWEWEILRIGR (ryy = 080 — E;, — E;, — EZ — E,),
PreQrBxy
2.2.6)

where E; and E are the single-particle electron and hole confinement energies for the
(p.)th and 9. )th states respectively, E;” is the sum of Coulomb and in-plane kinetic
energies for the (n,,)th in-plane relative ‘motion state of the electron-hole pair (loosely
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speaking, the ‘binding energy’ of the exciton (Miller er al. 1985a)), and E, is the
bandgap energy which we have now explicitly separated out for clarity. This is
therefore a sum over all the in-plane exciton states for each possible combination of
electron and hole states perpendicular to the layers.

The case of electroabsorption for fields parallel to the layers has been solved
numerically for the extreme case of a totally two-dimensional system (Lederman and
Dow 1976) (where the exciton behaviour is also exactly solvable without field). The
behaviour is qualitatively similar to the case of three-dimensional excitonic electro-
absorption because the same physical processes are operating. Franz-Keldysh-like
oscillations are found above the band edge, a weak absorption tail is created below
the edge, and the exciton lines broaden with field because of field ionization. Miller
et al. (1985a) also estimated the field ionization time for the quantum well case. The
experimental results (Miller er al. 1985a, Knox et al. 1986b) for the quantum well
case also confirm the same general qualitative behaviour; the primary consequence of
electric fields in the plane is to broaden the exciton lines, at least for moderate fields,
as is shown in figure 7. Characteristic fields for this process are fields such that the
potential drop across one exciton diameter is comparable to the binding energy.

It is for fields perpendicular to the layers that the quantum well electroabsorption
shows behaviour qualitatively different from bulk electroabsorption, and the majority
of the rest of this section will be devoted to this situation. For pedagogical purposes,
it is useful to start by neglecting excitonic effects, even aithough the different behaviour
of the excitons in this case is particularly important in understanding perpendicular
field electroabsorption in quantum wells. For reasons that will become obvious
presently, we will refer to this model as the quantum-confined Franz-Keldysh effect
(QCFK) (Miller et al. 1986a).

Neglecting excitonic effects, the electron and hole wavefunctions in the plane again
become plane waves, and we may perform the summations over these plane wave
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Figure 7. Electroabsorption for fields in the plane of quantum well layers. Ficlds are (a)
0Vem™', (b) 146 x 10°Vem ™' and (c) 48 x 10*Vem™'. The quantum wells are 95A
GaAs with AlGaAs barriers. The zeros have been displaced for clarity as shown by the
dashed lines. (After Miller ez al. (1985a).)
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states in equation (2.2.6) (i.e. over the index n,,) to obtain
Imyg &, Y Ky We l6@ — B, — E, — E,), 2.2.7)

Prez
where 8(E) (=0 for E < 0, =1 for E > 0)is the Heaviside (‘step’) function. For the
case without field, this is simply a formal statement that the quantum well absorption
is a series of steps, corresponding essentially to one step for each allowed transition
(p. = 4;)- When the field is applied, we now have to solve the Schrodinger equations

[" 2"1%,[; % i ere,h + Ve.h(ze,h)] 'pe'h(ze.h) = Ee‘hw"h(ze.h)v (2-2-8)
where e and + refer to electrons in the conduction band, and h and — to holes in the
valence band, to find all the possible electron and hole states. When the structural
potentials ¥, are step-like as in equation (2.1.7) (.g. as in simple rectangular wells),
the solutions of this equation are Airy functions. The simplest case to consider is that
of infinite potential barriers (Miller et al. 1986a). Tllustrative calculations are shown
in figure 8 for a strong field case. Figure 9 shows the resulting absorption calculated
with field using equation (2.2.7).

Figures 8 and 9 show several features of this electroabsorption. The energy of
the lowest (p, = 1, g, = 1) transition is reduced by the application of the ficld, and .
the electron and hole in these states are pulled to opposite sides of the well by the
field. This energy shift is approximately quadratic at low fields, and corresponds
primarily to the polarization energy of the polarized electron-hole pair in the electric

- -
Ss
égi“— Q.y[-}z
ug N
§E m1
8 °L

0F e 1
£s 2
oA
8> X/ 4
EE 100l
=5 L \-/~-£-1§

Figure 8. Calculated wavefunctions and energy levels for a 150 A thick two-band GaAs-like
quantum well with infinite barriers at 0 and 10° Vem™'. (After Miller et al. (1986a).)
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Figure 9. Calculated absorption of a 150A thick two-band GaAs-like quantum well at
10° Vem™! neglecting excitonic effects (the quantum-confined Franz-Keldysh approxi-
mation). The individual transitions are labelled (n,, n.) where n, (1) is the valence
(conduction) subband number. (After Miller et al. (1986a).) The smooth line is the
calculated Franz-Keldysh effect for bulk material.

field. At higher fields, this is partly offset by the fact that the kinetic energy of the
electron and hole is increased as they are squeezed towards the walls of the wells. As
the electron and hole are pulled apart, the overlap integral between electron and hole
wavefunctions decreases, reducing the step height for this transition; in the particular
case of figure 9, this loss of step height is substantial for the (1,1) transition; this strong
loss is associated with the fact that the shift of the hole state in particular is much
larger than its initial confinement energy. The shift of these heavy-hole states in
general is larger than that of the electrons, because particles with larger mass are more
easily perturbed because of their lower confinement energies. For the case of the
infinite well, the problem can be recast in dimensionless units in which the energy is
expressed in units of the lowest confinement energy at zero field, and the field is
expressed in units corresponding to a potential drop of one energy unit across the well
width. The shifts of the higher levels are not so large, and do not follow the simple
intuition of the lowest states. The second state, for example, starts by moving up in
energy relative to the centre of the well as field is applied. Another very important
point that is clear from figure 9 is that the ‘forbidden’ transitions (p, # g¢,) are
becoming strong. This is simply because the electron and hole wavefunctions are no
longer sinusoidal, and all the overlap integrals are in general non-zero. In the strong
field case of figures 8 and 9 the ‘forbidden’ transitions are in some cases stronger than
the ‘allowed’ transitions.

The relation of this quantum well electroabsorption model to the Franz-Keldysh
effect is interesting; it has been shown analytically that, in the limit as the well
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Figure 10. Experimental spectra for electric fields perpendicular to the quantum well layers
with 94 A GaAs quantum wells. (@) Incident polarization parallel to the plane of the
layers for estimated fields of () 0Vem ™', (i) 6 x 10* Vem™!, (iii) 140 x 10°Vem™', and
(iv) 1'5 x 10°Vem™'. (b) Incident polarization perpendicular to the plane of the layers
for estimated fields of (i) 0Vem™', (ii) 6 x 10*Vem™', (iii) 1-1 x 10°Vem ™', (iv)
15 x 10°Vem=', and (v) 20 x 10° Vem™'. (After Weiner er al. (1985c), Miller et al.
(1986b).)

thickness becomes infinite, this model becomes formally identicat with the Franz-
Keldysh effect (Miller er al. 1986a, Ikonic et al. 1987a) correctly predicting bulk
electroabsorption neglecting excitons, hence the title QCFK. In fact, this transition is
rather rapid with increasing well size (Miller et al. 1986a); for example, for a 300A
thick layer, the electroabsorption in this model is practically aimost identical to the
Franz-Keldysh effect at 10° Vem™'. Conversely, for thinner wells (¢.g. 100A) the
electroabsorption is apparently very different in character from the Franz-Keldysh
effect at such fields, corresponding mostly to a shift of the lowest, (1,1), transition,
without the growth of a weak absorption tail.

As mentioned above, the behaviour of the excitons is very different in the QWs for
fields perpendicular to the layers. Experimental spectra (figure 10) (Weiner et al.
1985c, Miller et al. 1986b) clearly show that the excitons do not broaden strongly with
field, and the peaks shift substantially; the behaviour of bulk (and in-plane QW)
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electroabsorption is exactly the opposite, showing much broadening and little shift.
To analyse this QW case formally, we must finally add the electron-hole Coulomb
attraction into the Schrodinger equation (Miller er al. 1984a, 1985a, Brum and
Bastard 1985) .

1 1 & 1 & &
[’ S Vi - il ImiE  ar t eFz, + Ve.h(ze,h)] d(r) = E¢(r),
(2.2.9)

xy

where V,, refers to the in-plane directions only and m,, is the in-plane reduced mass.
So far, there is no complete solution of this equation, but it has been treated
approximately for the specific case of the lowest electron-hole pair state using the
strong confinement approximation, equation (2.2.5). In this case, we first solve for the
single-particle states in the presence of the field, and then solve variationally for the
motion in the plane by presuming a two-dimensional is-like Bohr orbital as in
equation (2.1.15) but with a variationally adjustable radius instead of ay.

Before proceeding to calculations of energy shifts, it is important to understand
qualitatively why the exciton absorption resonances still exist at the very high fields
that can be used in the experiments; in bulk GaAs, the excitonic absorption is very
strongly broadened for fields ~ 10° Vem™', whereas the QW exciton lines are still
clearly resolved at -~ 10°Vem™'. Furthermore, the shift can be many times the
‘binding energy’ of the exciton in the perpendicular field QW case (this is not
unphysical since the energy of the electron-hole pair is decreasing with field, not
increasing), whereas it is almost negligible in the bulk case. The key physical reason
for the persistence of the excitonic resonance in the perpendicular field QW case is that
the walls of the quantum well prevent the field ionization of the exciton. As field is
applied, the electron and hole (in the lowest confined states) are pulled to opposite
sides of the well, but they are restrained by the walls from going any further. Thus the
exciton is not ‘ripped apart’ by the field; it is very strongly polarized by the field with
the electron and hole orbits being partly separated spatially, but it can still complete
several classical orbits, just as it could without field, before being destroyed. Con-
sequently, it is still a well defined particle with a well resolved optical absorption
resonance without additional lifetime-broadening effects. This description requires
some quantitative justification; we must show that the electron and hole do not tunnel
too rapidly out of the well. (In principle the electron-hole Coulomb attraction helps to
hold the particle together also, but this is usually negligible by comparison with the
effect of the barriers for GaAs). We require that the tunnelling time is significantly
longer than the lifetime of the exciton from other causes (e.g. phonon ionization as
discussed in section 2.1). This is indeed the case for QWs showing this electroabsorption
effect. It is also intuitively clear that this suppression of field ionization will no longer
be effective if the well is made much larger than the bulk exciton diameter, because then
the exciton could be effectively field-ionized just by pulling electron and hole to opposite
sides of the thick well, so it is necessary to stay with moderately thin layers to see this
effect clearly. It is also of course possible to design wells in which the tunnelling is
rapid, either by making the barrier lower or thinner, or by making the well itself thin,
thereby pushing the confined energy level higher so that it can tunnel more easily
through the barrier. This is relevant to the discussion of luminescence quenching below.

It is clear that equation (2.2.9) is the Schrodinger equation for a confined hydrogenic
system with an electric field perpendicular to the confinement direction. Consequently,
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this mechanism is often referred to as the quantum-confined Stark effect (QCSE)
(Miller et al. 1984a, 1985a, 1986b). The shift that we calculate here would be the shift
in the ground state energy of such a hydrogenic system. To see this effect with an
actual hydrogen atom would require that we confined it between ‘walls’ < 1A apart
with applied fields 10-10"" Vem™".

The first stage in modelling the QCSE with the separation equation (2.2.5)is to
solve for the single-particle states as in the QCFK (i.c. equation (2.2.8)). To obtain
quantitative comparison with situations of experimental interest requires inclusion of
the effects of finite barrier heights, both in the values of the energy levels and in the
possibility of tunnelling out of the wells. Simple calculation methods that neglect this
tunnelling include both infinite well calculations (either variationally (Mendez et al.
1982, Bastard et al. 1983, Miller et al. 1985a, Sanders and Bajaj 1987a), pertur-
bationally (Bastard et al. 1983), or exactly using Airy functions (Miller et al. 1985a,
Matsuura and Kamizato 1986)) and effective infinite well calculations (using a well
width corrected to account approximately for the penetration into the finite barriers)
(Miller et al. 1984a, 1985a, Ahn and Chuang 1987a). Strictly, because of the possibility
of tunnelling, there are no bound states in a system with uniform electric field. There
are many ways of approaching this problem mathematically. The tunnelling can be
included by using the simple tunnelling resonance technique that allows calculation
of the quasi-bound states and their encrgy widths for arbitrary structures. These
techniques are adequate for calculating the behaviour of the lower confined states in
most quantum well structures, and were used in the original QCSE calculations
(Miller et al. 1984a, 1985a); contrary to some confusion in the subsequent literature,
these calculations did include the effects of tunnelling explicitly in the energy levels
and their widths. In situations where the tunnelling is not so rapid as to lifetime-
broaden the transitions beyond their width from other causes, the effect of the
tunnelling on the position of the energy levels is essentially negligible. Other calculations
have been performed by tunnelling resonance and related techniques (Harwit et al.
1986, Klipstein et al. 1986, Hiroshima and Lang 1986). One important point about
the tunnelling is that it becomes much stronger with field, since the effective height and
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Figure 11. Theoretical energies of the first electron, heawz—hole, and light-hole states (relative
to the potentials at the centre of the well) for a 95 A GaAs quantum well with AlGaAs
barriers. (After Miller ez al. (1985a).)
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thickness of the barrier are reduced as the structure is tilted by the field. A set of
calculated single-particle energies as a function of field is shown in figure 11.

Many other techniques have also been proposed to handle the quasi-bound nature
of the states including: phase-shift analysis (Austin and Jaros 1985a, 1985b, 1986,
1987); Monte Carlo variational method (Singh 1986, Singh and Hong 1986, Hong and
Singh 1987); continuum spectrum approach (Ikonic er al. 1987a,b); complex
eigenenergy (Ahn and Chuang 1986a); Gram-Schmidt orthogonalization (Ahn and
Chuang 1986b); stabilization method (Borondo and Sanchez-Dehesa 1986); and an
R-matrix technique (Schwartz 1987). Recently, electron-phonon coupling has also
been included in a quantum well calculation, giving some predicted corrections to the
energy shifts (Xu ez al. 1988).

Calculations that stop at the point of the single-particle states are effectively
QCFK calculations. However, as mentioned above, the behaviour of the exciton is
crucial. Only the lowest exciton states have been calculated in the presence of
perpendicular field, and these calculations include the Coulomb attraction vari-
ationally using the separation in equation (2.2.5) after solving for the single-particle
states by variational or other means (Miller et al. 1984a, 1985a, Brum and Bastard
1985, Sanders and Bajaj 1987, Matsuura and Kamizato 1986, Hong and Singh 1987,
Hong et al. 1987, Nojima 1988). For the case of strong electron-hole Coulomb effects,
as might be encountered in wider gap II-VI semiconductors, a correction can be
evaluated variationally for the effect of the Coulomb attraction on the z wavefunctions
(Wu and Nurmikko 1987). All such calculations evaluate a radius with field and also
a change in exciton binding energy E;} that is the sum of the total Coulomb energy
for the mutual attraction of electron and hole and the in-plane kinetic energy. A set
of such calculations is shown in figure 12. The exciton becomes significantly larger as
the field is applied; this is because the Coulomb attraction is weaker when the electron
and hole are pulled apart by the field. There is a significant decrease in the magnitude
of the ‘binding energy’ as the field is applied, which is the net effect of a reduction in
in-plane kinetic energy and a reduction (in magnitude) of the Coulomb attraction.
The absolute magnitude of the energy shift from the ‘binding energy’ is not very
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Figure 12. Calculated heavy-hole exciton binding energy for 50, 100, 150 and 200A thick
GaAs quantum wells as a function of applied field perpendicular to the layers. (After
Nojima (1988).)
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significant compared with the shift of the single-particle states, but the increase in size
can result in a significant change in the electron-hole overlap, reducing the absorption
strength of the exciton line. The calculated energy shifts under such QCSE models
agree remarkably well with experiment for the lower-lying energy levels.

A variety of different techniques can be used to observe the QCSE. The most direct
is optical absorption spectroscopy for light propagating perpendicularly through the
layers (Wood et al. 1984, Miller et al. 1985a) or in waveguides (Tarucha et al. 1985,
Weiner et al. 1985c, Miller ez al. 1986b). The waveguide has the additional feature
that the spectra for optical electric vector in the plane and perpendicular to the plane
can both be observed, as in the spectra in figure 10. These are different because of the
microscopic selection rules as discussed above in section 2.1. The most prominent
consequence near the band edge is that the heavy-hole absorption is forbidden for the
optical electric vector perpendicular to the layers; note that this selection rule is not
a consequence of the applied field, although it is not destroyed by it.

The technique that is apparently used most to observe the QCSE is photocurrent
spectroscopy, especially for GaAs/AlGaAs QWs (Miller et al. 1984b, 1985a, Larsson
et al. 1985, Yamanaka et al. 1986, Collins et al. 1986a,b, Vina et al. 1986, Whitchead
et al. 1988). It has the advantage that it does not require that any light be transmitted,
and is therefore very convenient for structures grown on opaque substrates. The diode
used to apply the field to the quantum wells can very efficiently collect the
photogenerated carriers, especially at room temperature, although the precise mech-
anism by which the carriers leave the wells to be collected is not yet entirely clear,
especially at low temperatures (Collins et al. 1986b). It can therefore give a reasonably
good quantitative measure of the absorption (Miller er al. 1985a,b). It is common
however for the collection efficiency to be less than perfect at low voltages, probably
because either the depletion region does not extend throughout the entire quantum
well region of the diode or the carriers require the presence of a substantial field to
cause them to be emitted from the wells.

Photoluminescence has also been successfully used to monitor the shifts and loss
of overlap of the lowest transition in the QCSE (Polland et al. 1985, Klipstein et al.
1986, Vina et al. 1986, Juang et al. 1986, Vina et al. 1987a, Naganuma et al. 1987, Fu
et al. 1987, Shorthose et al. 1987). Such photoluminescence techniques can work well
for moderately thick wells (e.g. 2 100 A), in which case the change in the luminescence
intensity or lifetime with field can usually be ascribed to the separation of the electron
and hole within the well by the field. This has led to interesting device concepts
whereby luminescence of a light source could be turned on and off rapidly simply by
separating the carriers within the well with an applied field (Yamanishi and Suemune
1983, Yamanishi et al. 1985, Kan et al. 1985, 1986, Ogura et al. 1987, Takeoka et al.
1987). For thinner wells (e.g. ~ 30 A), the luminescence quenching is very rapid with
field, and shifts are barely visible (Mendez et al. 1982). The explanation of this
quenching is that the electrons and holes are removed from the wells by tunnelling
before they can recombine, and has essentially nothing to do with the QCSE (Kash
et al. 1985, Horikoshi et al. 1985, Naganuma et al. 1987, Shorthose et al. 1987).
There are also some effects on luminescence that can be seen at low temperatures
associated with the electric field changing the amount of impurity luminescence
(Miller and Gossard 1983, Yu et al. 1985).

Photoluminescence excitation can also be used to measure the electroabsorption,
subject to the possible field-dependence of the luminescence efficiency discussed
above, and can provide information similar to the photocurrent spectroscopy. This
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technique has been used by several authors (Klipstein et al. 1986, Collins et al. 1987,
Chen et al. 1987). Electroreflectance has been used (Alibert et al. 1985) and analysed
(Klipstein and Apsley 1986). Finally, the QCSE has also been seen in electrolumi-
nescence (Levi er al. 1987).

It is clear from the electroabsorption spectra (figure 10) that there is some
broadening of the excitonic peaks as they are shifted. There are various possible
mechanisms that could give broadening. One obvious one, a lifetime broadening from
tunnelling of electrons and holes out of the wells, is not a likely cause for most
situations showing QCSE, as can be verified by calculating these tunnelling rates.
Another mechanism which certainly will exist is due to the fact that, in multiple well
samples, the electric field is not the same in all the wells because of the finite impurity
concentration in the depletion region of the diodes used (Newson and Kurobe 1987).
For the spectra shown in figure 10, this is also unlikely because these spectra were
taken with only two quantum wells in the sample. The most likely remaining
mechanism for GaAs/AlGaAs QWs in high quality samples appears to be interface
disorder (Hong and Singh 1986, 1987, Hong et al. 1987). It is well known that a strong
contribution to the exciton absorption line width is from the non-uniformity of the
quantum well thickness, giving different confinement energies in different regions of
the sample, with width fluctuations of the order of one atomic layer being common.
As the field is applied, the particles are pushed closer to the walls, squeezing the
wavefunctions, and the fluctuations in the wall positions become ever more important
because they become progressively larger compared with the thickness of the wave-
function, giving progressively larger confinement energy variations and correspondingly
larger exciton spectral widths. One final mechanism, which has been suggested as a
possible line broadening in poorer quality samples and in some alloy quantum wells,
is due to the presence of ionized impurities in the depletion region of the diode
(Bar-Joseph et al. 1987). Under reverse bias, any impurities will tend to ionize, but
there is no free carrier density to screen the random field that results from these
randomly distributed point charges. The resulting random field fluctuations will have
components in the plane of the quantum well layers. Any such components, even if
they are about ten times weaker than the field perpendicular to the layers, will tend
to broaden the exciton line by field ionization in the plane, as discussed above for
parallel field QW electroabsorption. This mechanism depends directly on the sample
purity, and is predicted to be a problem at ~ 10'cm™ impurity density. It may
explain the correlation that is sometimes observed between samples that show strong
broadening with field and those in which the overall magnitude of the photocurrent
signal depends strongly on voltage; both effects could be explained by a large impurity
concentration in the quantum well region. '

Electroabsorption for fields perpendicular to the layers has also been observed in
a number of QW materials systems other than GaAs/AlGaAs on GaAs. These
materials include: InGaAs/InGaAlAs (Wakita et al. 1985a); InGaAs/InAlAs (Wakita
et al. 1985b,c, 1986, 1987); GaSb/A1GaSb (Miyazawa et al. 1986, Wood et al. 1987a);
InGaAs/GaAs strained QWs on GaAs substrates (Van Eck er al. 1986); InGaAs/InP
(Bar-Joseph et al. 1987, Moseley et al. 1987, Shorthose et al. 1987, Nojima et al. 1987);
InGaAsP/InP (Temkin et al. 1987); ZnSe/(Zn,Mn)Se (Fu et al. 1987); and GaAs/
AlGaAs on InP (Lee et al. 1987). Some of these measurements show clear shifts in
absorption spectra with sharp exciton peaks retained at high fields (the GaSb/A1GaSb
work, InGaAs/GaAs, some of the InGaAs/InP work (Bar-Joseph et al. 1987)). In some
of the rest of the work, the spectra show considerable broadening with field that may
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Figure 13. Photocurrent spectra at 77K for 105 A GaAs quantum wells, showing the growth
of forbidden transitions with field. E,, refers to the transition between the nth clectron
state and the mth heavy-hole state, and similarly with 1 instead of h for the light-hole
states. (After Yamanaka et al. (1986).)

be due to the random impurity field model discussed above. There has also been a
theoretical prediction that the electroabsorption of copolymers would also show
behaviour similar to the QCSE (Seel e7 al. 1988). Another interesting prediction is that
there is a ‘built-in’ QCSE in strained superlattices grown on the [111] crystallographic
direction, because substantial piezoelectric fields (e.g. 10° Vem™') will exist because
of the strain (Smith 1986, Mailhiot and Smith 1986, 1987, Smith and Mailhiot 1987).

It is apparent from the discussion of the QCFK above and from the form of
equation (2.2.6) that one of the features of the QCSE is the appearance of ‘forbidden’
transitions as the field is applied. These can be seen quite clearly in experimental
spectra (figure 13) (Yamanaka er al. 1986, Iwamura et al. 1985, Miller et al. 1986b,
Collins et al. 1987a), and can be used to deduce the band offsets. The first forbidden
transition (heavy-hole 2 to clectron 1) is also apparent in figure 10 as the third,
(highest energy) peak appearing at high field in the spectra for optical electric vector
paraliel to the layers. In general, the shifts associated with higher subbands are
smaller, because these higher energy states arc more difficult to perturb; the directions
of these shifts can also vary. For a specific discussion, sce also Ikonic et al. (1987b).

It is also possible to see the consequences of the shifts of the subbands with field
in the transitions between subbands within one band. The selection rules here require
an optical electric vector perpendicular to the layers, and at zero field in a symmetric
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quantum well only transitions between states of the opposite parity are allowed (e.g.
between state 1 and state 2). This has been examined experimentally by absorption in
doped quantum wells (Harwit and Harris 1987) and by Raman scattering (Bajema
et al. 1987) with further theoretical work by Ahn and Chuang (1987a,b). ‘Forbidden’
transitions should also become partly allowed when the symmetry is broken by an
applied field perpendicular to the layers (e.g. between state 1 and state 3) (Ahn and
Chuang 1987a).

Another consequence of the forbidden transitions for interband absorption is sum
rules (Miller et al. 1986b, Whitehead et al. 1988). It is apparent from the spectra of
figure 10 for optical electric vector perpendicular to the layers, for example, that,
although the absorption of the lowest heavy-hole transition is weakened by the field,
the absorption at higher photon energies (above the ‘forbidden’ third peak) is essentially
unchanged. This is because the ‘forbidden’ transition has acquired the absorption lost
by the allowed transition. This is the third of three sum rules that can be proved quite
generally (Miller et al. 1986b), which are:

(1) the field-induced absorption change integrated over the entire spectrum is zero
(this is generally true even for bulk materials);

(2) the integrated absorption over the excitonic lines associated with a given
valence subband to conduction subband transition is (approximately) pro-
portional to the square of the z overlap integral (i.e. proportional to the height
of the step);

(3) the sum of the heights of the steps (z overlap integrals squared) from any one
conduction (valence) subband to all the valence (conduction) subbands is
conserved.

Sum rule (1) has been tested experimentally over a large spectral range with agreement
within less than 1%. Sum rule (2) allows us to make a meaningful quantitative
comparison between theory and experiment for the z overlap integral without having
to evaluate all the in-plane excitonic orbital motions. Figure 14 shows the comparison
of the calculated squared z overlap integral with the experimental area under the
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Figure 14. Comparison of experimental exciton absorption peak area with calculated squared
z overlap integral. (After Miller ef al. (1986b).)
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excitonic absorption peak in the spectra with optical electric vector perpendicular to
the layers in figure 10 (Miller et al. 1986b).

The changes in absorption associated with the QCSE must also, of course, result
in changes in refractive index. For symmetric quantum wells, these refractive index
changes must be even order (e.g. quadratic) with field (e.g. Kerr effect), in contrast to
the more usual linear electro-optic effect (Pockels effect). This has received considerable
theoretical (Yamamoto et al. 1985, Weiner et al. 1987a, Hiroshima 1987, Guy et al.
1987) and experimental (Glick et al. 1985, 1986, 1987, Nagai et al. 1986a,b, Kan et al.
1987, Koren et al. 1987, Wakita et al. 1987, Wood et al. 1987b, Zucker and Hendrikson
1988) attention. Inclusion of the excitons is very important for any quantitatively
correct estimate of the magnitude of the effect. Most of the calculations proceed
essentially by Kramers-Krénig transformation of theoretical or experimental absorp-
tion spectra. All such experimental spectra only cover a finite spectral range and some
method must be found to handle this since the Kramers-Kronig transform is
theoretically over infinite limits. The sum rules can be of some help here (Weiner ez al.
1987a) in preventing unphysical answers. A calculated electrorefraction spectrum is
shown in figure 15. The resulting changes in index can be large, although it is still
difficult to contemplate induced changes in optical path of the order of half a
wavelength in less than one absorption length (which would be very interesting from
a device point of view) without total path lengths through the quantum wells
= 100 um, thus making refractive devices operating with light perpendicular to the
layers difficult.

Thus far, we have discussed the electroabsorption as if the light holes and heavy
holes were totally distinct kinds of particles. In reality, this is not true once their
momentum is finite as discussed in section 2.1. Variational calculations incorporating
valence band mixing (Sanders and Bajaj 1987a) show field-induced band ‘crossings’
and forbidden transitions, and also lifting of the Kramers degeneracy, giving split
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Figure 15. Calculation of the change in refractive index induced by a field perpendicular to
a 95 A GaAs quantum well. The solid and dashed lines show the absorption spectra at
O0Vem~'and 64 x 10°Vcm™' respectively, and the dot-dashed line shows the caiculated
change of refractive index. (After Weiner et al. (1987a).)
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excitons with field. Experimental observations of band mixing effects include obser-
vation of a field-induced coupling of heavy-hole exciton excited states and the light-
hole exciton ground state (Vina et al. 1987b). Evidence of I'-X mixing was also
obtained through an anticrossing seen with electric field (Meynadier er al. 1988).

Most of the discussion so far has concerned simple ‘rectangular’ quantum wells.
The mechanisms and models can also be extended to more complex structures. Islam
et al. (1987) and also Chen et al. (1987) examined coupled quantum wells (i.e. two
identical wells separated by a thin barrier) experimentally, with good agreement with
theory for shifts and overlap integrals for the first few transitions (Islam et al. 1987).
These coupled wells also show evidence of valence band mixing especially for higher
transitions. Asymmetric coupled wells have also been investigated experimentally (Le
et al. 1987, Little er al. 1987). Graded wells have received some theoretical attention
(Sanders and Bajaj 1987b, Nishi and Hiroshima 1987, Hiroshima and Nishi 1987).
These asymmetric structures have an effect similar in some ways to pre-biasing a
symmetric structure with an additional field; certainly the response is no longer
symmetric in the field. Parabolic wells have also been considered theoretically (Yang
Qing and Yang Chu-liang 1987). _

It is worth mentioning here the electroabsorption of superlattices with strong
coupling between adjacent wells, although the mechanisms may be rather different
from the QCSE because of the strong tunnelling. There have been some theoretical
calculations on electroabsorption in superlattices (Jogai and Wang 1987, Austin and
Jaros 1987, Mcllroy 1986, Bleuse ez al. 1988) aithough the theory of Jogai and Wang
(1987) does not agree with subsequent work (Bleuse et al. 1988). Bleuse et al. (1988)
make an interesting prediction of electric-field-induced localization resulting in an
effective blue shift of the absorption edge (Mendez ez al. 1988). One electroreflectance
measurement has been reported for a superlattice (Behn and Gobsch 1987) showing
quenching of the exciton as in bulk material without any measurable shift. In spatially
indirect superlattices, the absorption can blue-shift with field due mainly to simple
electrostatics; the electron and hole are spatially separated and hence acquire an ever
higher energy as the field increases. The separation of electron and hole is caused by
the structure, and is in the opposite direction to any field-induced effects, hence the
difference in the sign of the shift compared to the QCSE (Danan et al. 1987).

Finally we will briefly discuss the theory of electroabsorption in more highly
confined structures (Miller et al. 1988, Schmitt-Rink et al. 1987). To study this
situation we can consider a cuboidal box with infinitely high potential barriers, and
will take the QCFK approach of neglecting the Coulomb interaction for the moment.
When this is done, we obtain a set of six completely separated Schrédinger equations
of the form of equation (2.2.8), one for each coordinate direction and particle, because
there is no coupling between the particles or directions. This problem is exactly
solvable for all field directions. Equation (2.2.1) now becomes
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where 'I’;,.q,.r, = ;qul:,lllfy with y; , y; and wfy as the eigenfunctions and E,, E;,
and E,’y as the eigenenergies of the individual Schrodinger equations for the z, x and
y coordinate directions for the electron, and similarly for the hole.

If we assign a broadening to the § functions to remove the mathematical singu-
larities, we can obtain calculated spectra for boxes of different dimensions as shown
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in figure 16. Proceeding from top to bottom of figure 16 we see first essentially
QW-like behaviour, changing to quantum box behaviour with isolated lines as two of
the dimensions are decreased, and changing to quantum wire behaviour as one of
them is increased again. Finally, we see anisotropic behaviour; fields along the short
direction give strongly quantum-confined behaviour, with discrete lines shifting,
whereas fields along the long direction give a smeared behaviour with the absorption
strength distributed among many weak transitions especially in the absorption tail,
just as in thick QWs.

In the limit of a small quantum box (i.e. much smaller than the exciton diam-
eter in all directions) the Coulomb effect becomes negligible anyway compared with
- the quantum confinement, and this kind of calculation becomes again a QCSE
calculation.

The shifts of the transitions in the quantum box are exactly the same as those of
a QW of the same thickness. One intriguing possibility is that, if such structures could
be made, we would be able to shift a much larger absorption for the same field because
the absorption is concentrated into discrete lines.

2.3. Effects of doping

Modulation-doped heterostructures (Dingle et al. 1978, Gossard and Pinczuk
1985) provide an excellent means for the realization of a 2D electron or hole gas and
have shown many remarkable new physical phenomena, such as the fractional
quantum Hall effect (Tsui ez al. 1982). They are also extremely attractive from the
device point of view.

Much of their significance derives from the fact that—unlike in doped bulk
semiconductors—the carriers are spatially separated from the dopants, which results
in extremely high carrier mobilities (up to several 10°cm? V-'s™"). Figure 17 shows
the structure of a typical (n-type) modulation-doped quantum well structure
(MDQW). During growth, the dopants are restricted to the barrier material. In order
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Figure 17. Sequence of layers and relative position of the conduction band edges in Si
modulation-doped GaAs/AlGaAs quantum well structures. (After Gossard and Pinczuk
(1985).)
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to maintain a constant Fermi energy throughout the sample, they ionize with the free
carriers migrating to the lower-energy quantum well(s).

The charge transfer creates significant electric fields. In single-interface structures,
these fields confine the carriers at the heterojunction, in much the same way as in
inversion layers (Ando et al. 1982, Stern and Das Sarma 1984). In the framework of
density functional theory, the Kohn-Sham (1965) potential, Vs, felt by a carrier
consists of several parts

s(@) = V(@) + Vu(@) + Vac(2). @31’

The first term, V, is the same as in equation (2.1.7), it describes the band offset. The
Hartree potential, V;;, consists of the electrostatic potentials due to the ionized
impurities and free carriers (including the respective image forces). Through Poisson’s
equation, it depends in turn on the local carrier density and thus has to be determined
self-consistently. It gives rise to the band bending shown in figure 17. For example,
for n-type MDQWs and electrons (figure 17), one has (neglecting image forces)

2
?P VH(Z) = - 4_:;52' [Qe(z) - Qd(z)]’ (2-3~2)

where g, and g, are the electron and ionized donor densities respectively. If g, is
approximated by a homogeneous density, N/L,, this yields (inside the QW)

2Ne L L
Va(2) ~ — ?LT’Z’ -F<zs 3, (2.3.3)

that is, the band bending varies roughly like a parabola (Ploog and Doehler 1983).
Finally, Vxc is the so-called exchange-correlation potential, it describes the residual
many-body effects (see below).

Variational and numerical calculations of the electronic structure of MDQW:s
have been performed by Ando and Mori (1979) and Bauer and Ando (1985, 1986a,b),
using the local density approximation (LDA). In this approximation, Vc is replaced
by the exchange-correlation part of the chemical potential, u32, of a homogeneous
electron (hole) gas with the same local carrier concentration. The results of these
calculations have been favourably compared with luminescence data of Pinczuk et al.
(1984). The agreement is somewhat surprising, because the Kohn-Sham orbitals and
energies obtained from equation (2.3.1) are ground state properties that have no
direct physical meaning. The failure of interpreting these quantities in terms of
quasi-particle (‘electrons’ and ‘holes’) properties is well documented, resulting in band
gaps in semiconductors and insulators being generally underestimated by 30-50%
(Sham and Schliiter 1983). Besides, u32 is quite different from uX2, the relevant
quantity to compare with experiments, which for narrow MDQWs casts some doubts
on the validity of the LDA itself.

The proper way to describe many-body effects is to start from the Hartree solution
and incorporate exchange and correlation effects through self-energy corrections, as
done by Bauer and Ando (1985, 1986a,b) and Kleinman and Miller (1985). This
method, however, faces the difficulty that in two dimensions and (more so0) in one
dimension, most many-body systems become automatically strongly correlated ones,
with the renormalizations being dominated by Coulomb repulsion rather than by
random-phase-approximation (RPA)-type collective effects (for a 1/r interaction, two
is the ‘upper critical dimension’). This fact was recognized very early in studies of the
classical 2D electron plasma (Totsuji 1975) and inversion layers (Ando et al. 1982),
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but little progress has been made since then. We shall describe what has actually been
done and why the quantitative problem is still open (like most of the other many-body
problems addressed in this review).

In the presence of many-body interactions and (for ease of discussion) in the
isotropic EMA, the Schrddinger equation for the electron or hole envelope functions
y(r, z) takes on the fotm

2
[— 2’1‘1 + % + V() + VH(Z)] y(r, 2)

+ J’ &rdz Zr — v, 2,2, EN(r', 2) = Ey(r,2), (2.3.4)

where r is the in-plane coordinate and X the self-energy. (Here and in the next few
paragraphs, we omit the indices e and h.) Owing to the presence of the interfaces,
is non-local in z. Additionally, it is non-local in energy, because the renormalization
of a particle depends on how fast it moves through its environment. A fast particle
feels less of other carriers than a slow one, that is, its renormalization is smaller.

In superlattices and in multiple quantum well structures, the long-range Coulomb
interaction couples different wells, which provides an additional source of nonlocality
(Visscher and Falicov 1971, Fetter 1973, 1974). The physics associated with such local
field effects is beyond the scope of this article and shall not concern us here. We will
restrict ourselves to mentioning some of the important consequences.

Let y°(r, z), E2 be the Hartree solutions of equation (2.3.4),

v? E

Y s 2V + W[ = BN, (239)
zme.h 2

where the quantum number o comprises the in-plane momentum and subband index.

The renormalized quasi-particle energies are then given by the solutions of the

equation

det [(E? — E)o, 5 — Z,,(E)] = 0, (2.3.6)
where
Z4(E) = szrdz J Prdzyi¥r, 2)Z(r — 1,2, 7, E)lllg(r’, Z). 3.7

Note that the self-energy equation (2.3.7) is diagonal in both the 2D and 3D limits.

Extensive studies of the 3D homogeneous electron gas have shown that both in the
non-degenerate, classical and in the degenerate, metallic limit most of the renormal-
izations are accounted for by short-range exchange and long-range Coulomb corre-
lations, as described by the so-called random phase approximation (RPA) to X and
variations thereof. In the non-degenerate, classical limit, the RPA becomes exact,
because of the long-range nature of the r~' interaction in 3D. This is no longer true
in 2D and 1D, where short-range Coulomb correlations play an important role as
well, in much the same way as in Fermi systems with a hard core repulsion, such as
3He. This is as expected, because the lower the dimension, the more the discreteness
of the individual particles is pronounced.

The theoretical description of such short-range correlations is complicated and the
subject of extensive research. Consistent, exchange-symmetric approaches were
formulated mainly in the context of liquid 3He, for example, by Pfitzner and Wolfle
(1987). They usually involve the summation of so-called parquet diagrams in the
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coupled particle-particle and (two) particle-hole channels. For the degenerate 2D
homogeneous electron gas, a somewhat simpler point of view was adopted by Nagano
et al. (1984). Neglecting long-range correlations altogether, they calculated the effective
electron—electron interaction from the forward scattering T matrix, as determined by
the Bethe-Goldstone equation. Their results for the correlation energy compare very
well with variational Monte Carlo data (Ceperley 1978), which—together with
Totsuji’s (1975) exact results for the non-degenerate, classical case—suggests a
satisfactory description of 2D Coulomb systems in terms of a ‘screened ladder -
approximation’. The main physical feature of such a scheme is the (expected) cut-oflf
of screening at distances corresponding to the closest approach of like particles, as
given by the size of the exchange-correlation hole. We are not aware of any corre- -
sponding calculations, except for Jonson’s (1976) application of the STLS approach
(Singwi et al. 1968) to inversion layers. As in other instances, this simple, self-consistent
scheme works better than one would a priori expect, as far as total energies are
concerned.

With the exception of the above papers, most of the theoretical work on exchange-
correlation effects has been preoccupied with extensions of RPA-type schemes from
3D to 2D. The comparison with exact and variational Monte Carlo results shows that
the error involved can be significant. Finite well or layer size effects soften the
Coulomb interaction at distances small compared with L,, so that the ‘figure of merit’:
is the ratio of L, to the exchange-correlation hole of the strictly 2D system (which in
turn is bounded by the 2D mean particle distance, N -12)_ Only if this ratio is ‘large’,
can RPA-type calculations be trusted.

Given these caveats, and before turning to experiments, we shall now discuss
briefly the physics of the RPA-type approach to exchange-correlation effects. For ease
of discussion, we assume a homogeneous 2D system. This allows for a direct com-
parison with 3D; the extension to the non-local, finite L, case is trivial (but tedious).
Among other things, it involves the multiplication of the bare 2D Coulomb interaction,
1(g) = (mé?)/(€xq), by charge density form factors

[ dz [ dz e = Y@ I Wo ), 2.38)

where yO(r, z) = exp(ik* r)¥;(2). Within the n, = 1 subspace, equation (2.3.8) is of
course equivalent to the separable Ansatz for the exciton ground state wavefunction,
discussed in section 2.1.

Within the RPA, the self-energy, Z, can be splitintoa ‘screened exchange’ (sx) and
a ‘Coulomb hole’ (Ch) term, = = Z, + Za- On the energy shell, one finds

T, = - Zl,(k - K, & — &) f(K), (2.3.9)
_ +o do Im4(k — k', @)g(—)
Talk) = ZL P B (2.3.10)

where €, = k%/(2m,,) + constant are the Hartree energies and f(k) is the Fermi
distribution,

N

2 };f(k)

1
- ’ 2.3.
zzexp (e — W/T] + 1 (2.3.11)
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and g(w) the Bose distribution,
1

g(w) = @) =1 (2.3.12).
Finally, Z (g, o) is the screened Coulomb interaction,
€
Lg o) = g 2.3.13
@) = 10 @3.13)
where €(g, @) is the RPA dielectric function, given by the Lindhard formula
f(k) — f(k + Q)
= 1 - 21 - . 2.3.14
€(g, ©) eo[ O oy S (23.14)

Expressions (2.3.9) and (2.3.10) are both negative and therefore lead to a lowering
of the quasi-particle energies, usually called band gap renormalization (BGR). Z,,
describes the energy that paraliel-spin, like particles gain by avoiding each other,
while X, describes the energy gain due to charge polarization of the medium. An
elegant evaluation of the respective ground state energy of the 2D homogeneous
electron gas was given by loriatti and Isihara (1981).

For computational purposes, equation (2.3.14) can be simplified considerably by
replacing the total RPA excitation spectrum by a single effective plasmon mode w,
(Lundqvist 1967 a,b, Overhauser 1970, Vinter 1976),

.1 ()
(g, ) e—o[l t m] (2.3.15)

w,(g) is the 2D plasma frequency, oi(g) = (2w Né g)/(€am.;), Which in contrast to
3D has a square-root dispersion; in 2D the r-! interaction is not long-ranged enough
to push w,(g) to a finite value. w, is the frequency of the effective plasmon mode,

0} = (g [l + %] + ['272_.,]2 (2.3.16)

where x = [—4wné* I, 0f (k)/0€,)/€, is the 2D screening wavenumber. Another choice
for w, is

2 _ 2 (g, 0)

w, = wp(qg) 0 — < @0 — < (2.3.17)
with e(g, 0) obtained from equation (2.3.14). For short and long wavelengths
expressions (2.3.16) and (2.3.17) coincide. Similar relations hold in 3D.

The model in equation (2.3.15) is constructed in such a way that the most
important sum rules are satisfied. These are the f-sum rule, the conductivity sum rule,
the perfect screening sum rule and the compressibility sum rule. The dispersions in
equations (2.3.16) and (2.3.17) reproduce the correct RPA screening behaviour at
long wavelengths and simulate the individual particle-hole excitations at short
wavelengths. Lattice dynamics can be readily incorporated. For T — 0, the 2D
screening wavenumber, x, reduces to a constant, x = (2m, ,€)/€,, due to the constant
density of states, while in the non-degenerate, classical limit it takes on the value
k = 2uNe?)/(e; T).

Except for very high densities (see below), the Coulomb hole self-energy usually
dominates. At T = 0, the resulting BGR varies like N'”. This can be easily seen
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(Schmitt-Rink and Ell 1985) by using an argument due to Thuselt (1983). Replacing
w, in equation (2.3.15) by its asymptotic forms (see equation (2.3.16)), 0, = w,(q) for
q < g and w, = ¢*/(2m,,) for g > go, With @,(¢0) = 45/(2m,,), one readlly finds
Zen ~ qo ~ N'. In 3D, the same calculation yields o, ~ N'* (Thuselt 1983). At
very high densities, the exchange self-energy, 2, ~ N i , dominates. In this context,
it should be noted that for finite L, and N'2L, ~ O(1), a cross-over to 3D behaviour
occurs, namely £, ~ N'2. For T = 0 and in a real system, a cubic root behaviour
is thus always expected. All the physics is contained in the (L.-dependent) prefactor.
The comparison with variational Monte Carlo results (Ceperley 1978) shows that in
2D this prefactor is overestimated by the RPA. The reported almost exact agreement
of experiment and theory (Bauer and Ando 1985, 1986a, Kleinman and Miller 1985)
thus comes as a surprise (see also section 3.1).

In superlattices and multiple quantum well structures, strong 3D screening is
partially restored by local field effects (Visscher and Falicov 1971, Fetter 1973, 1974).
As shown by Harwrylak (1987), this leads to a lowering of X and presumably to a
deviation from the N' behaviour.

The breakdown of the RPA in 2D is most easily demonstrated by considering the
non-degenerate, classical limit, in which equation (2.3.10) reduces to

Sa = 32 L@ - I} 2.3.18)

where I(g) = L(g, 0) ~ 2ne?)/[e(g + K)), with k = (2wNe?)/(e,T). Obviously,
Zcy diverges logarithmically. As discussed above and shown by Totsuji (1975), this
divergence is due to the neglect of Coulomb repulsion. The latter ensures that
screening is cut off at distances corresponding to the closest approach of like particles,
g-' ~ €/(,T) for particles of energy T. The resulting Coulomb hole self-energy
varies like Nlog N, characteristic of dilute strongly repulsive 2D systems. Multilayer
screening and finite thickness effects partially restore the validity of equation (2.3.18),
with of course suitably modified interactions (Dah! 1988). In 3D, equation (2.3.18) is
exact and identical to the Debye shift. The same is true in the 2D Coulomb gas (May
1967) above the Kosterlitz-Thouless (1973) transition. In the latter system, the
electromagnetic field is confined too, so that the Coulomb interaction varies only
smoothly like logr (Keldysh 1979).
The renormalized quasi-particle energies are given by

E, = € + Z(k), 2.3.19)

with different renormalizations for electrons and holes and different subbands. For
example, in an n-type material, electrons experience exchange and correlation effects,
while holes experience correlation (Coulomb hole) effects only. Additionally, inter-
subband renormalization, the renormalization induced in excited subbands by
carriers in lower subbands, is small. This is due to the fact that different normal
motion quantum numbsers, n,, correspond to large differences in velocities perpendicular
to the interface. The notion of a rigid shift of all subbands must clearly be rejected.

The momentum dependence of X is sometimes neglected and the self-energy
replaced by the exchange-correlation part of the chemical potential, uyc. A suitable
definition of pyxc for arbitrary temperatures is (Roesler ez al. 1984)

af (k) =) / % . ' (2.3.20)
k
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At zero temperature, equation (2.3.20) reduces to the well known relation puyc = Z(kg),
where kg = (2N )"?-is the Fermi wavenumber.

For purpose of illusration, we shall sometimes make use of T, equation (2.3.18),
and the corresponding unretarded Z,,,

I,k = - gl,(k — K)f (k). (2.3.21)

Equations (2.3.18) and (2.3.21) constitute a simple static approximation, which in 3D
has been proven to be very powerful (Zimmermann e? al. 1981, Loewenau et al. 1982,
Schweizer et al. 1983, Haug and Schmitt-Rink 1984, 1985). Here , should be pictured
as some suitably chosen effective interaction, and not as the overscreened static RPA 1.

This concludes our brief discussion of the theory of exchange-correlation effects
in modulation-doped heterostructures. Again, in our opinion, these effects are
quantitatively not understood. This is even more true for the optical spectra, except
that the difficulties are of a more fundamental nature and not related to dimensionality
(Gavoret et al. 1969, Ruckenstein and Schmitt-Rink 1987).

The modulation-doped heterostructures most widely studied are GaAs wells with
AlGaAs barriers, as well as InGaAs wells with InP or InAlAs barriers. The experi-
mental techniques include luminescence, luminescence excitation (Pinczuk et al. 1984,
Miller and Kleinman 1985, Sooryakumar et al. 1985, 1987, Ruckenstein et al. 1986,
Meynardier et al. 1986, Skolnick et al. 1987, Delalande et al. 1986, 1987, Delalande
1987, Livescu et al. 1988) and direct absorption measurements (Lee et al. 1987,
Chemla e al. 1987a, 1988a, Bar-Joseph et al. 1987b, Livescu et al. 1988, Huang et al.
1988).

Figure 18 shows absorption spectra of an undoped and an n-type (N = 4-8 x
10" cm~?) modulation-doped InGaAs/InAlAs multiple quantum well structure
(L. = 100 A), as a function of temperature (Livescu et al. 1988). The absorption of
the undoped sample exhibits the characteristic step-like structure associated with the
constant 2D density of states. Excitonic peaks at the onset of each step are clearly seen
at all temperatures. The strong peaks seen in the low-temperature spectrum (T = 12K)
are easily identified as transitions between n, = 1, 2 and 3 electron and heavy-hole
states. The weaker peaks correspond to transitions between n, = 1 and 2 electron and
light-hole states. With increasing temperature, the entire absorption shifts to lower
energies, due to the decrease of the band gap, E,. Simultaneously, the excitonic peaks
broaden, due to interaction with thermal LO phonons, as discussed in section 2.1.

The modulation-doped sample has nominally the same structure as the undoped
one, but its absorption reveals striking differences. Although the n, = 2 and 3
transitions can be clearly identified too, the sharp n, = 1 peaks have disappeared even
from the low-temperature spectrum, being replaced by a single broad feature, blue
shifted by a significant amount (about 40 meV). This blue shift is maintained over the
whole temperature range. As the temperature is raised, the absorption edge peak
broadens and disappears rapidly. At T = 150K, only a ‘knee’ is left, which barely
changes its shape up to room temperature. The higher energy peaks (n, = 2 and 3)
are observed at energies very similar to the corresponding peaks in the undoped
sample, but they exhibit a somewhat larger width even at low temperature. In
addition, their broadening from T = 16 to 300 K takes place at a much slower pace
than that of the absorption edge peak. It is quite clear from these spectra already that
the absorption edge peak is different in nature from the excitonic peaks seen in the
undoped sample.
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Figure 18. Absorption spectra of an undoped (a) and an n-type (N = 48 x 10"cm™?)
modulation-doped (b) InGaAs/InAlAs multiple quantum well structure (L, = 100 A), as
a function of temperature. (After Livescu et al. (1988).)

Similar measurements have been performed on n-type GaAs/AlGaAs multiple
quantum well structures (Lee ef al. 1987, Livescu et al. 1988, Huang et al. 1988).
Figure 19 shows absorption (dashed line) and luminescence (full line) spectra of a
sample with N = 2-6 x 10" cm™? and L, = 120 A, as a function of temperature
(Livescu et al. 1988). Similarly to the InGaAs/InAlAs system, the low-temperature
absorption spectrum (T = 10K) shows n, = 2 and 3 transitions, while the sharp
n. = 1 exciton resonances, characteristic for the spectra of undoped samples, are
replaced by a single peak. A blue shift of this peak with respect to the luminescence
line is also observed. With increasing temperature, the absorption edge peak decreases
and broadens, as in the previous sample. Simultaneously, the Stokes shift between
luminescence and absorption diminishes. The changes are more spectacular here,
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Figure 19. Absorption (dashed linc) and luminescence (full line) spectra of an n-type

© (N = 26 x 10" em~?) modulation-doped GaAs/AlGaAs multiple quantum well

structure (L. = 120 A), as a function of temperature: (a), 10K; (b), S0K; (), 100K.
(After Livescu et al. (1988).)

since the peak is much sharper to begin with. An increase in temperature of 50K is
enough to nearly double its linewidth. This should be compared with the situation in
similar, undoped samples, where a temperature of 300 K is necessary to broaden the
n, = 1 heavy-hole exciton line by the same amount.

Figure 20 shows luminescence spectra of an n-type modulation-doped (N = 91 x
10" cm~?) InGaAs/InP quantum well structure (L, = 100 A), as a function of tem-
perature (Skolnick et al. 1987). The low-temperature spectra reveal a clear asymmetry,
with a strong enhancement towards high energies. Again, as the temperature is raised,
this structure diminishes.

We shall discuss these and other results in the following paragraphs. The main
features to be explained are:
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Figure 20. Luminescence spectra of an n-type (N = 9-1 x 10" cm~?) modulation-doped
InGaAs/InP quantum well structure (L, = 100 A), as a function of temperature. Dashed
lines: theoretical spectra from one-clectron theory. (After Skolnick et al. (1987).)

(1) There is a Stokes shift between luminescence and absorption, which decreases

with increasing temperature or decreasing doping.

(2) The absorption edge and—in alloy wells—the luminescence spectrum exhibit

a peak which is strongly temperature dependent. Its behaviour is not consistent
with that of a conventional exciton in an undoped quantum well structure.

(3) Except for small shifts and an increase in width, the higher energy absorption

peaks are similar to those in undoped samples with identical structure.
Temperature effects on these peaks are by far weaker than in the case of the
edge peak.
We shall answer these and other questions by following the discussion of Ruckenstein
et al. (1986) and Ruckenstein and Schmitt-Rink (1987).

We begin by considering the simple static picture corresponding to equations
(2.3.18) and (2.3.21), in which the Fermi sea does not respond dynamically to the
appearance or disappearance of a hole in the course of an optical transition. (For sake
of clarity, we limit ourselves to n-type, homogeneous 2D systems, unless specified
otherwise.) Although this simple picture is quite incomplete (see below), it yields
already the right answers to most of the questions raised above. The model was
originally introduced by Mahan (1967a) and applied to MDQWs by Kleinman (1985)
and, more recently, by Rorison (1987) and Livescu et al. (1988), following some
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related work by Schmitt-Rink and Ell (1985) and Schmitt-Rink e al. (1986) on
photoexcited 2D systems. We shall discuss it in great detail, because it will also form
the basis for our discussion of nonlinear optical effects in section 3.1.

According to section 2.1, the linear optical susceptibility, x, of a homogencous 2D
semiconductor is given by the extension (Shinada and Sugano 1966) of Elliott’s (1957)
formula

28 ¢ 1R = o)l

Y= T LE-w-i
where ¢° and E? are respectively the unperturbed excitonic e-h relative motion
wavefunctions and energies. (In the following, to distinguish the excitonic parameters
in the presence of a perturbation from the unperturbed ones, we will label the latter
with a superscript ‘0°). In linear response theory, the product of x and the applied
optical field, E, is identical to the polarization, P, induced by E. On the other hand,
P will in general be given by the sum over its individual momentum space components,
er,. P(k), corresponding to vertical optical transitions at points k in the Brillouin zone,

P = xE
2ery
L,
By using the k-space representation of the Wannier equation and identifying xE from

equations (2.3.22) and (2.3.23), one readily finds that P(k) obeys a Wannier equation
off the energy shell, driven by the optical field, E.

Z[Ht’.k- — (@ + )0 uP(K) = eroE, (2.3.24)

(2.3.22)

Z P(k). (2.3.23)

where
Hg,k' = (Gd “+ EM)(SM‘- - I(k hand k') (2.3.25)

is the unperturbed e-h relative motion Hamiltonian introduced in section 2.1, where
the homogeneous Wannier equation (equation (2.1.11a,b)) was discussed. The
question is then simply how equation (2.3.24) and thus  are modified by the presence
of a Fermi sea.

Obviously, there are only two quantities which can change, namely the e-h relative
motion Hamiltonian and the driving term, er., E. Because- of the Pauli exclusion
principle, optical transitions can only take place into unoccupied states. Therefore, in
the presence of a conduction electron Fermi sea, we have to project out those final
states that are already occupied, by multiplying er., E in equation (2.3.24) by 1 — f.(k),

ero  E = [1 — fu(K)ler, E. (2.3.26)

We shall call this effect the phase space filling (PSF) effect. In one-electron theory, it
gives rise to the well known Burstein (1954) blue shift of the absorption edge, which
accounts in part for point (1) above, namely the temperature- and density-dependent
Stokes shift between absorption and emission: for a dilute finite-mass hole gas with
a Maxwell-Boltzmann distribution f, around k = 0 and a degenerate conduction
electron Fermi sea, optical emission ~ fofy will be mainly from the bottom of the
conduction band to the top of the valence band, namely at €9 + €4, While optical
absorption ~ (1 — f;) will start at €, + €nke.

The changes in the e-h relative motion Hamiltonian comprise two kinds of
corrections, the self-energy corrections discussed above and the corresponding vertex
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corrections. The former correspond to the changes of the individual e and h energies
due to exchange and correlation effects,

€ + € = €u + € + Z (k) + Zy(K), (2.3.27)
while the latter describe the associated changes of the e-h interaction,
Ik — k) = Itk = k) + {[1 — (KK - k') - I(k - k')}. (2.3.28)

First, I(g) is replaced by some effective, screened interaction, /,(g), assumed to be local
and unretarded, as discussed above. Then /,(g) is in turn multiplied by the PSF factor,
1 — f.(k), because Coulomb scattering is of course also limited to final states above k.

The corrections in equations (2.3.27) and (2.3.28) are actually not independent of
each other, but related by the Ward identity (Zimmermann et al. 1978, Haug and
Schmitt-Rink 1984)

Z.(k) + L) = Z{ll - LKk — k) — Ik — k)}.  (23.29)

Equation (2.3.29) is obviously identical to the sum of ¢ and h Coulomb hole and e
screened exchange self-energies, showing that, under the assumption of a local and
unretarded interaction /,(q), equation (2.3.18) and (2.3.21) follow inevitably.
Summarizing equations (2.3.24)—(2.3.29), we find that, in the presence of a static
conduction electron Fermi sea, the polarization P(k) satisfies the equation

Z[Hi’.w + 0Hyy — (@ + i0)0 JP(K) = [1 — fe(K)ler E,  (2.3.30)

where
0Hyp = —Opn Z Lk — k) f.(k") + Lk — k') f(k)

= Z Uk — k") — Lk — k7] + [I(k = k%) — Lk — k')].
(2.3.31)

Equation (2.3.31) shows nicely the one-to-one correspondence between self-energy
and vertex corrections and the fact that they always appear with opposite signs, which
has important consequences (see below).

For low doping concentrations, Na; < 1, onc can solve equations (2.3.30)
and (2.3.31) in perturbation theory, by expanding about unperturbed exciton states
(Schmitt-Rink and Ell 1985, Schmitt-Rink et al. 1985). The resulting optical sus-
ceptibility, x, is given by

26r, A
t= I lE o= w (2:3.32)

where
fi = 0¥ (r=0) Z 1 - £ (O k)

®*(r = 0)(m|6Hn)p(r = 0) + (n <> m)
+ E-E

men

(2.3.33)

are the renormalized oscillator strengths and
E, = E? + {n|6H|n), (2.3.34)
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the renormalized transition energies. Here, it is understood that all quantities are
expanded up to O(Naj). Three types of effects can be identified:

(i) a shift of the exciton energies as a result of exciton-electron collisions,
(ii) a corresponding exciton wavefunction renormalization (second term in

equation (2.3.33)), and
(iii) a PSF correction to the oscillator strength (first term in equation (2.3.33)).

Both (i) and (iii) give rise to a decrease of y, that is a bleaching, because they both
reduce the probability |¢,(r = 0)? of finding the e and h in the same unit cell.

The detailed study of the shift equation (2.3.34) reveals that (i) for infinitely
separated e and h, it reduces to the BGR, E, = E? + Z.(k) + Z,(k), while (ii) for
bound states, a strong compensation between vertex and self-energy corrections takes
place, that is, the decrease in binding energy partially cancels the decrease in band gap.
This important phenomenon, the relative constancy of bound state energies, was first
explained by Gay (1971, 1972) and put on firm grounds by Zimmerman et al. (1978).
The point is very simple: when one brings and h together to form a bound state, their
opposite polarization clouds partially cancel each other. The smaller the bound state
radius, the larger this cancellation. For infinitely separated e and h, on the other hand,
no such cancellation exists and one recovers the usual BGR.

Alternatively, one can explain the relative constancy of bound state energies in
terms of a partial cancellation of attractive and repulsive forces, by comparing the
expectation values of the first and last two terms in equation (2.3.31). The first two
terms describe the effects of the exclusion principle and—in a weakly non-ideal boson
picture—are suitably reinterpreted as being due to hard core repulsion between
excitons and electrons. The last two terms describe the effects of screening and are
thus equivalent to a poor man’s Van der Waals attraction. Hard core repulsion gives
rise to a blue shift, Van der Waals attraction gives rise to a red shift; again, a partial
cancellation can be expected (Nozieres and Comte 1982, Haug and Schmitt-Rink
1984).

The changes in exciton oscillator strength can similarly be interpreted in an
intuitive fashion (Schmitt-Rink et al. 1985). For Na; < 1, one finds from equation
(2.3.33)

oy _ _ N (2.3.35)

N N’

with a temperature dependent saturation parameter, N,. For I(g) = I(g), N, was
estimated by Schmitt-Rink et al. (1985) and evaluated exactly by Zimmermann
(1988a). Here, we shall restrict ourselves to the discussion of its qualitative behaviour.

It is often thought that screening governs the behaviour of N, and thus of the
unbinding of excitons. While this is partly correct in 3D, this notion must be clearly
rejected in 2D. If one models the screened Coulomb interaction, ,(g), by its long-
wavelength RPA value, then it is well known that the unbinding of 3D excitons takes
place for a screening length, k", of the order of the exciton Bohr radius. This is
Mott’s (1974) original criterion. The point is that in 3D one needs a critical coupling
strength to form a bound state. In 2D and 1D, however, bound states occur for
arbitrarily small attractive potentials, which leads an extension of the Mott criterion
ad absurdum. (Similarly, all states are localized in 2D and 1D disordered systems.)
Zero-temperature studies of screened Coulombic impurities in 2D by Stern and
Howard (1967), Brum et al. (1984) and Bastard (1985) demonstrate this fact very
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nicely: with increasing N, the binding energy decreases until it saturates at some
substantial fraction of its unscreened value, due to the constant 2D screening length.
Enhanced multilayer screening reduces the magnitude of this value, depending on the
ratio of the screening length to the layer spacing (Visscher and Falicov 1971, Fetter
1973, 1974, Hawrylak and Quinn 1986).

The consequences of this characteristic property of 2D systems for optical effects
were not considered until recently (Schmitt-Rink er al. 1985, Kleinman 1985). If the
effects of screening are weak, then the bleaching of exciton resonances will be mainly
related to the blocking of the phase space that participates in the exciton wavefunction.
A good measure of this effect, correct within a factor of two or three, is the relative
change in oscillator strength due to PSF.

s = lim ¥ LW/ = 0, (2336)
S N=0

The evaluation of equation (2.3.36) is straightforward and yields (Schmitt-Rink ef al.
1985)

1 wa, T < E,, (23.37q)

T, mE

Zvaén—le?, T » E,. (2.3.37b)
This result has the following intuitive interpretation: when an exciton is created
optically, the area occupied by it cannot sustain more carriers, that is, an exciton and
an electron cannot occupy the same space (equation (2.3.37 a)). Consequently, when
kgay ~ O(1), the excitonic optical absorption diminishes. Even in the case of hot free
electrons (equation (2.3.37 b)), the same notion can be retained, only now we must
note that only a fraction of the electrons of order (Ae/ag)* ~ Ey/T occupy the phase
space sampled by an exciton (4, is the thermal de Broglie wavelength); thus electrons
with thermal wavelength much smaller than the Bohr radius can occupy the same
Space as an exciton without violating Pauli exclusion.

This extremely simple concept explains a series of experimental observations
on doped and photoexcited (see section 3.1) QWs remarkably well. We are refer-
ring to the facts that (i) in n-type MDQWs the n, = 1 heavy- and light-hole
excitons disappear approximately at the same density, while in p-type samples the
n. = 1 heavy-hole exciton disappears first (Miller and Kleinman 1985); and (ii)
n, 2 2 excitons, for which PSF is ineffective, show up as in undoped samples,
except for small red shifts and broadenings, which are obviously due to residual
screening effects (point 3 above). (There is obviously some resemblance to the
observation that in bulk semiconductors the states far above the fundamental
absorption edge are hardly influenced by many-body effects because of their large
kinetic energy.) An estimate of the exciton broadening was given by Feng and Spector
(1987).

Recent low-temperature transmission experiments on single MDQW (L, = 100A)
InGaAs/InAlAs field-effect transmitter (FET) structures showed these different renor-
malizations once more and very clearly (Chemla et al. 1987a, 1988a, Bar Joseph et al.
1987b). Figure 21 shows the structure and its differential transmission A7/T (minus the
change in absorption), as the electron concentration is varied continuously from N ~ 0
to N ~ 8 x 10" cm~? by increasing the gate-to-source voltage. At the n, = 1 tran-
sitions, AT/T is positive and increases with N until the heavy- and light-hole exciton
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Figure 21. (a) Structure of field effect transistor. The L, = 110A InGaAs layer is undoped,
the central L, = 250A InAlAs layer is doped with Si (N = 12 x 10%cm™3). (b)
Differential transmission spectra at T = 10K. Spectra 1to 5 correspond to increasing
gate-to-source voltage. (After Bar-Joseph e al. (1987).)

resonances appear clearly. This behaviour corresponds to the progressive phase space
quenching of the absorption as the electrons fill up the n, = 1 conduction band. At
the n, = 2 and 3 transitions, the signal is smaller, with a differential lineshape
showing positive and negative parts indicative of red shift and broadening (note that
electrostatic effects contribute to AT/T as well). The detailed analysis also reveals the
qualitative N'? behaviour of the BGR, as did luminescence and luminescence excitation
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experiments on similar one-sided (L, = 150 A) GaAs/AlGaAs MDQW (Delalande
et al. 1986, 1987, Delalande 1987).

What remains to be discussed is point (2) above, namely the nature of the edge
peak at high doping concéentrations, N. We first note that even in this limit the generic
structure equation (2.3.22) of Elliott’s formula can actually be retained. By using a
unitary transformation, similar to the one which relates the Dyson and Holstein-
Primakoff transformations, the exact solution of the non-Hermitian problem equations
(2.3.30) and (2.3.31) can be written as (Stolz 1974, Haug and Schmitt-Rink 1985,
Schmitt-Rink ez al. 1986)

2
— 12
_ 2P 'Z 1 — f(B)T ", (k)

- T (2.3.38)

where ¢, and E, are now eigenfunctions and energies of the Hermitian e-h relative
motion Hamiltonian
Hyw = (Ex + Eu)on — [1 = L1 L(Kk — K)[1 — f(K)'2.
(2.3.39)

For large N, excitons no longer exist, so that the e-h wavefunctions, ¢,(k), are
scattering states, ¢, (k), classified according to the e-h relative momentum, p. The e-h
energies are £, = E,, + E,, and are given by equations (2.3.27) and (2.3.29).

By analogy with standard definitions, ¢, (k) can be written in the form

[1 = LTk, P)[1 — £(P)]"
¢p(k) = 6k.p + E’ —E +i0 ’ (2.3.40)

where T(k, p) is the on-shell T matrix defined through
Tk, p)[1 — f(P)? = — ZI.(k = K1 = (kNP (k). (2.3.41)
Equation (2.3.40) corresponds to outgoing wave boundary conditions. Substituting

equation (2.3.41) into equation (2.3.40), we obtain the Bethe-Salpeter Equation
(BSE) for the on-shell T matrix

T ) = Lk - p) - J Lk — k) o L K, p
P

(2.3.42)

Since only s-wave scattering contributes to y, we can replace the interaction, I, by its
angle-averaged value, .

Lk, k) = 2% [ dork - k), (2.3.43)

where ¢ is the angle between k and k'.

With use of a method developed by Noyes (1965), the BSE equation (2.3.42) can
be transformed into a non-singular integral equation. Multiplying equation (2.3.42)
by L(k, p)/L.(p, p) and subtracting the result from equation (2.3.42), one finds

k, p)L(p, k'
T ~ e -3 - A

1 - f(k)
X m T(k’, p). (2.3.44)

-
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The solution of this equation can be expressed as

T(k, p) = T(p, P)S(k, D), (2.3.45)

where
_ Lk p) ~ _ Lk pI(p, k')] AL P
fkp) = 750 Z[L(k,k) e Ay s
(2.3.46)
— 4 y

T(p, p) = 1—;—(/""7’2), (2.3.47)

with

1 —
A = T L. Of, P (2.3.48)

Obviously, the kernel of equation (2.3.46) is now finite for ¥’ = p,and f(p, p) = L.
The oscillator strength for transitions into scattering states is, according to

equation (2.3.38), determined by
_ 12 - _ in _ Ay (p) ]
L0~ G140 = 1 = £(p) [1 Tl BECEXD
where
1 — f(k)
A(p) = Zl,(p. PP g (2.3.50)

Substituting this expression into equation (2.3.38), we finally obtain for the absorption
coefficient

Imy = Almy, (2.3.51)
where
2néir, |2
Imy, = 2=l 0 — oo - Ep) 23.52)
z P
is the one-electron result (including the BGR) and
Ap) [

A=l - 2.3.53
i T+ AD, . 23.53)

is an enhancement factor that describes the residual e-h correlation.

Exact numerical solutions of the BSE were performed for the related problems of
direct optical transitions in photoexcited indirect Ge (Zimmermann et al. 1981,
Schweizer et al. 1983) and for photoexcited QWs (Schmitt-Rink et al. 1986). For
small electron densities, N, equation (2.3.53) reduces to the results of Elliott (1957)
and Shinada and Sugano (1966). For large N, it is sufficient to keep only the leading
term in equation (2.3.46), in which case a closed analytical solution is obtained. At
zero temperature, 4 is found to exhibit a pole, situated above the renormalized band
gap E; = E,, close to the one-electron absorption threshold Ei,. The existence (in the
static Fermi sea picture) of such a bound state with respect to the Fermi level was first
discussed by Mahan (1967a) and we shall therefore refer to it as the ‘Mahan exciton’.
It is due to the residual e~h correlation in combination with the sharpness of the Fermi
surface and formally equivalent to loosely bound Cooper pairs in superconductors.
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As already noted by Mahan, such a bound state in the continuum must eventually
shift and broaden, as a result of interactions with particle-hole excitations of the
Fermi sea. However, to accomplish this ‘unbinding of the Mahan exciton’ theoretically,
one must allow for the dynamical response of the Fermi sea to the appearance (or
disappearance) of the hole in the course of optical transitions (see below). The less
ambitious approach simply consists of broadening the Mahan exciton by hand
(Mahan 1967a, Rorison 1987, Skolnick et al. 1987, Livescu et al. 1988), which yields
already a reasonable description of many experimental data.

As the temperature is raised, the Fermi surface is smeared, and the Mahan exciton
disappears. This can be viewed as thermal ionization, just like in the case of loosely
bound Cooper pairs. The static Fermi sea picture reduces then more or less to
one-electron theory (including the BGR), until, for temperatures much larger than the
Fermi energy €, real excitons, that is bound states in the gap, reappear. (Clearly, this
latter point must be discarded, because in reality the increasing broadening due to
phonons will always suppress the effect.)

While this simple picture—the existence at low temperatures of a bound state
below the Burstein edge—explains the qualitative behaviour of the experimental data
and point (2) above, the actual physics and correct theory are much more complicated.
Including the full dynamical response of the Fermi sea in a detailed calculation of
optical spectra represents a highly non-trivial task, outside the scope of conventional
perturbation theory, as discussed qualitatively by Gavoret et al. (1969) and Ruckenstein
and Schmitt-Rink (1987). The casiest way to understand the origin of this difficulty
is to consider the absorption process in the idealized limit of an infinite hole mass, by
analogy with the discussion of the soft X-ray spectra of metals.

There are two effects one must consider: the first was discussed by Mahan (1967b),
who showed that by considering all processes which involve repeated scattering of
an electron and a hole, including the dynamical vertex corrections ignored within the
static Fermi sea picture, the sharp bound state at the Fermi level changes into a
power-law singularity. The second effect is related to the ‘orthogonality catastrophe’
discussed by Anderson (1967) and Hopfield (1969). Anderson proved that the overlap
between the electron ground state wavefunction in the absence of the hole and that
with the hole present vanishes in the limit of a large system. As a result of this effect
alone, the zero-temperature absorption spectrum would be non-vanishing only away
from the edge, since in that case, due to the creation of particle-hole pairs, the final
state would be an excited state, not affected by Anderson’s theorem. Formally, this
orthogonality theorem is contained in the (dynamical) hole self-energy. The singularity
due to the ‘final state interactions’ discussed by Mahan usually dominates, and thus
the zero-temperature absorption spectrum at high densities displays a power-law
singularity at the Fermi level.

The physics underlying this singularity is the sudden appearance of the hole in the
course of the absorption process. It leads to a readjustment of all the electrons
into a new (scattering) state, which shows up as an infinite number of low-lying
particle-hole excitations of the Fermi sea.

In a series of papers (Roulet et al. 1969, Nodzieres et al. 1969, Nozieres and de
Dominicis 1969, Combescot and Nozieres 1971), Nozieres and co-workers developed
a rigorous theory of these effects, which had also great impact on related problems,
such as the Kondo effect. In particular, Combescot and Nozieres (1971) showed that
the power-law behaviour persists even in the low-density excitonic limit, with a
threshold energy and an exponent always parameterized in terms of the s-wave e-h
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Figure 22. Direct (with threshold wp) and indirect (with threshold ;) absorption processes
for a finite hole mass. Energy and momentum conservation is guaranteed by collective
excitations of the Fermi sea.

scattering phase shift. The threshold energy is obtained from a generalization of
Fumi’s (1955) theorem, while the exponent, in agreement with Hopfield’s (1969) rule
of thumb, is related to the number of electrons required to screen the hole, as
determined by the Friedel (1952) sum rule.

Thus, for an infinite hole mass, the low-temperature optical spectra always display
a power-law singularity, the nature of which changes continuously from excitons
dressed with collective excitations of the Fermi sea in the low-doping limit to a Fermi
level singularity in the high-doping limit. The experiments on InGaAs/InP MDQW
shown in figure 20 are completely accounted for by this picture, because the holes are
localized by alloy disorder and hence infinitely heavy (Skolnick ef al. 1987). As
the temperature is raised, the edge singularity is smeared until finally (T = 80K)
one-electron behaviour is recovered.

In the case of a finite hole mass, the recoil of the hole will smear the edge
singularity over a frequency range (m, /m, )eg, the effective ‘bandwidth’ of the hole. As
shown in figure 22 for the case of absorption, optical processes can now be separated
into two categories, direct and indirect (Auger-like) transitions. In the high-doping
limit, direct (vertical) transitions require a minimum energy wp, = E; + (1 + m,/my)€g.
In indirect transitions, electrons are excited above the Fermi level under the simul-
taneous excitation of particle-hole pairs or plasmons, which ensure energy and
momentum conservation. As can be seen from figure 22, the indirect threshold (i.e.
the minimum energy required for such a process) is given by w; = E; + €;. When
the recoil energy wp, — w; is much larger than the residual Coulomb interaction, as
measured by the binding energy of the Mahan exciton, the edge singularity disappears
completely. Otherwise, a broadened resonance survives between the two thresholds.

’
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Figure 23. Luminescence spectra of an n-type modulation-doped (N = 6 x 10" cm™?)
GaAs/AlGaAs multiple quantum well structure (L, = 226 A) at T = 4K. J;: polariza-
tion parallel to the layers; /, : polarization perpendicular to the layers. E; denotes the
renormalized band gap. (After Sooryakumar et al. (1985).)

This is, for example, the situation in the experimental data on the GaAs/AlGaAs
MDQW shown in figure 19.

Unfortunately, very little can be easily calculated in the case of a finite hole
mass, except for the behaviour of the absorption coefficient near the indirect thres-
hold, which can be obtained from second-order perturbation theory. As shown by
Ruckenstein et al. (1986) and Ruckenstein and Schmitt-Rink (1987), MDQW exhibit
a low-energy absorption tail varying like (0 — ,)’. At the direct threshold, per-
turbation theory diverges. As discussed qualitatively by Gavoret et al. (1969), the cure
of this divergence requires a non-trivial self-consistent renormalization of both self-
energy and vertex corrections. A ‘minimal’ calculational scheme, based on Fadeev-like
equations (which describe exactly correlations up to three particles (Fadeev 1965,
Gloeckle 1983)), was suggested by Ruckenstein and Schmitt-Rink (1987). A nice
treatment of a closely related problem, namely ‘shake-up’ in the gain spectrum of
photoexcited semiconductors, was given by Miiller and Haug (1987).

The dynamical response of the Fermi sea to the appearance or disappearance of
the hole in the course of optical transitions must also be invoked to explain other
experiments: Ruckenstein et al. (1986) demonstrated circular polarization anomalies
in luminescence from n-type GaAs/AlGaAs MDQWs which were tentatively attributed
to a large e-h exchange in combination with a collective screening of the hole spin,
just like in the Kondo effect (between successive impurity spin flips). Independent
evidence for a large e-h exchange was recently reported by Bauer et al. (1987). In
GaAs/AlGaAs MDQW waveguide structures, Sooryakumar et al. (1985, 1987)
observed an unexpectedly strong emission I, with polarization perpendicular to the
layers, shown in figure 23 together with J;. As can be seen, the spectra for the two
polarizations also exhibit drastic differences in lineshapes. If the n, = 1 heavy-hole
band (the final state in emission) had only J, = + # character, the ratio 7, /1; should
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vanish, as discussed in section 2.1. Therefore, the data in figure 23 indicate a
surprisingly large mixing of J, = +1light-holeand J, = + 3 heavy-hole character,
especially near k = 0, where it is unexpected. Again, collective excitations of the
Fermi sea were invoked to account for this behaviour. A first principles calculation
of the effect was attempted by Chang and Sanders (1985), while Sham put forward
a purely phenomenological model that accounts surprisingly well for the observations
(Sooryakumar et al. 1987).

We conclude this section by merely noting that most of the fascinating obser-
vations discussed above could never be made in doped bulk semiconductors,
because of the strong ionized impurity scattering. MDQWs are thus unique, by
providing ideal environments for studying many-body physics. Modulation-doped
spherical heterostructures, consisting for example of a small Si-doped AlGaAs core
in a GaAs matrix, would be the ultimate thing, a man-made ‘superatom’ (Inoshita
et al. 1986).

3. Nonlinear optical properties

The nature of the nonlinear optical response of semiconductors is different
depending on whether virtual or real e-h populations are generated. Correspondingly,
excitation below and above the absorption edge have to be clearly distinguished. Before
presenting particular results, it is useful to discuss these two cases in very broad terms.

In the case of photoexcitation of virtual e and h well below the absorption edge,
the coherent laser field, E, induces a coherent polarization, P, of the valence electrons
that persists essentially only as long as the laser is applied. The nonlinear polarization
can couple various optical fields, which exchange photons via the material, but no net
power is deposited in the latter. During application of the laser field, the state of the
semiconductor is a coherent superposition of all excited (e-h pair) states. The
individual components have exactly the same interactions as if they were actually
populated, but they do not participate in any real relaxation process. If they did relax
by real collisions, their quantum-mechanical phase would be disturbed and, as far as
the driving field is concerned, photons would be absorbed in real transitions. By a
simple application of the uncertainty principle, the amount of time the photons spend
in an excited state is1 ~ AE~", where AE is the difference between the photon energy
and the excited state energy, for example, AE = E, — win the case of band-to-band
transitions. As long as this time is short compared with the characteristic dephasing
time of the excited state, the transitions will be predominantly virtual. Virtual tran-
sitions are therefore only favoured under off-resonant excitation. The corresponding
coherent optical nonlinearities are small, because of the large differences AE between
the photon energies and the absorption edge; however, they are extremely fast, limited
only by the uncertainty principle.

Photoexcitation above the absorption edge generates predominantly real e-h pairs
with no, particular quantum-mechanical phase coherence, except for the initial time
regime before the first collision. Owing to the strong absorption, however, such
resonant excitation produces a large number of ¢ and h for a given laser intensity, and
hence large changes in the optical properties of the material. Real e and h, once
generated, undergo a number of relaxation processes; the changes they induce in the
optical spectra persist of course as long as the e and h themselves, that is for the
lifetime. For the specific case of semiconductors, the excited e and h can form bound
(excitons, trions, biexcitons) or unbound (e-h plasma) states, which produce different
effects (Haug and Schmitt-Rink 1984, Chemia 1985, Henneberger 1986, Haug 1988).
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Furthermore, ultrafast photogeneration can produce non-equilibrium distributions of
these states. Two relaxation times should be distinguished. The first is the time it takes
the photoexcited ¢ and h to reach a thermodynamic equilibrium among themselves
(usually a fraction of a picosecond), and the second one the time it takes them to
equilibrate with the lattice (in the picosecond range). Optical transients can occur, for
example, if excited species transform into one another during thermalization.
Excitons that are generated by resonant excitation within the absorption peak are
only stable at low temperatures where they can last as long as several ns. As discussed
in section 2.1, in the case of III-V QWs at room temperature, they are thermally
unstable and very quickly transform into free e-h pairs. Since the two species have
different effects on the optical spectra, it is necessary to distinguish among them
experimentally and theoretically.

In this section, we will review the experimental and theoretical investigations of
excitonic optical nonlinearities in semiconductor microstructures. Following the
above discussion and section 2, we will distinguish between e-h plasma, exciton and
virtual e-h pair induced effects in undoped and in biased microstructures. Experi-
mentally, virtual e-h pair effects are produced by excitation well below the absorption
edge and e-h plasma effects by excitation above it. At room temperature, and in ITI-V
compounds, exciton effects are more difficult to select; not only resonant excitation
must be used, but they must be observed in times short compared with the exciton
ionization time. This requires femtosecond spectroscopic techniques.

The experimental method most widely used (and most informative) is the ‘pump
and probe’ technique, which is quite similar in spirit to the ‘dope and probe’ technique
discussed in section 2.3: a strong pump beam is used to excite a large number of e-h
pairs (virtual or real) the excitation spectrum of which is then probed by a weak test
beam. Measuring the transmitted test intensity provides information on the absorption
and gain of the sample. It is also possible to measure the photons diffracted by
interference between pump and test beam in directions different from those of the
incident beams. The corresponding diffraction efficiency provides information both
on the change of refractive index and absorption. These techniques have been
extensively discussed in the literature, for instance by Chemla et al. (1984).

3.1. Effects of real electron-hole populations

We begin by considering the experiments in which an optically created real and
thermalized e-h phasma is responsible for the changes in optical properties, similar
to the situation in MDQWs discussed in section 2.3. The e-h plasma can be generated
either directly above the gap (Shank et al. 1983, Chemla et al. 1984, 1988b, Park
et al. 1988) or indirectly following exciton creation by resonant absorption (Miller
et al. 1982b, Weiner et al. 1986, Tai et al. 1987b) or LO phonon-assisted absorption
(Von Lehmen et al. 1986a, 1987). For thermalization to be completed, observation
must take place a few picoseconds after excitation.

It is found experimentally that the changes in the absorption spectrum do not
depend on the excitation wavelength or on its duration. They depend only on the
density, N, and temperature, T, of excited e-h pairs. A typical example of the
modification of the room-temperature absorption spectrum as a function of N is
presented in figure 24 for a GaAs/AlGaAs multiple quantum well structure (L, = 96A)
and N between ~0 and ~2 x 10'>cm~? (Chemla et al. 1988b). In the particular
case of this set of spectra, the sample was excited with a 100fs pump pulse about
60meV above the n, = 1 heavy-hole resonance and was probed several picoseconds
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Figure 24. Room temperature absorption spectra of a GaAs/AlGaAs multiple quantum well
structure (L, = 96 A) for free e-h pair densities between N ~ Oand N ~ 2 x 10%cm2,
measured after thermalization. (After Chemla et al. (1988b).)
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Figure 25. Room-temperature differential transmission spectra of a GaAs/AlGaAs multiple
quantum well structure (L, = 96 A) for selective generation of n, = 1 heavy-hole
excitons (full line) and free e-h pairs (dotted line), measured after exciton ionization and
thermalization. (After Chemia er al. (1988b).)

later by a broadband test continuum. A very smooth evolution is seen, the n, = 1
heavy- and light-hole resonances weaken and are progressively replaced by a smooth
absorption edge. The independence of the nonlinear absorption on the excitation
wavelength and thus on the way the e-h plasma is created is clearly demonstrated in
figure 25. Here, two typical differential transmission spectra (unperturbed absorption
minus absorption in the presence of the pump beam) are compared (Chemla et al.
1988b). They were measured about 2ps after sclective generation of n, = 1
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heavy-hole excitons (full line) and free e-h pairs (dotted line). The pump intensities
were adjusted to produce the same density of pairs. Within the experimental accuracy,
the two curves are not distinguishable.

The global changes of the optical spectra near the absorption edge are interpreted
just like in MDQWs (section 2.3) and photoexcited bulk semiconductors. As the e-h
plasma density increases, the energy of free e-h pairs becomes renormalized (BGR),
whereas that of the bound states hardly changes. The binding energy of the bound
states measured from the renormalized scattering continuum decreases. The resonances
lose oscillator strength, both because of the occupation of states out of which the
excitons are constructed (PSF) and because of the loss of e-h correlation (i.c. the
excitons are becoming larger). The width of the peaks increases because of collisional
broadening. At low e-h pair densities, when the continuum is still far from the
resonances, only the loss of oscillator strength and the broadening are apparent.
However, if the density continues to increase, the resonances merge in the continuum,
and eventually the continuum edge is the only remaining spectral feature. Finally, at
still higher densities (not shown in figure 24), when the e-h plasma becomes degenerate,
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Figure 26. Semi-empirical fits of room temperature absorption (q) and differential trans-
mission (b) of a GaAs/AlGaAs multiple quantum well structure (L, = 96A). The

theoretical DFWM spectrum (full line in (¢)) is obtained from the nonlinear cross section
o and n shown in figure 27. (After Miller et al. (1983a), Chemia ez al. (1984).)
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Figure 27. Room-temperature nonlinear absorption and refraction spectra of a GaAs/AlGaAs
multiple quantum well structure (L, = 96 A). o and n describe respectively the change
of absorption and refractive index induced by one e-h pair and are obtained from the
fits shown in figures 26 (a) and (b). (After Miller ez al. (1983a), Chemla et al. (1984).)

optical gain develops between the renormalized band gap, E,;, and the chemical
potential, 4 = u, + u,, due to the population inversion (Shank et al. 1983, Weber
et al. 1988).

Additional information on the refractive index changes has been obtained from
degenerate four-wave mixing (DFWM) experiments using tunable picosecond pump
and probe lasers (Miller et al. 1983a, Chemla et al. 1984, Tai et al. 1987b). For low
e-h pair densities, N, the bleaching of excitons can be characterized by a nonlinear
absorption cross section ¢ and a nonlinear refractive index »n, which measure respect-
ively the change of the absorption coefficient and refractive index induced by one e-h
pair,

a = a — oN, (3.1.1a)
n = ny— yN. (3.1.15)

Here, to be consistent with the usual definitions, N is the e-h pair density per unit
volume. ¢ and n are related by Kramers—Kronig relations; together they determine the
DFWM diffraction efficiency. Figure 27 shows typical spectra of ¢ and #, as obtained
from a semi-empirical fit of measured changes in transmission (and subsequent
Kramers-Krénig transformation) shown in figure 26 (b) (Miller ez al. 1983a, Chemla
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et al. 1984). The nonlinearities are extremely large and in this particular sample
(a GaAs/AlGaAs multiple quantum well structure with L, = 96 A) peak at
6~ 7 x 107"“cm? and n ~ 3-7 x 10~ cm®. Figure 26(c) shows a comparison of
the measured diffraction efficiency with the theoretical prediction based on the spectra
of o and 7. The agreement is excellent. Similar results (6 ~ 2-8 x 10" cm? and
n ~ 3 x 10~" cm®) have been reported for room temperature InGaAs/Inp multiple
quantum well structures with L, = 100 A (Tai et al. 1987 b). Using the solution of the
rate equation for the carrier density,

dN

de

where E, is the pump field and 7 the lifetime, these numbers can be translated into
peak values n, ~ 2 x 107 cm?’kW~' and |y®| ~ 6 x 1072es.u. for the GaAs/
AlGaAs sample and 7, ~ 3-5 x 107'cm*kW~' and [y®| ~ 8 x 10~2e.s.u. for the
InGaAs/InP one. Within the experimental uncertainties, there is no difference. These
values are very large in absolute terms (sce below).

The impressive magnitude of room temperature nonlinear optical effects in high-
quality GaAs/AlGaAs QWs was demonstrated by degenerate four-wave mixing using
the output of a commercial c.w. laser diode as the sole light source. A diffraction
efficiency of ~5 x 10~° was observed in a 1-25um thick sample, using only a
~17Wcm™2 pump intensity (Miller et al. 1983b). Optical (bistable) devices using
GaAs/AlGaAs and InGaAs/InP QWs as the active medium in nonlinear Fabry-Pérot
etalons have been operated and raised much interest for applications in all-optical
logic (Peyghambarian and Gibbs 1985, Gibbs 1985, Tai et al. 1987a). These devices
exceed the e-h pair densities at which excitons cease to exist, and rely on interband
saturation to complete the switching (see below). GaAs/AlGaAs QWs have also been
used as saturable absorbers to mode-lo¢k semiconductor laser diodes. Stable operation
producing pulses as short as 1-6 ps has teen demonstrated (Smith et al. 1985).

The extreme sensitivity of GaAs/AlGaAs QW excitons to the presence of e-h pairs
has been exploited to study the exponential absorption tail and LO phonon sidebands
at photon energies below the absorption edge (Von Lehmen er al. 1986a, 1987). The
cross-sections for these processes are very small and they had previously only been
observed in bulk GaAs (Sturge 1962). It is extremely difficult to measure by classical
methods (i.e. plain transmission) such a small absorption in a micrometre thickness
multiple quantum well structure, and new nonlinear methods have to be devised to
perform these investigations. Since the final result of absorption is the generation of
real e-h pairs, a weak test beam can be used to probe the transmission of a sample
at the peak of the n, = 1 heavy-hole exciton resonance, as an intense pump beam
excites the QE structure below the absorption edge. For moderate pump intensities,
according to equation (3.1.1), the test beam measures the e-h pair density and hence
it maps out the pump beam absorption. At high temperatures, when the phonon
population is large, the absorption tail is found to follow Urbach’s rule (1953), while
at low temperatures, a kink appears approximately one LO phonon energy below the
exciton resonance, as shown by the experimental data (open circles) in figure 28 for
a GaAs/AlGaAs multiple quantum well structure (L, = 96A) at T = 75K (Von
Lehmen et al. 1986a, 1987). This expected feature (Liebler er al. 1985) corresponds
to the threshold for one-LO-phonon-assisted transitions. The step-like edge and the
subsequent resonance enhancement are in remarkable agreement with an extension of
the 3D second-order perturbation theory (Segall 1966) to the 2D case, retaining as

= 2E,fImy — g (3.12)
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Figure 28. Absorption of a GaAs/AlGaAs multiple quantum well structure (L, = 96A) at
T = 75K in the energy range of the exponential absorption tail below the n, = 1
heavy-hole exciton. The open circles are experimental data based on a new nonlinear
technique, the full line shows the contribution of one-LO-phonon-assisted transitions
calculated in perturbation theory. (After Von Lehmen et al. (1986a, 1987).)

intermediate and final states the n, = 1 heavy-hole exciton only. The theoretical
lineshape (full line) calculated without adjustable parameters agrees very well with the
data. The agreement can be improved further if the zero-LO phonon process on the
high-energy side and multi-LO phonon processes on the low-energy side are accounted
for. Below the one-LO phonon edge, the absorption, although non-zero, is extremely
small (~10~'cm™").

In addition to pump and probe experiments, room-temperature saturation
measurements have been performed under c.w. resonant pumping of n, = 1 heavy-
hole excitons in GaAs/AlGaAs (Miller et al. 1982b), InGaAs/InAlAs (Weiner et al.
1986) and InGaAs/InP (Tai et al. 1987b) QW structures. Like in low-temperature
GaAs (Gibbs ez al. 1979), the experimental data can be very well fitted assuming the
simple saturation form

o,

= TFIEER @.1.3)
which results from equation (3.1.1 a) and the steady state solution of equation (3.1.2).
The saturation intensities, I, = (nc|E,|*)/(2w), for saturation of the n, = 1 heavy-hole
exciton are found to be very small; less than 1kWcem™? in the GaAs/AlGaAs
(t ~ 20ns) and InGaAs/InP (tr ~ 30ns) samples and about 3kWcm~? in the
InGaAs/InAlAs one (t ~ 1:5ns).
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Does one have to conclude that QWs and still lower dimensional structures are
better nonlinear optical materials? At low temperatures in one sense confinement does
not buy anything except a larger linear susceptibility to start with (and, of course,
tunability of the absorption edge). As pointed out by Schmitt-Rink et al. (1987), the
nonlinear changes pér photoexcited e-h pair at low temperatures are independent of
dimensionality (apart from geometrical and lifetime factors) and similar to those of
the underlying atomic transition. This is most easily demonstrated by considering the
form in equation (2.3.35) of the nonlincar optical susceptibility, x,

X = xo(l —%) (3.1.9)

which becomes exact in the limit of quantum dots, where PSF is the only surviving
saturation mechanism (Schmitt-Rink et al. 1987). Substituting equation (3.1.4) into
equation (3.1.2) one finds in the steady state

_ Xo
X = TTIEFEE (3.1.5)
with
N,
2 s
|El® = img (3.1.6)

As discussed in section 2, xo scales like the inverse confinement volume, no matter
whether this confinement is externally imposed or due to e-h Coulomb interaction
(i.e. excitonic), and so does N,: the two effects exactly cancel each other. Thus, the
available absolute changes in optical properties increase as one goes to lower
dimensions (which may be very important for devices, which are frequently limited by
our inability to make a sufficiently large change in optical properties efficiently,
especially refractive index), but the energy density required to achieve a given change
stays the same.

Unlike in bulk semiconductors (Zimmermann e? al. 1981, Loewenau et al. 1982,
Schweizer et al. 1983, Haug and Schmitt-Rink 1984, 1985, Schaefer er al. 1988a),
good microscopic calculations of nonlinear QW absorption and refraction spectra
unfortunately do not exist. First attempts have been made only recently (Schaefer
et al. 1987). Besides the various difficulties also encountered in bulk materials (see
below), two additional problems are faced in low-dimensional systems; namely (i) the
pronounced effects of Coulomb repulsion between like particles, discussed in section
2.3, and (ii) fluctuation effects. Neither of them has been elaborated, and just like in
the case of MDQWSs one can only conjecture what the important physics is. Various
clues are provided by experiments and, so far, this has been quite a fruitful approach.
Most of the experimental observations can be qualitatively understood; often, even
the numbers work out surprisingly weil.

Starting with Kuramoto and Kamimura (1974), the BGR in a 2D e-h plasma has
been calculated by a number of people (Andryushin and Silin 1976a,b, Chakroborty
and Campbell 1984, Schmitt-Rink ez al. 1984, Schmitt-Rink and Ell 1985, Kleinman
1986, Bauer and Ando 1986b). RPA-type calculations along the lines discussed in
section 2.3 all yield zero-temperature results close to the simple interpolation formula
of Schmitt-Rink et al. (1984) and Schmitt-Rink and Ell (1985),

E; - E = —3-1(Ng}3)'P Ey, 3.1.7
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Figure 29. Renormalized band gap, E;, of a 2D homogenecous semiconductor, calculated in
RPA as function of free e-h pair density, N, for various temperatures, T. (After Schmitt-
Rink et al. (1984), Schmitt-Rink and Ell (1985).)

which exhibits the characteristic N'? behaviour discussed in section 2.3. Figure 29
shows E; = E.(0) + E,(0) for various temperatures T. The minimum of the ground
state energy per e-h pair is found to be ~ —0-87 Eyatr, ~ 1-4, wherer, = (tNa2)~'7
is the 2D density parameter (Kuramoto and Kamimura 1974, Schmitt-Rink and Ell
1985). Somewhat lower values have been obtained by Andryushin and Silin
(1976a,b), while a Jastrow function calculation of Chakraborty and Campbell (1984)
yields a value closer to the Hartree-Fock (HF) result (as expected). Just like in the
bulk, there will be no e-h liquid condensation in direct gap materials, because of the
short radiative lifetimes 7. Short-range correlations will be most significant in the
non-degenerate, classical limit, because at low temperatures, T, the e-h attraction
dominates (see below). One way or the other, RPA-type calculations are not to be
trusted at low e-h pair densities, N, and values for E, — E; smaller than those shown
in figure 29 are expected. As discussed in section 2.3, finite-layer-size effects partially
restore the validity of the RPA, but at the same time also reduce the absolute value
of the BGR. For finite L,, T = 0, and large e-h pair densities, N, one might be
tempted to use equation (3.1.7) with actual exciton parameters or construct a Padé
approximation which connects equation (3.1.7) to the 3D HF result, which also varies
like N'? (see the discussion in section 2.3). The N'? behaviour of the BGR has been
observed in GaAs/AlGaAs QW lasers by Tarucha et al. (1984) and, more recently, in
a series of QW structures by Traenkle er al. (1987a,b). The latter authors deduced
from a lineshape analysis of the photoluminescence under high excitation absolute
values in almost exact agreement with equation (3.1.7), which is at best surprising.
Recently, the density dependence of the BGR has been determined more accurately
by Weber ez al. (1988). These authors have directly measured the chemical potential
in 100 A GaAs QWs under nanosecond excitation, from the gain-absorption cross-over.

This measurement does not depend on a lineshape analysis and its accuracy is only
determined by the error in N. It was found that

(E; — E,) (meV) ~ —36 x 107°[N (cm~2)]'".
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This is substantially smaller than the pure 2D result. However, it is more realistic to
account for the finite well width and to use effective values for the binding energy and
Bohr radius in equation (3.1.7) instead of the pure 2D parameters E, = 4R and
a, = ag/2. For the case of 100 A GaAs QWs variational calculations (see section 2.1)
give E, ~ 8 7meV which corresponds to a, ~ 126 A. With these values, the BGR
predicted by equation (3.1.7) is

(E, — E,) (meV) ~ —3-1 x 107*[N (cm~?)]'?,

in reasonable agreement with the experiments. Weber et al. have also estimated the
intersubband BGR from the shift of the n, = 2 and 3 excitons. It was found to be
much less (~ 15%) than that of the n, = 1 edge. As mentioned in section 2.3, this is
due to (i) the cancellation of self-energy and vertex corrections for bound states and
(i) the large perpendicular wave-vector mismatch which reduces correlations.

The substantial effects of 2D fluctuations can be most easily demonstrated by
considering the optical spectra in the limit of high e-h pair densities, N, such that
bound states are no longer stable. This limit, which is relevant to QW lasers (Holonyak
1985), has been investigated in detail by Schmitt-Rink et al. (1986), using a static
Fermi sea picture similar to that described in section 2.3 (equations (2.3.38)~(2.3.53),
but with a PSF factor 1 — f,(k) — f.(k)). Just like in MDQWs, it is found that the
e-h correlation is concentrated near the chemical potential, x, namely in the cross-
over region from gain to absorption, as shown in figure 30. The full and dashed lines
give respectively the theoretical absorption with and without static e-h correlation.

The strong excitonic enhancement near the chemical potential, u, reflects the
tendency of the system to form e~h Cooper pairs, that is, to undergo a transition to
the excitonic insulator state (Keldysh and Kopaev 1965). It is found that within the
static Fermi sea picture, the excitonic enhancement factor, 4, equation (2.3.53),
diverges at some finite critical temperature, T,. This latter result is clearly an artefact.
As shown by Hohenberg (1967), in 2D systems and at finite temperatures, 7, long-
range order is always destroyed by fluctuations, thus T, = 0. Just like in MDQWs,
the notion of a static Fermi sea leads thus to spurious results, the cure of which
requires again a self-consistent renormalization of both (dynamical) self-energy and
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Figure 30. Theoretical absorption and gain spectra of a 2D homogeneous semiconductor

with (full line) and without (dashed line) static e-h correlation, T/E, = 0-1 and N&§ = 0-1.
(After Schmitt-Rink et al. (1986).)
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(dynamical) vertex corrections. First attempts in this direction have been reported by
Schaefer et al. (1988 a).

The saturation of, the excitonic optical absorption due to an e-h plasma has been
studied theoretically by Schmitt-Rink and Ell (1985), using various static and dynamic
RPA-type models for the effective interaction, 1,(g), and by Schmitt-Rink er al.
(1985). The main points can be discussed following section 2.3 and figure 29. Assuming
that the absolute exciton energy stays constant, as observed, the criterion for the
unbinding of excitons is E; = E?,, which yields Mott densities, N, an order of
magnitude higher than in 3D (in excitonic units). The physical reason underlying this
result is the reduced screening efficiency in 2D already discussed. Andryushin and
Silin (1979) give a low-temperature value N.@ ~ 0-06, corresponding to r, ~ 2-3.

The effects of multi-layer screening have been studied by Dahl (1988), assuming
RPA-type static screening and neglecting everything else (in particular PSF). As
expected (Visscher and Falicov 1971, Fetter 1973, 1974), it is found that local field
effects are pronounced for screening lengths much larger than the layer spacing, as
realized in the non-degenerate, classical limit. On the other hand, experiments have
been performed at room temperature on GaAs/AlGaAs single QW (L, = 107 A)
waveguide structures to investigate this effect (Weiner et al. 1985b). Within the
experimental uncertainties, no difference in saturation behaviour compared to the
multiple quantum well case is found, which provides yet another clue for the reduced
efficiency of screening in 2D.

Following section 2.3, it is then quite natural to attribute the saturation of the
excitonic absorption mainly to overlap effects, the filling of the states out of which the
excitons are constructed (Schmitt-Rink et al. 1985). In 3D and at high temperatures,
T, larger than the exciton binding energy, such a criterion would be rather meaningless:
excitons would unbind because of screening long before such overlap effects become
important. On the other hand, in room-temperature I1I-V bulk materials, excitons
play relatively little role anyway, so that there is actually not much of a difference in
the dominant saturation mechanism; as pointed out first by Loewenau et al. (1982)
and studied systematically by Lee et al. (1986), the main nonlinearity in the case of
an exciton linewidth larger than the binding energy is plain bandfilling. This explains
then why the saturation density N, hardly changes as one goes from room temperature
GaAs to GaAs/AlGaAs QWs (Park et al. 1988): the dominant mechanism is the same,
though exciton saturation in one case and interband saturation in the other. At room
temperature, an improvement of III-V QWs over the corresponding bulk materials
does therefore indeed arise, because full advantage can be taken of the increase in
linear susceptibility. Together with the long lifetime 7 in high-quality material, this
accounts for the low saturation intensities and large nonlinearities observed.

Neglecting exciton broadening, as investigated by Feng and Spector (1987), and
the reduction of the exciton binding energy, the saturation density, N,, is estimated
from the extension of equation (2.3.36) to the two-component case,

T = Im T UL + ARILEISC = 0, (3.18)
which yields
ﬁlm. = 2néd, T <BE, (3.1.94)

= 21ra§%, T » E,. (3.1.9b)
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Improved estimates along the lines discussed in section 2.3 (equations (2.3.32)-
(2.3.34)), including the PSF effect on the e-h interaction as well as the corresponding
e and h exchange self-energies, have been given by Schmitt-Rink et al. (1985) and
Zimmermann (1988a). Schmitt-Rink and Ell (1985) estimated N,, using variational
exciton wavefunctions and, in addition, various RPA-type screening models. In view
of the large uncertainties in the treatment of correlations, equation (3.1.8) is as good
as any of the other models, and presumably correct within a factor of two or three.
For the pure 2D case and using the material parameters of GaAs (E, ~ 16:3meV,*
a, ~ 710A), equation (3.1.98) yields a room-temperature saturation density
NPF ~ 5 x 10" cm™2, which compares reasonably well with the experimental values
of Miller et al. (1982b), Chemla et al. (1984) and Park er al. (1988).

To test the conjecture that in 2D the effects of screening are weak compared with
the effects of the exclusion principle, a direct experimental comparison of both effects
at room temperature has been performed (Knox et al. 1986a). The principle of these
investigations is the following. Using femtosecond laser pulses it is possible to
generate non-equilibrium carrier distributions in the continuum between the n, = 1
and 2 exciton resonances and to observe their effects on the absorption spectrum
before and during their relaxation. If the e and h excess energies are less than the LO
phonon energy, exchange of energy with the lattice will take a rather long time and
the carriers will first thermalize among themselves before reaching an equilibrium
with the lattice. Immediately after excitation, the carriers do not occupy states out of
which the n, = 1 and 2 excitons are constructed and thus the Pauli principle effects
are not effective, whereas screening sets in right away. As the carriers equilibrate
among themselves, their distribution evolves toward a thermal one and they start to
fill up the states at the bottom of the n, = 1 subbands. Therefore they produce PSF
on the corresponding excitons. Only the high-energy tails of the thermalized distri-
butions will extend up to the bottom of the n, = 2 subbands, so that for these PSF
remains basically ineffective. Therefore the evolution of the absorption at the n, = 1
excitons during thermalization will first show the effects of screening and then how
PSF is turned on, whereas at the n, = 2 heavy-hole exciton resonance there should
be little (if any) change during thermalization. Then, ona much longer time scale, the |
carriers will equilibrate with the lattice and eventually recombine.

This process is shown in figure 31, where room-temperature differential transmission
spectra of a GaAs/AlGaAs multiple quantum well structure (L = 96 A) are presented. -
The spectra were measured with broad-band 50 fs probe pulses in 50 fs intervals from
100 fs before to 200 fs after arrival of a narrow-band 100 fs pump pulse. The spectral
distribution of the pump photons is shown at the bottom of the figure; the pump pulse
produces approximately N ~ 2 x 10' cm ™2 e-h pairs. Immediately upon its arrival,
one sees absorption changes at the n, = 1 and 2 excitens as well as spectral hole
burning in the continuum, corresponding to state filling by the non-equilibrium
carrier distributions. The n, = 1 excitons lose some oscillator strength and broaden
slightly, whereas the n, = 2 heavy-hole exciton experiences also a very small red shift
due to the weak intersubband BGR. These changes are consistent with those due to
screening by free carriers, discussed above and in section 2.3 for MDQWs. Note that
such small changes can only be seen because of the enormous improvements of
femtosecond spectroscopic techniques (Fork et al. 1981, Knox et al. 1984). As the
carriers thermalize, the spectral hole in the continuum changes shape and shifts to
lower energies. Accompanying this relaxation, the bleaching of the n, = 1 resonances
increases and finally settles after 200 fs at the same level as in the case of thermalized
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Figure 31. Room-temperature differential transmission spectra of a GaAs/AlGaAs multiple
quantum well structure (L. = 96 A), measured with broad-band 50fs probe pulses in
50 fs intervals before and after excitation of non-equilibrium e and h distributions by a
narrow-band 100 fs pump pulse. Initially, the pump burns a spectral hole in the absorp-
tion spectrum, which then thermalizes within ~ 200 fs. During thermalization, the effects
of the exclusion principle on the n, = 1 exciton resonances are ‘turned on’. (After Knox
et al. (1986a).)
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e-h plasma generation discussed previously. The changes at the n, = 2 heavy-hole
exciton resonance remain essentially the same, showing that the screening has not
changed significantly. The camparison of the n. = 1 heavy-hole exciton bleaching at
t = Oand after ¢+ = 200fs sHows that the effects of the exclusion principle are several
times larger than those of screening, confirming the reduced efficiency of screening in
2D. In addition, the data also contain a wealth of information about carrier relaxation
in microstructures that is not directly relevant to our discussion.

All the experimental results and interpretations discussed so far pertain to a single
exciton embedded in a gas of free electrons and holes, namely an e-h plasma.
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However, even if the photoexcited e-h pairs exist in the form of excitons, one can still
use the same (phenomenological) language to describe the saturation of the excitonic
optical absorption (apart from some subtleties, see below). An exciton gas can be
generated selectively by resonant excitation. At low temperatures, that is, temperatures
smaller than the binding energy, excitons are thermally stable and only disappear by
recombination, whereas at high temperatures, that is, temperatures larger than the
binding energy, they are unstable against thermal ionization. In the dilute limit, as
discussed in section 2.1. the latter process is due to collisions with thermal LO
phonons, and the corresponding ionization time can be readily estimated from the
homogeneous absorption linewidth. In typical III-V QWs and at room temperature,
it is found to be a fraction of a picosecond. Femtosecond spectroscopic techniques are
thus necessary to resolve exciton-induced nonlinear optical effects at high temperatures
(Peyghambarian ez al. 1984, Knox et al. 1985). These experiments have for the first
time resolved the dynamics of thermal exciton ionization. In addition, they have also
shown some unexpected results that we now discuss.

Figure 32 shows room temperature differential transmission spectra of a GaAs/
AlGaAs multiple quantum well structure (L. = 96 A), measured with broad-band
50fs probe pulses in 50fs intervals before and after resonant n, = 1 heavy-hole
exciton excitation by a narrow-band 100 fs pump pulse (Knox et al. 1985). Initially,
a strong bleaching of the n, = 1 heavy-hole exciton absorption lasting less than 1 ps
occurs, then the absorption recovers partly and settles at the same value as it would
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Figure 32. Room-temperature differential transmission spectra of a GaAs/AlGaAs mulitiple
quantum well structure (L, = 96 A), measured with broad-band 50fs probe pulses in
50fs intervals before and after resonant n, = 1 heavy-hole exciton excitation by a
narrow-band 100 fs pump pulse. Initially, the absorption is reduced efficiently as excitons
are created in the sample. It then recovers partly in ~ 300 fs as the excitons are thermally
ionized by collisions with LO phonons. The absorption then settles at the same value as
it would under cw excitation. (After Knox et al. (1985).)
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under c.w. excitation. The dynamics of the n, = 1 heavy-hole exciton bleaching can
be described assuming the instantaneous generation of n, = 1 heavy-hole excitons
(the number of excitons following the integral of the pump pulse, see equation
(3.1.2)), which transform with a ~ 300fs time constant into free n, = le and h,
which then live for 1ong times. The excitons ionize because of the large tempera-
ture, and, as discussed above, this thermal ionization is due to collisions with
LO phonons. The measured ionization time of ~300fs is in remarkable agree-
ment with the value obtained from the homogeneous absorption linewidth (see
section 2.1).

The transient excitons produce, before they jonize, a strong bleaching of the
n. = 1 heavy-hole exciton resonance about twice as large as that due to the free e and
h at long times, while the changes at the n, = 2 heavy-hole exciton resonance are
again small. In addition, the lineshape of the differential spectra at short and long
times is different (Chemla and Miller 1985). This result is in seeming contradiction to
commonly accepted ideas and deserves some discussion.

In earlier experiments on low-temperature bulk GaAs, it was found that excitons
produce much smaller nonlinear optical effects than an e-h plasma (Fehrenbach et al.
1982). Guided by the (incomplete) notion that the saturation of 3D excitons, even at
low temperatures, is due to screening, this was attributed to the fact that screening in
a dielectric exciton gas is much weaker than ina metallic e-h plasma. The above QW
experiment presents two novel aspects, namely (i) reduced dimensionality and (i)
ultrashort optical pulse excitation at room temperature, both of which are important
in the interpretation (Schmitt-Rink et al. 1985).

First, as already discussed several times, the efficiency of free-carrier screening is
reduced in 2D, which is consequently even more true in the case of excitons. As a
result, the effects of the exclusion principle are strongly enhanced. Following our
simplistic discussion of e-h plasma effects, the initial saturation of the excitonic
optical absorption would then be mainly related to excitonic PSF, that is, the fact that
the area already occupied by an exciton cannot sustain more excitons. This explains
then in a simple fashion why the bleaching due to the resonantly excited n, = 1
heavy-hole excitons is larger than that due to the free e and h released via thermal
exciton ionization. Between the absorption event and the first collision with a LO
phonon, the resonantly excited excitons have not yet had time to thermalize and
therefore, for this very short time of ~ 300 fs, they are essentially at zero temperature
(they are created with only a small amount of kinetic energy). Then, because the LO
phonon energy is much larger than the exciton binding energy, the first collision with
a LO phonon ionizes the excitons and produces free ¢ and h of rather large thermal
energy. At long times, these thermally activated free € and h are essentially at room
temperature and hence the experiment compares the effects of ‘cold’ excitons (at short
times) to those of a ‘hot’ room-temperature e-h plasma of the same density (at long
times). The exclusion principle effects due to the ‘hot’ e-h plasma are smaller than
those due to the ‘cold’ excitons, because they decrease with decreasing thermal
wavelength to Bohr radius ratio, as discussed above (equation (3.1.9)). This accounts
then for the different bleaching of the n, = 1 heavy-hole exciton resonance at short
and long times and explains also the smaller changes of the absorption at the n, = 1
light-hole exciton resonance, only the electron component of which is subject to PSF
(Schmitt-Rink ez al. 1985).

The magnitude of excitonic exclusion principle effects can again be estimated from
equation (3.1.8). It is only necessary to note that the resonant creation of one 1s
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exciton at the bottom of its band corresponds to an occupation probability S (k)1
in fermion space, which is equally shared between spin up and down particles, so that

T L) = filk) = (NI$LEM)/2, (3.1.10)

where N in this case is the exciton density. This very intuitive result is, of course,
theoretically substantiated (Haug and Schmitt-Rink 1984). Substituting equation
(3.1.10) into equation (3.1.8), one finds (Schmitt-Rink er al. 1985)

7vl—psr = $na, (3.1.11)
that is, the bleaching efficiency of ‘cold’ excitons is smaller (by a factor of about two)
than that of a ‘cold’ e-h plasma, equation (3.1.9 a), because plane wave states have
a larger overlap with a given exciton than other excitons. Using the actual Bohr
radius, a, ~ 126A, of the L, = 96 A sample, equation (3.1.11) yields a saturation
density due to ‘cold’ excitons NFSF ~ 2 x 10" cm~?, which agrees almost exactly
with the experimental one. Together with equation (3.1.9 ), NFSF o 5 x 10" em~2,
a ratio at room temperature of ‘cold’ exciton to ‘hot’ e-h plasma induced bleaching
of about three is found, again in good agreement with the data.

Yet another confirmation of this simple physical picture was obtained from the
observation of an exciton blue shift in narrow GaAs/AlGaAs QWs (Peyghambarian
et al. 1984, Hulin et al. 1986a, Masumoto et al. 1986, Weinert et al. 1987). As
discussed previously, 3D exciton resonances hardly change their position as the
density of excitons increases, which can be explained in terms of an almost exact
cancellation of a blue shift due to Pauli exclusion (short-range hard core repulsion)
and a red shift due to screening (long-range Van der Waals attraction). In 2D QWs,
because of the quenching of the effects of screening, the blue shift due to Pauli
exclusion is no longer balanced and thus should be measurable (Schmitt-Rink et al.
1985). Luminescence (Weinert et al. 1987) and absorption (Peyghambarian et al.
1984, Hulin et al. 1986a, Masumoto et al. 1986) measurements performed on QWs of
various thicknesses have shown this blue shift when excitons are selectively
generated or, at low temperatures, when they are formed after a few picoseconds from
photoexcited free ¢ and h. The shift is rather difficult to observe in thick layers, but
is large enough to be observed in the narrowest QWs (<100 A), where the dimen-
sionality approaches the pure 2D limit. A typical example is presented in figure 33,
which shows transmission spectra of a GaAs/AlGaAs multiple quantum well structure
(L. = S0A)at T = 15K, measured with broad-band 120 fs probe pulses before and
after resonant n, = 1 heavy-hole exciton excitation by a narrow-band 120 fs pump
pulse (Peyghambarian et al. 1984). At low temperatures, an exciton blue shift has also
been observed in the layered semiconductor Bil; (Watanabe et al. 1986), while for
bulk GaAs only a very small shift (Schultheis et al. 1986a) or no shift at all (Fehren-
bach er al. 1982, 1985) have been reported. This implies that the compressibility
of a weakly non-ideal 2D exciton gas is positive, thus a weakly non-ideal 2D exciton is
thermodynamically stable (apart from possible collapse into biexcitons, see below), in
disagreement with some earlier theoretical results by Klyuchnik and Lozovik (1978).

Beyond the simple PSF picture described above, the distinction has to be made
between the susceptibility, x,, experienced by the pump beam and that experienced by
the test beam, y, (Haug and Schmitt-Rink 1984, Schmitt-Rink and Chemia 1986). The
point is that the excitons created by the pump beam and those created by the test beam
can exchange (boson exchange), which gives rise to additional terms in the effective e-h
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Figure 33. Transmission of a GaAs/AlGaAs multiple quantum well structure (L. = 50 A)at

T = 15K, measured with broad-band 120fs probe pulses before and after resonant

n. = | heavy-hole excitation by a narrow-band 120 fs pump pulse; (—), — 5ps and
(=--), +1ps. (After Peyghambarian et al. (1984).)

relative motion Hamiltonian underlying x,. This subtlety is less relevant in the case
of thermalized e-h plasma-induced exciton bleaching, where the e-h pairs generated
at some point by the pump beam (the e-h plasma) and those probed by the test beam
(the excitons) are distinct.

Similar to equations (2.3.30) and (2.3.31), the polarization, P,(k), induced by the
pump beam, E, satisfies the inhomogeneous Wannier equation

Z[H;:’.k' + BHop — (@, + 000 1Pp(k) = [1 = flk) = filkleroE,, (3112

where the change in the e-h relative motion Hamiltonian, 8H, consists in general of
a part due to fermion exchange,

SHw = —oux Z Ik — K)[f(k) + fulkD)] + Tk — K)[f(k) + £k},
(3.1.13)

and a part that describes the effects of correlations (‘screening’). While the former is
exact and always derivable from a variational principle, the latter is usually the subject
of rather uncontrolled approximations. The superscript H in equation (3.1.13) stands
for Hartree, because, in a weakly non-ideal Bose gas picture, equation (3.1.13) is
equivalent to the functional derivative of the exciton Hartree self-energy (Schmitt-Rink
and Haug 1984).

Through the second term in equation (2.3.33), equation (3.1.13) yields a contri-
bution. to the saturation density, N,, of the same size as NPSF_ Estimates of this
contribution have been given by Schmitt-Rink et al. (1985), both for exciton and e-h
plasma induced exciton bleaching, while an exact numerical evaluation of this term
has been performed by Zimmerman (1988a). Using equation (3.1.10), one finds in the
case of selective exciton generation, for Na& < 1,

SHyw = —OuN Z Ik — kOGP + Nigh(orik — k). (3.1.14)

Substituting this expression into equation (2.3.34), one obtains a Hartree blue shift of
the 1s exciton resonance due to exciton-exciton collisions and as experienced by the
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pump beam (Bobrysheva et al. 1980a, Schmitt-Rink er al. 1985)
SEN = N ) [¢N(K) — LRGN KK Ik — k)
k.k’

315m?
4ntNa; (l ~ 209 ) E,. (3.1.15)
The corresponding result in 3D is (13mNayR)/3 (Keldysh and Koziov 1968).
Equation (3.1.15) is of course nothing but the Heitler-London exchange integral.

The polarization, P,(k), induced by the test beam, E,, satisfies also an inhomo-
geneous Wannier equation of the form equation (3.1.12), but with additional contri-
butions to 8H. For Na; < 1, exciton exchange between pump and test beam yields
a Fock (F) term (Schmitt-Rink and Haug 1984, Schmitt-Rink and Chemla 1986)

8Hixw = O N§L*(k) Z Ik — k")¢L(k") — Nei,(K)I(k — K)PL*(K),
(3.1.16)

the expectation value of which in the s state is identical to equation (3.1.15). The blue
shift of the 1s exciton resonance as seen by the test beam is thus

31577
HF =3 2 — —
SE;,;’ = 8nNag (l 396 ) E,. 3.1.17)

The corresponding result in 3D is (26wNayR)/3 (Keldysh and Kozlov 1968).
Corrections to equations (3.1.17) have been calculated by Manzke ez al. (1987). From
second-order perturbation theory in the effective exciton-exciton interaction, they
find a negative correlation (‘screening’) contribution about one-quarter the magnitude
of equation (3.1.17), showing once more the reduced efficiency of ‘screening’ in 2D
and confirming the conjecture of Schmitt-Rink ez al. (1985).

While the inclusion of 8 H leads to a smaller saturation density for the pump beam
(compared to NSF), this is not necessarily true for the test beam. In fact, within the
HF approximation outlined above, the opposite behaviour is found. This has been
recognized only recently, in studies of the optical Stark effect (see section 3.2). The
point is rather simple. From equations (3.1.14) and (3.1.16), one obtains a blue shift
of the band gap under selective exciton generation and as seen by the test beam only,

SEN = N; [¢%,*(k = 0) — @%* (k"% (kK™
3
= 8nNa& (1 - 'IE) E,, (3.1.18)

which is larger than that of the exciton, equation (3.1.17). The corresponding result
in 3D is 24wNa} R (Haug 1976). This implies an increased exciton binding energy, and,
through the second term in equation (2.3.33), a negative contribution to the saturation
density, N, again of the same magnitude as N'F.

This result deserves some comments. First of all, it is not an artefact of uncontrolled
approximations, but a genuine variational bound. The underlying physics is the same
as the one stressed in the context of PSF. Equations (3.1.18) and (3.1.17) simply state
that at low temperatures exciton-exciton interactions are smaller than exciton—carrier
interactions, which is well established experimentally (Fehrenbach er al. 1982, 1985,
Schultheis et al. 1986a). The important question is how much of this HF behaviour
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survives a more complete treatment. In the absence of any rigorous calculations (first
attempts have been made only recently (Schaefer ez al. 1988b)) one can only speculate.
(In bulk GaAs, Fehrenbach et al. (1985) actually claimed a blue shift of the band gap,
but none of the 1s exciton.) What one can definitely conclude is that saturation of the
pump beam susceptibility occurs for smaller exciton densities than that of the test
beam. .

The above discussion explains also why, at least in the case of selective exciton
generation, the theoretical test beam saturation density based on PSF alone agrees
almost exactly with the experimental one. One way or the other, there is less reduction
of the band gap and decrease of the exciton binding energy than in the case of e-h
plasma generation, so that it is not too bad an approximation to neglect these effects
completely. The same is true in 3D. In fact, the early measurements on low-temperature
bulk GaAs by Gibbs et al. (1979) are well accounted for by PSF. The concept has in
the meantime been extended to 1D excitons in polydiacetylene-PTS (Greene et al.
1987, 1988, Kajzar er al. 1988), where it works even better. This should not be too
surprising, because the more excitons are confined the less polarizable they are and
the more the effects of Pauli exclusion dominate. In the limit of Frenkel excitons (with
internal Coulomb confinement) or quantum dots (with external confinement), PSF is
the one and only saturation mechanism (Schmitt-Rink er al. 1987).

Excitonic optical nonlinearities have also been investigated in II-VI ZnSe/MnZnSe
QWs (Andersen er al. 1986), which are believed to be intermediate between 2D and
3D, with a large offset in the conduction band but only a small one in the valence
band. A new luminescence line in these structures was tentatively assigned to quantum-
confined biexctions (Fu et al. 1988), as was done before in the case of GaAs/AlGaAs
QWs (Miller er al. 1982c). As shown first by Bobrysheva et al. (1980b) and later by
Kleinman (1983), the biexciton binding energy increases indeed as one proceeds from
3D to 2D, making them more resolved. These considerations have recently been
extended to quantum wires (Banyai er al. 1987). They suggest the possibility of
biexcitonic nonlinearities, for cample, due to two-photon absorption (Hanamura
1973, Haug and Schmitt-Rink 1984, Abram 1985, Henneberger 1986). One might
have some doubts, however, whether improvements over CuCl, the ‘classic’ biexciton
material, are possible. Just like in the case of low-temperature excitons, confinement
does not buy anything as far as the nonlinear cross-section per photoexcited e~h pair
is concerned. The point is again very simple. In the two-photon process, biexcitons are
created via an exciton in the intermediate state. Any valence electron within a
molecular radius of this virtual exciton can complete the transition, so that the optical
matrix element for transitions from the exciton to the biexciton state scales like the
ratio of the biexciton volume to that of the exciton (Hanamura 1973). Apart from
geometrical factors, this ratio does not depend dramatically on dimensionality. (In
quantum dots, ‘biexcitons’ correspond to transitions between upper Hubbard levels
and are not bound.)

3.2. Effects of virtual electron-hole populations
Coherent nonlinear optical processes are produced by the excitation of semi-
conductors in the transparency region well below the absorption edge. They are often
referred to as ‘non-resonant’ (Bloembergen 1965), in the sense that the excitation does
not coincide with an absorption line; they do have resonant enhancements however,
as such absorption lines are approached. Such nonlinearities have been widely
investigated in the near and medium infrared (Chemla 1980). The underlying physics
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can be described as follows. The valence electrons are held in equilibrium by the large
atomic fields, E,,,; the application of optical fields, E, not negligible compared with
E o, induces anharmonic charge density fluctuations that in turn can interact with
other optical fields. The mutual coupling of the optical fields (E) via the anharmonic
charge density fluctuatioris causes exchange of photons among the optical fields; in the
process, however, no net power is deposited in the medium. Coherent nonlinear
optical processes are characterized by the fact that non-resonant optical fields induce
only virtual e-h populations, which last essentially only as long as the ficlds are applied.

In the standard textbook description of these processes, the ‘ground state’ of the
semiconductor in the presence of the optical fields is represented by a coherent
superposition of all excited (¢-h pair) states. The expectation value of the polarization
is calculated formally using the density matrix formalism. Spatial dispersion is often
negligible and only dipolar effects are retained. They are described by an interaction
Hamiltonian of the form — PE, where P is the polarization of the medium. In the
usual discussion of nonlinear optics, the expectation value of P is expanded in a power
series of the E values, the coefficients being the non-resonant nonlinear susceptibilities,
2™, ¥ and so on. Finally, the field propagation and the interaction among ficlds are
analysed by solving the corresponding Maxwell equations coupled by the nonlinear
polarization (Shen 1984).

The non-resonant nonlinear susceptibilities, y®, are global parameters and their
formal expressions involve infinite sums over complete sets of states, in which the
behaviour of particular states is difficult to isolate. Until recently, specific experimental
investigations of excitonic effects had been rather scarce and theoretical models had
been limited to semi-empirical descriptions, where the exciton levels were characterized
by ad hoc matrix elements and spectroscopically determined energies. This concept
was applied (with some success) to virtual biexciton formation in wide-gap semi-
conductors, such as CuCl (Chemla and Maruani 1982, Haug and Schmitt-Rink 1984,
Abram 1985, Henneberger 1986).

Clearly, the most natural way to probe excitonic effects in non-resonant nonlinear
optical processes is to measure the exciton absorption while the sample is excited well
below the absorption edge by a strong essentially monochromatic pump beam and to
look for transient changes that persist only as long as the excitation. It is fair to say
that in QWs these effects (coherent excitonic optical nonlinearities due to virtual e-h
pairs) were first observed accidentally (Mysyrowicz et al. 1986, Von Lehmen et al.
1986b). ,

In time-resolved studies of the exponential absorption tail and phonon sidebands
(see section 3.1) in GaAs/AlGaAs multiple quantum well structures (L, = 96A) at
T = 70K, using 6 ps pump and probe pulses, strong and transient changes of the
probe beam transmission, as shown in figure 34, have been observed (Von Lehmen
et al. 1986 b). These changes can be positive or negative depending on the spectral
position of the probe beam with respect to the n, = 1 heavy-hole exciton resonance.
They last only as long as the pump pulse. In addition, if the pump detuning from the
absorption edge is not too large, as in figure 34, much weaker effects due to real e-h
pairs generated through phonon-assisted transitions are also seen. This process is easily
distinguished from the fast effects. It persists for the carrier lifetime and completely
disappears for large detunings of the pump beam. The fast component of the change
in probe beam transmission was studied as a function of the pump parameters. It was
found that it is linear in the inverse pump detuning from the n, = 1 heavy-hole
exciton resonance, (EY, — ,)”", for fixed pump intensity (figure 35(a)), and lincar in
the pump intensity, |E,*, for fixed pump detuning (figure 35 (b)). Moreover, a lineshape

-
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Figure 34. Differential transmission of a GaAs/AlGaAs multiple quantum well structure
(L. = 96A) at T = 70K, as a function of pump-probe delay. The pump pulse has a
duration of 6 ps and is tuned 25 meV below the n. = 1 heavy-hole exciton resonance. The
probe pulses have a duration of 6 ps and are tuned ~ 1 meV below the n, = 1 heavy-hole
exciton resonance in (@) and ~ 1 meV above the n. = | heavy-hole exciton resonance in
(b). (After Von Lehmen er al. (1986b).)

analysis of the fast and slow components as a function of the probe frequency around
the n. = 1 exciton resonances revealed their very different spectral profiles (Von
Lehmen et al. 1986b). The slow component has all the characteristics of e-h plasma
induced exciton bleaching and broadening discussed in section 3.1. The fast component
is much larger and its differential transmission spectrum varies like the derivative of
the linear absorption; it corresponds to a transient blue shift of the exciton resonances.
For a pump detuning ~ 30 meV and a pump intensity ~8 MW c¢m~2, the magnitude
of the shift is ~0-2meV for the n = 1 heavy-hole exciton peak and ~ 0-05meV for
the n = 1 light-hole exciton peak. Similar numbers were found in InGaAs/InP QWs
under similar excitation conditions (Tai er al. 1987c¢).

The same effects have also been observed using femtosecond pump and probe
pulses, although at much higher intensities (Mysyrowicz et al. 1986, Joffre et al.
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Figure 35. Differential transmission at zero pump-probe delay, as a function of pump
detuning from the n, = 1 heavy-hole exciton resonance for fixed pump intensity (a) and
pump intensity for fixed pump detuning (b). (After Von Lehmen ez al. (1986b).)

1987). Again, they were found accidentally in studies of the exciton blue shift due to
exciton-exciton interactions in narrow QWs discussed in section 3.1. Figure 36 shows
absorption spectra of a GaAs/AlGaAs multiple quantum well structure (L, = 100A)
at T = 15K, measured with broad-band 100fs probe pulses during excitation of
virtual e-h pairs 46 meV below the n, = 1 heavy-hole exciton resonance by narrow-
band 400 fs pump pulses of various intensities (Joffre et al. 1987). In addition, in these
high-intensity data, there is clear evidence of a decrease in exciton absorption (see
below). Hulin ez al. (1986b) exploited the effects to operate a GaAs/AlGaAs optical
gate with subpicosecond switch on and off times.

In conclusion, strong photoexcitation of a semiconductor in the transparency
region well below the absorption edge gives rise to a transient exciton blue shift at low
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Figure 36. Absorption spectra of a GaAs/AlGaAs multiple quantum well structure
(L, = 100A)at T = 15K, measured with broad-band 100 fs probe pulses during excita-

tion of virtual e-h pairs 46meV below the n, = | heavy-hole exciton resonance by
narrow-band 400 fs pump pulses of various intensities. (After Joffre er al. (1987).)
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Figure 37. Unperturbed (dashed lines) and perturbed (full lines) energy levels of a two-level
system in the presence of a nonresonant pump beam with frequency o, and amplitude E;,.

intensities and, in addition, a transient decrease in exciton absorption at high
intensities, which last exactly as long as the pump pulse.

Exactly the same phenomena, a shift and bleaching of spectral lines in a strong
non-resonant laser field, have been extensively studied in the 1970s in atomic vapours,
such as Na, by Liao and Bjorkholm (1976). In atomic physics, the analogy to effects
previously considered has often been emphasized by using similar terminology. For
example, to emphasize the analogy to the renormalizations in the photon vacuum,
known as the Lamb shift, the blue shift itself is sometimes referred to as ‘lamp shift’.
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Figure 38. Optical excitation spectrum of the two-level system shown in figure 37. The dashed
line gives the unperturbed absorption at E,, the full lines the absorption (at @, + wy)
and gain (at w, — @) in the presence of a non-resonant pump beam at @,. a is the Rabi
frequency, given in equation (3.2.1).

Similarly, the analogy to d.c. field induced effects is reflected by such terms as ‘optical’,
*dynamical’, or ‘a.c. Stark effect’. We note that this effect is one of the most funda-
mental phenomena in light-matter interactions. Before turning to the above experi-
ments on Wannier excitons, we will review its explanation for a single atom, where
the problem can be readily understood; see for example Feneuille (1977).

We consider a simple two-level atom or, for that matter, a Frenkel exciton or an
individual band-to-band transition in the presence of a non-resonant monochromatic
laser field with frequency w, and amplitude E,, as shown in figure 37. Following our
previous notation, we denote the ground state by v, the excited state by ¢, and the
energy gap by E;. The un perturbed eigenstates of the system are product states of the
electron states and the photon states. As shown by the dashed lines in figure 37, there
is a series of states |v, N), [v, N + 1) and so on, with N, N + 1, ... photons and
the electron in the ground state v, and a series of states |c, N — 1), |c, N) and soon,
with N — 1, N, . . . photons and the clectron in the excited state c. If the pump
detuning, E; — w,, is not too large, the states |c, N) and |v, N + 1) are almost
degenerate. The dipole interaction mixes these states, leading to new, ‘dressed atom’
eigenstates, shown by the full lines in figure 37. The energy difference between the
centres of two such neighbouring doublets is @,, and in the classical limit the doublet
splitting itself is given by the famous Rabi (1937) frequency,

Wy = [(E. - wp)z + 4‘¢'pr|2]”29 SR - @21)

which measures the amount of time the electron spends in the excited state.

A test beam induces optical transitions between these dressed atom states. In the
steady state, its absorption is proportional to both the transition rate and the
popuiation difference between states in neighbouring doublets. Under non-resonant
excitation, there is much more population in the lower v-like state of each doublet
than in the upper c-like one. Furthermore, the transition rate for transitions that
conserve N is the largest. Consequently, the optical excitation spectrum shown in
figure 38 consists of a blue-shifted absorption at @, + @, and stimulated emission at
w, — w,, with much lower intensity. In the latter process, two pump photons are
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destroyed and a test photon and blue-shifted transition are created. Such gain in an
uninverted system was first observed by Wu et al. (1977). When o, equals E,, all
dressed atom states have the same transition rates and populations, and no excitations
are possible. In reality, because of dissipation, this limit is usually not realized.
Dephasing leads to a rather complicated absorption and to the famous three-peaked
resonance fluorescence spectrum (Mollow 1969, 1970), measured first by Schuda et al.
(1974).

The dressed atom picture, which predicts an a.c. Stark shift, w, — E; + w,,
of the absorption edge and a corresponding bleaching, was invoked by Mysyrowicz
et al. (1986) to explain their experimental data. Using equation (3.2.1), which
becomes exact for pump detunings much larger than the exciton binding energy
(see below), and expanding the square root, one finds indeed that the order of
magnitude of the observed shifts and their dependence on pump parameters are
accounted for quite well. In general, however, this picture is only valid for Frenkel
excitons, namely isolated atoms, and there is no reason why it should apply to
Wannier excitons as well. As we shall see, it does not account for various subtleties,
in particular the fact that there is essentially no loss of exciton oscillator strength
(the observed decrease in exciton absorption at high intensities is rather due to a
broadening, see below).

The first (and so far only) consistent theory of the a.c. Stark effect in semi-
conductors has been given by Schmitt-Rink and Chemla (1986) and Schmitt-Rink
et al. (1988), using an extension of the HF theory outlined in section 3.1. to coherently
driven virtual e-h pairs and arbitrary pump intensities. In its present form, this
approach does not account for (i) correlations (‘screening’), (ii) virtual formation of
bound biexcitons (Haug and Schmitt-Rink 1984, Abram 1985, Henneberger 1986) and
(iiii) interactions other than the Coulomb interaction, such as phonon-mediated ones
(Greene et al. 1988). The latter two effects can in principle by readily included (see
below); they are however not important for the experiments discussed above. As for
(i), the validity of the HF theory obviously increases with detuning.

With the general theoretical description requires the use of Kadanoff and Baym
(1962) and Keldysh (1965) non-equilibrium Green’s function techniques (Schaefer
and Treusch 1986, Miiller er al. 1987, Haug et al. 1987, Haug 1988, Schmitt-
Rink et al. 1988, Hartmann et al. 1988, Schaefer 1988, Schaeffer 1988, private
communication), the HF theory of the a.c. Stark effect can as well be derived from
simple, Bloch-type equations of motion for the reduced density matrix, neglecting the
collision term (Schmitt-Rink and Chemla 1986, Schmitt-Rink et al. 1988).

Consider first a two-band semiconductor in the absence of Coulomb interactions
(and thus of excitons), as done by Poluektov et al. (1975) and Wautelet and Laude
(1978). Interband transitions with different e-h relative momenta, k, do then decouple,
and each individual transition behaves in much the same fashion as the two-level
system’ discussed previously, with a Rabi frequency

o, = [(€x + € — @,) + dler, E, 17 (3.2.2)

Figure 39 shows a sketch of the resulting renormalized conduction and valence band
energies for m, = m,, corresponding to the |c, N) and |v, N )-like dressed atom
states in figure 37 (Schmitt-Rink ez al. 1988). For non-resonant excitation, w, < E,,
the conduction and valence band energies are blue shifted, the Stark shift decreasing
with increasing detuning from the pump frequency, €, + € — @, (figure 39(a)).
For resonant excitation, w, > E,, gaps of magnitude 2ler,. E,| open at w,. As before,
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Figure 39. Sketch of the renormalized conduction and valence band energies as a function of
momentum, k, for m, = m, and (a) non-resonant excitation, w, < E,, (b) resonant
excitation, w, > E,, of free e-h pairs. The dashed lines show the unperturbed energies.
(After Schmitt-Rink ez al. (1988).)

for €, + € = w,, the state with N photons and an electron in the valence band is
degenerate with the state with N — 1 photons and the electron in the conduction
band. The degeneracy is removed by the dipole interaction, which leads to the Stark
splitting of the bands at w,. Furthermore, the states with e-h pair energies larger than
w, + 2ler E,| are blue shifted, while those with e-h pair energies smaller than
w, — 2ler E,| are red shifted (figure 39 ().

The latter case (figure 39 (b)) is relevant to the initial coherent transient that occurs
in spectral hole burning experiments before the first collision (Oudar et al. 1985, Knox
et al. 1986a, Fluegel et al. 1987). This initial time regime, depending on the excitation
density and excess energy above the gap, can be as short as a few femtoseconds.
Another situation in which figure 39 (b) becomes relevant is the saturated state of a
semiconductor, in which the conduction and valence bands are filled up to the pump
frequency, 4 = w,. Starting with Galitskii ez al. (1970), this state has been studied by
a number of authors, assuming that carrier-carrier and carrier-phonon collisions
quickly drive the e and h towards thermal equilibrium (Elesin 1971, Aleksandrov and
Elesin 1971, Harbich and Mahler 1981, Haug 1985, Comte and Mahler 1986,
Hartmann et al. 1988).

The non-equilibrium distributions, f.(k) = f,(k), corresponding to figure 39 (a)
and (b) are sketched in figure 40 (a) and (b) respectively (Schmitt-Rink et al. 1988).
For non-resonant excitation, w, < E,, the distribution function is maximum at the
gap and decreases smoothly with increasing detuning from the pump frequency,
because the electrons spend less and less time in the excited state (figure 40 (a)). For
resonant excitation, w, > E,, it peaks at the pump frequency, and again decreases
smoothly with increasing detuning (figure 40 (5)). In the absence of relaxation, this is
as expected. The maximum value of } at w, corresponds to a perfect mixing of
conduction and valence band states and to a complete bleaching of the pump beam
absorption. Self-induced transparency along these lines has been suggested by
Poluektov ez al. (1975).
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Figure 40. Sketch of the non-equilibrium distribution as a function of momentum, k, for (a)
non-resonant excitation, w, < E,, (b) resonant excitation, w, > E,, of free e-h pairs.
(After Schmitt-Rink ez al. (1988).)
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Figure 41. Sketch of the test beam absorption as a function of frequency, w,, for (a) non-
resonant excitation, w, < E,, (b) resonant excitation, w, > E,, of free e~h pairs. The
dashed lines show the unperturbed absorption. (After Schmitt-Rink et al. (1988).)

The optical excitation spectrum is similar to that of an inhomogeneously
broadened two-level system and sketched in figure 41 (Schmitt-Rink ef al. 1988). As
discussed above, optical transitions occur for test frequencies w, = w, + ®,. For
non-resonant excitation, @, < E,, the absorption edge exhibits the a.c. Stark shift,
and optical gain starts at a photon frequency symmetric about w, (figure 41 (a)). For
resonant excitation, w, > E,, and according to the renormalized band structure
sketched in figure 39 (b), the interband absorption shows a spectral hole of width
4ler, E,| about w,, in which the semiconductor is transparent (figure 41(»)). Any
relaxation process and the finite spectral width of realistic laser pulses will round this
feature as well as the non-equilibrium distribution figure 40 (b) (see for example
figure 31).

Excitons are composite particles made from such free e and h states, usually with
many atoms participating. As discussed in the previous section, their nonlinear optical
properties are exclusively due to their mutual interaction, which has its roots in the
internal and fermionic degrees of freedom. Non-interacting excitons are ideal bosons
and the Hamiltonian describing their coupling to the light field is that of two coupled
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harmonic oscillators, with polaritons being the dressed particles (Hopfield 1958). The
obvious question is then how this notion of a weakly non-ideal exciton gas can be
reconciled with the picture given above.

To answer this question, we shall follow our previous discussion in section 3.1 and
address the issue starting from the momentum space picture, in which, as discussed
above, electrons pulsate with the Rabi frequency between valence and conduction
band. By noting that during the time the electrons spend in the excited state (i.e. the
conduction band) they behave in exactly the same fashion as real ones, we can simply
take over equations (3.1.12) and (3.1.13) for the coherent polarization, FP,(k), induced
by the pump beam, E,,

(Eu + Eny — 0)P(k) = [1 = fo(k) — £(K)]4,, (3.2.3)

where
Ey = €\ — Z"" — K)fi(k), i=e¢nh, (3.2.9)
A = er E, + Zl(k — k)B,(K). (3.2.5)

The steady state distribution functions, f(k) and f, (k), which enter these equations,
are obtained from the solution of the collisionless kinetic equation. One finds

(Schmitt-Rink and Chemla 1986, Schmitt-Rink et al. 1988)
£ = fitk) = (1 = (A = 4B K] (3.2.6)

For non-interacting e-h pairs, / = 0, the solution of equations (3.2.3)-(3.2.6)
yields the non-equilibrium distributions sketched in figure 40. The Coulomb inter-
action modifies this free e-h pair result in two ways: (i) the e-¢ and h-h Coulomb
repulsion renormalize the individual e and h energies (second term in equation (3.2.4))
and (ii) the e-h Coulomb attraction renormalizes the Rabi frequency at resonance
(second term in equation (3.2.5)). Both changes express the fact that in the presence
of Coulomb interactions an e-h pair with a given k does not only experience the
external field, E,, but also a significant internal one, the ‘molecular field’ associated
with virtual e-h pairs created at k’. At each k, external and Coulomb fields com-
bine to give an effective self-consistent coherent ‘local field’, to which the system
responds. The problem is thus similar to that of a paramagnet in an external magnetic
field.

In the case of real and thermalized e-h pairs at low temperatures, it is possible for
a coherent molecular field to be created spontaneously, without external field, just like
in a magnet. Starting with the pioneering work of Keldysh and coworkers (Keldysh
and Kopaev 1965, Keldysh and Kozlov 1968), this instability towards Bose con-
densation of real e-h pairs (the excitonic insulator transition) has received considerable
theoretical attention in the past (Zimmermann 1976, Silin 1977, Hanamura and Haug
1977, Comte and Noziéres 1982, Noziéres and Comte 1982, Haug and Schmitt-Rink
1984, Cote and Griffin 1988). The present ‘Bose condensation of virtual e-h pairs’ is
closely related, except that it is externally enforced by the ‘symmetry breaking’ pump
field, E,, rather than being spontancous. This is reflected by the ‘chemical potential
and the phase of the virtual e-h pairs. The chemical potential, x, which is nothing but
the minimum energy required to create an additional virtual e-h pair, is identical to
the pump frequency, w,, and thus below the bottom of the lowest exciton band, Ej,;
the phase of the virtual e-h pairs is pinned, it is the same as that of the pump field,
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E,. (Here and in the following, we consider nonresonant excitation only, w, < E},).
Apart from these differences (which have important consequences), a close analogy
exists to the renormalizations encountered in excitonic insulators, antiferromagnets,
superconductors and superfluids, which will form the basis of our following discussion.

For small Rabi frequencies, the local fields or ‘local field corrections’ dominate
and transform the virtual e-h pairs into excitons. For large Rabi frequencies, much
larger than the exciton binding energy, the external field dominates and the problem
is best thought of in terms of individual band-to-band transitions, with only minor
changes due to the Coulomb interaction. Thus, we recover the transition from real
space pairing (tightly bound excitons) to momentum space pairing (weakly correlated,
overlapping e-h ‘Cooper pairs’) discussed earlier in the context of spontaneous e-h
pair condensation and superconductivity (Noziéres and Schmitt-Rink 1985), and
corresponding to the transition from local moment to itinerant magnetic behaviour.

In general, the set of nonlinear equations (3.2.3)-(3.2.6) can only be solved
numerically, and corresponding results will be discussed below. We will only dis-
cuss its solution for non-resonant excitation with small pump intensities. In this
limit, excitons are still well defined and the nonlinear corrections can be treated in
perturbation theory, just like in sections 2.3 and 3.1.

For small pump intensities and o, < E,, eq. (3.2.6) reduces to

fik) = filk) = |P (k) . (3.2.7)

Substituting this expression into equations (3.2.3)-(3.2.5), we obtain the perturbed
inhomogeneous Wannier equation

Z(H{.. + SHY. — 0,8 )P(k) = (1 — 2AP,()P)erE,,  (3.2.8)

where
SHY\ = — 20, 4 Z Ik — k”)lP,,(k”)l2 + 2!P,,(k)|21(k — k). 3.2.9)

These equations are exactly of the form of the Gross—Pitaevskii equation (Gross 1961,
Pitaevskii 1959, 1961) for the order parameter of a weakly non-ideal Bose gas,
including a driving term and specialized to a spatially uniform situation. The order
parameter is the coherent polarization, F,(k), induced by the pump beam, and
condensation occurs in all exciton states simultaneously, due to the non-resonant
excitation.

Substituting the linear response result

E

P(k) = zwa A (3.2.10)

En? - wp ~
into equation (3.2.7), we find for the density of virtual e-h pairs
N =2 Z |P, (k)P

ler E, 2162 = O)f
= 2 yxp . 3.2.11
LT E =y (3.2.11)

If the pump detuning from the absorption edge is small, most of the virtual e~h pairs
occupy the 1Is exciton state and

|P (k) = §N|$L K, (3.2.12)
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that is, we recover equation (3.1.10). Substituting this result back into equations
(3.2.8) and (3.2.9), we see that we can carry over all our previous results, such as
equations (3.1.11) and (3.1.15); the interaction of virtual 1s excitons among themselves
and with the light field is exactly the same as that of real ones.

In the opposite limit of very large detunings from the absorption edge, the
electrons spend less time in the excited state than it takes to form a bound state, that
is, (E; — w,)”" < Eg', so that the polarization, equation (3.2.10), reduces to the free
e-h pair value

er E
P (k) = 15,——2)-,,' (3.2.13)
Using an elegant representation in terms of the Coulomb Green function, Zimmermann
(1988 b,c, private communication) was able to evaluate equations (3.2.10) and (3.2.11)
for arbitrary detunings.

Equation (3.2.13) demonstrates a very fundamental point, already mentioned
above: whenever the detuning is the largest energy in the problem (i.e. much larger
than the confinement energy), neither Coulomb nor external confinement enhance
non-resonant optical susceptibilities, because they involve sums over complete sets
of states, which are of course independent of the basis set (Chemla et al. 1987b).
The situation is thus different from resonant excitation, where at least the linear
susceptibility is enhanced.

Equations (3.2.8) and (3.2.9) can as well be derived from an effective exciton
Hamiltonian with two basic ingredients: (i) an anharmonic exciton-photon inter-
action and (ii) an anharmonic exciton-exciton interaction (Schmitt-Rink 1988). The
former is obtained from the linear exciton-photon interaction by projecting out the
states that are already occupied, by preventing ‘double occupancy’; it gives rise to the
PSF correction to the oscillator strengths. The latter is the usual exciton-exciton
interaction (Hanamura and Haug 1977, Haug and Schmitt-Rink 1984) and gives rise
to the Hartree correction to the effective e~h relative motion Hamiltonian, 5HY. In
general, this correction would be rigorously determined by the exciton T matrix,
rather than by the first-order Heitler~-London term, as in our approach. Besides the
hard core repuision of excitons, the T matrix would also describe their Van der Waals
attraction, namely mutual exciton polarization, formally determined by ‘intermediate
state interactions’. The problem with these as well as ‘final state interactions’ is that
the T matrix in the singlet channel diverges, signalling the instability of the system
towards bound biexciton formation. This divergence can be removed, however, by
allowing for coexistence of virtual particle (excitons) and molecule (biexcitons)
condensates. Starting with Valatin and Butler (1958), such a pair condensation of
bosons has been extensively studied in the past (Evans and Imry 1969, Doerre et al.
1979, Noziéres and Saint-James 1982, Bobrysheva and Moskalenko 1983, Haug and
Schmitt-Rink 1984). This would then also allow for a rigorous description of coherent
two-photon generation of biexcitons, which so far has been treated rather naively.
Again, when the pump detuning from the absorption edge is much larger than the
biexciton binding energy, the process becomes irrelevant. It can always be circum-
vented by choosing appropriate laser polarizations: a circularly polarized pump beam
cannot create biexcitons, nor can two different beams with identical circular polariza-
tion (in both cases, spin-aligned e-h pairs are produced).

The coherent ‘ground state’ of a semiconductor in the presence of the pump beam
(i.e. the virtual condensate) is, of course, not what is being measured by a test beam.
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A weak test beam, E,, induces a polarization which has to be clearly distinguished
from that induced by the pump beam. It measures the ‘excitation spectrum’, the linear
fluctuations about the copdensate. Unlike in real condensates, the excitation spectrum
has a gap. In zero-order in the pump intensity, this gap is the difference between the
1s exciton energy and the pump frequency, E}, — w,, namely the minimum energy
required to create a real e-h pair out of the condensate. Owing to the anharmonic
interactions, this gap will be renormalized and the condensate depleted, which then
shows up as the a.c. Stark effect.

By linearizing equations (3.2.3)<(3.2.6) in the perturbation, E,, Schmitt-Rink and
Chemla (1986) and Schmitt-Rink et al. (1988) derived the perturbed inhomogeneous
Wannier equation underlying the susceptibility, x., experienced by the test beam.
Their treatment follows the kinetic theory of superconductors (Bardeen et al. 1957,
Anderson 1958, Bogolubov er al. 1958, Betbeder-Matibet and Noziéres 1969) and
generalizes earlier calculations by Keldysh and Kozlov (1968). Similar results for a
real condensate have been obtained recently by Cote and Griffin (1988).

For small pump intensities and @, < E},, one finds for the polarization induced
by the test beam

S (B + SHEE — (@ + i00uklB0) = (1 = AR Jere B = 3 SHEAK),
(3.2.1409)

T (Hix + GHIE) + (@ = 20, + i8)JB(K) = — 2 GHE)*PK),
(3.2.14b)

where the Hartree correction, 8H", is defined in eq. (3.2.9). SH and 8H" are Fock
and Bogolubov corrections, which read respectively

SHE, = 20, P*(k) Z Ik — K)P,(k") — 2P,()I(k — K)BA(K)

+ 2ero, E,PHK)ow (3.2.15)
SHew = 26w Fp(k) Z I(k — kK")P,(k") = 2P,()I(k — K)F,(K)

+ 2ery, E, Py(k)oy - (3.2.16)

These equations are exactly of the form of the Bogolubov-Beliaev equations
(Bogolubov 1947, Beliaev 1958a,b) for the excitation spectrum of a weakly non-ideal
Bose gas. Beside the PSF modification of the driving term, there are two elementary
nonlinear processes, which determine the linear response to a weak test beam, E;: (i)
renormalization of e-h pairs (described by the H and F terms) and (ii) creation and
annihilation of pairs of e-h pairs (described by the B term). The former process,
renormalization of real e-h pairs excited out of the condensate, should not be
confused with the renormalization of the virtual e-h pairs in the condensate, equation
(3.2.9). It is due both to anharmonic interactions with the latter (first and second term
in equation (3.2.15), equation (3.2.9)) and with pump photons (third term in equation
(3.2.15)). In the latter process, two pump photons and thus two virtual e-h pairs out
of the condensate are destroyed and two renormalized real e-h pairs are created, one
of which eventually transforms into a test photon, and vice versa. Again, as evident
from equation (3.2.16), both anharmonic interactions contribute to this nonlinear
process, the ‘depletion of the condensate’ stimulated by the test beam, which
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necessarily leads to optical gain, even though there is no population inversion. We
thus recover the two basic renormalizations of the dressed atom picture discussed
above.

If the pump detuning from the absorption edge is small, the polarization induced
by the pump beam is given by equation (3.2.12). Substituting this result into equation
(3.2.15), we recover equations (3.1.16)—(3.1.17), the HF shift of the 1s exciton
resonance due to the anharmonic exciton—exciton interaction. An additional Stark
contribution to this shift arises now from the anharmonic exciton-photon interaction,
the third term in equation (3.2.15), the expectation value of which in the Is state is

SEf, = 2er.E, Z PA(R)\$% (R

der E,[ 1¢%,(r = 0)
= ——-”'? _al —m——ld"(N X (3.2.17)
s o s

Here NF¥F is the saturation density due to excitonic PSF, defined in equations (3.1.8),
(3.1.10) and (3.1.11). Similarly, we obtain for the Stark shift of the band gap

S8Ef = 2er E Pk =0)

2
- %ﬁ”lﬂ $25(k = O)PL(r = 0). (3.2.18)

s = wp
The first factor in equation (3.2.17) expresses the Stark shift of the atomic states that
form the conduction and valence bands. The second factor describes the renormal-
ization of this atomic shift due to excitonic effects. Its numerator reflects the fact that
an exciton is built up from a linear combination of Bloch states that originate
themselves from the atomic states. It expresses the enhancement of the oscillator
strength due to the correlation in the excitonic state. The same factor appears in
Elliott’s formula for excitonic linear absorption. The denominator contains the
saturation density, NFF, above which the concept of excitons becomes invalid. Note
that the magnitude of this second factor is rather independent of dimension;
192 (r = 0)%/NP¥ = 7/2 and 16/7 in 3D and 2D respectively. In the case of Frenkel

excitons, we recover atomic behaviour.

Inthe L, = 96 A GaAs/AlGaAs multiple quantum well structure studied by Von
Lehmen et al. (1986b), no shift of the Is exciton resonances due to the anharmonic
exciton-exciton interaction is seen under resonant excitation. Consequently, we
consider only equation (3.2.17), the contribution of the anharmonic exciton-photon
interaction. For a pump intensity of [, ~ 8MWcm™* and a pump detuning of
E}, — w, ~ 30meV, the magnitude of the theoretical shift is 0-15meV for the heavy-
hole exciton peak and a factor of four less for the light-hole exciton peak, in excellent
agreement with the experimental data.

The general behaviour of the HF 1s exciton shift in 2D and 3D as a function of
pump detuning from the absorption edge was evaluated by Zimmermann (1988b,c)
and Ell et al. (1989), including both exciton-exciton (which dominate for very small
detunings) and exciton-photon interactions. With increasing detuning, a slow
decrease of the second factor in equation (3.2.17) to the free e-h pair value 1 is found,
which can be easily seen by using equation (3.2.13).

As discussed above, for higher pump intensities, small optical gain is expected, just
like in the case of atoms and free e-h pairs (figures 38 and 41 (a)). This gain is at least
quadratic in the pump intensity and suitably reinterpreted in terms of the depletion
of the condensate or simultaneous emission of a test photon and a collective excitation.
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From equation (3.2.14), one obtains for the spectrum of collective excitations
(Schmitt-Rink and Chemla 1986, Schmitt-Rink et al. 1988)

w, = [(E? + 8ENF — w,)’ — BEJI]", (3.2.19)

which is identical to the Bogolubov-Beliaev result, but has a gap. Again, w, can be
thought of as the chemical potential. Optical absorption into renormalized exciton
states occurs for w, = w, + w, and optical gain for

w = w,—- 0, = 20, — (0, + ),
that is, at frequencies symmetric about w,.

For small pump detunings from the absorption edge, and if we neglect the
contribution to equation (3.2.19) of the anharmonic exciton-exciton interaction, that
is, if we keep only equation (3.2.17) and the corresponding 8E}; (8E}| = BEY),
equation (3.2.19) reduces to

o, = (B — @) + dler E ¢\ (r = OF/N*]'", (3.2.20)

which is exactly the expression for the Rabi frequency of a two-level atom off
resonance, equation (3.2.1), with suitable Wannier exciton modifications. For small
pump intensities, this yields the Stark shift, equation (3.2.17), while for large pump
intensities saturation sets in. In this context, it should be noted that for very high
pump intensities it no longer makes sense to expand about unperturbed 1s exciton
states, so that equation (3.2.20) cannot be expected to describe the saturation of the
1s exciton Stark shift correctly. For large detunings of the pump beam, much larger
than the exciton binding energy, the free e-h pair result, equation (3.2.1), is recovered.
Equation (3.2.20) also shows that, as far as the near-resonant Stark shift is concerned,
one exciton behaves like NP5F independent two-level atoms per unit volume (if
exciton-exciton interactions can be neglected), that is, NPF states per unit volume are
required to form an exciton, as is also implied by equation (3.1.4) for x,. Again, in
the case of Frenkel excitons, the exact atomic behaviour is recovered.

The second factor in the band gap Stark shift, equation (3.2.18), is given by
¢’ *(k = 0)¢%(r = 0) = 8 and 4 in 3D and 2D respectively, while for large detunings
8E] reduces to its free e-h pair results and becomes equal to SET, (Ell er al. 1989). For
small pump detunings from the absorption edge, the Stark shift of the band gap due
to the anharmonic exciton-photon interaction is thus about a factor of two larger
than that of the Is exciton, thus the exciton binding energy as seen by the test beam
increases. The same is true (in HF and for the same physical reasons) for the effects
of the anharmonic exciton—exciton interaction, as discussed previously in section 3.1.
The accompanying increase in exciton oscillator strength competes then with the
decrease due to PSF. As a result, there is essentially no change in 1s exciton oscillator
strength, which is consistent with the experimental observations of Von Lehmen ef al.
(1986 b). The integrated test beam absorption decreases of course, according to the
PSF factor in equation (3.2.14), and just like in a two-level atom. Ell et al. (1989) and
Schaefer (1988) solved the full HF equations of Schmitt-Rink and Chemla (1986) and
Schmitt-Rink e al. (1988) numerically, and their results for the test beam absorption
shown in figure 42 demonstrate the effect very nicely. The full line gives the unperturbed
absorption in 2D, while the others correspond to increasing pump intensities for a
detuning of w, = E, — 2:5E,. Basically, only a shift is seen up to the highest
intensities considered. Recent experiments by Knox ez al. (1989) confirmed the
absence of bleaching at low pump intensities. At high intensities, a strong decrease in
exciton absorption is seen, in agreement with the French measurements (Mysyrowicz
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Figure 42. Excitonic test beam absorption spectra in 2D in the presence of a non-resonant

pump beam with frequency w, = E; — 2-5E,. The full line shows the unperturbed
absorption. (After Ell et al. (1989).)
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Figure 43. Excitonic test beam absorption spectra in 2D, including the effects of the finite
pulse duration; [, = 0-1 GW cm ™. (After Schaefer (1988).)

et al. 1986, Jofire et al. 1987). As shown by Schaefer (1988) and Balslev and Stahl
(1988), this ‘bleaching’ is actually an ‘inhomogeneous’ broadening and can be traced
back to the finite pulse duration. Figure 43 shows some of Schaefer’s results, based on
the numerical integration of the HF equations for a non-monochromatic pump beam.
Clearly, these spectra reproduce the general features seen experimentally (e.g. figure 36).
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Finally, it is worth noting that in none of the experiments discussed above was a
pronounced dependence on polarization of the a.c. Stark effect observed. For
excitons, according to the selection rules, for example for x, one would expect an
effect for parallel polarizations of pump and probe beam only, as discussed by
Froehlich et al. (1987). The latter authors suggested a fast orientational relaxation (of
the real e-h pairs created by the test beam), which is not unrealistic (Schuitheis et al.
1986a,b). The corresponding orientational dephasing time is expected to be of the
order of the inverse homogeneous exciton linewidth, T,. As discussed previously, in
III-V QWs and at the centre of the n, = 1 heavy-hole exciton peak exciton-phonon
scattering alone yields already a T, of the order of one or several picoseconds,
depending on the temperature. There is essentially no dephasing of the virtual e-h
pairs created by the pump beam and, when the test beam is also tuned below the
absorption edge, the symmetries of the 1® should be restored, because the dephasing
times increase exponentially according to Urbach’s rule. For band-to-band transitions,
no dramatic polarization dependence of the a.c. Stark effect is expected. This can be
easily seen from the discussion of optical orientation (Miller and Kleinman 1985,

Joffre et al. 1989).

3.3. Effects of electric fields

Thus far we have separately discussed the changes in optical properties induced
by an electric field and the changes induced by carrier populations. In this section we
will discuss some of the (nonlinear) optical consequences of creating carriers, either
real or virtual, in the presence of a field.

The simplest effect is what can be called the ‘self-electro-optic effect’ (Miller et al.
1984 b, 1985b, Miller 1985) (giving self-electro-optic effect devices (SEEDs)). The
general principle here is that carriers created optically will change the field across the
quantum wells, hence changing their optical properties through the QCSE. In a
general sense, this is a nonlinear optical effect, because it is a change in optical
properties caused by a light beam. We could implement this principle in many ways.
We could create carriers in some separate photodiode or transistor to change a
voltage across the quantum wells through some circuit; such devices are nonlinear
optical devices in the general sense and are certainly SEEDs (Miller 1985¢). One
might debate whether such devices are optically nonlinear in some strict sense because
electrical power is involved; it is worth noting that such devices can be made without
any electrical power supply, deriving all their power from the incident light (Weiner
et al. 1987b), in which case it is difficult not to class them as nonlinear optical devices.
Such nonlinearities are certainly non-local (because a light beam at one place can
influence the optical properties at another), and for this reason cannot strictly be
described by the usual local nonlinear susceptibility formalism. They are similar to
those involved in photorefractive materials where displacement of charges toward
traps generates large electrical fields which in turn modify the optical properties
through the normal electro-optic effect. Furthermore, the SEED nonlinearities belong
to that class of nonlinearities in which the optical properties are dependent on the
internal state of the material, not simply on the incident field, although the incident
optical field can change the internal state. In the present case, the ‘internal state’ can
be characterized by the voltage or field over the quantum wells, a ‘state’ that can
certainly be changed by the incident light creating carriers. This is not merely a
semantic distinction; this kind of nonlinearity can be intrinsically bistable in the
incident light power (Miller 1984). Any response of the system that is multiple-valued
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in the optical field obviously cannot be expanded in a power series in that field (power
series are single-valued), and hence we cannot use normal nonlinear susceptibilities,
which are power series coefficients. Another simple example of the same class of
nonlinearity is thermal nonlinearities, in which changes in temperature change the
optical properties (Miller 1984). The self-electro-optic effect can, however, be a very
large and relatively fast fionlinearity; in terms of the energy required to induce a
significant change in optical properties, it is actually one of the largest known optical
nonlinearities, being larger by this measure even than the exciton bleaching effects in
quantum wells discussed above, as we will explain below.

The simplest self-electro-optic effect implementation, and the only one we will
consider explicitly here, is when the carriers are created in the biased quantum wells
themselves, so as to screen the applied field because the electrons and holes are biased
towards opposite sides of the wells. If they remain in the wells, there will be some
reduction of the field in the wells and a resulting change in the absorption that can
be calculated self-consistently (Brum ez al. 1986). A rough estimate of the size of this
effect can be obtained by considering the extreme case when the electron and hole
populations are completely separated in the well by the field, giving two opposite
sheets of charge within the wells. The resulting screening field F; can be calculated as
for a plane-parallel capacitor, giving F; = Ne/e where N is the areal carrier pair
density. (Note, of course, that the field is independent of separation for a plane-parallel
capacitor with a given charge density.) For N ~ 3 x 10"cm™%, F; ~ 4 x 10*Vem™.
For a biased 100 A quantum well, this will produce a fairly large change in absorption,
but so also will the exciton saturation at this same density, and the order of magnitude
of the change in absorption from both effects will be similar. To calculate this
particular effect properly would therefore require a many-body calculation as discussed
above, but with self-consistent solution for electric field changes also. A much larger
optical nonlinearity can be obtained if we allow the carriers to transport out of the
wells, say to the electrodes; in practice at room temperature this happens very
efficiently (Miller et al. 1984 b). Now all the charge from all the wells is accumulated
in one pair of sheets of charge, and consequently the resulting change in field is much
larger. For example, to make the same field change of 4 x 10* Vem™ still requires
a total areal density of ~3 x 10" cm~2. If, however, this charge comes from, say, 40
quantum wells, as might be typical for the ~ 1 um depletion region of a quantum well
diode, we now only need to create ~3 x 10'//40 =~ 10° cm~? in each layer initially.
This gives us a much more efficient optical nonlinearity in terms of change in optical
properties for a given absorbed optical energy. The absorbed optical energy, E,,
required per unit area is E, = (w/e)eF;, giving Ex, ~ 70nJcm~? = 700a) um~2 for
our example parameters. To provide a similar change in optical absorption by exciton
bleaching for a similar 1 um of quantum wells would require absorbed optical energies
per unit area approximately two orders of magnitude larger.

By incorporating such quantum well diodes in external circuits, we can control
how fast the charge is removed from the electrodes and hence the operating speed and
power of the nonlinearity (Miller er al. 1984b, 1985b), although the energy of opera-
tion can remain constant over many orders of magnitude. A variety of functions have
been demonstrated (Miller 1987), including optical bistability. The bistability can be
seen with only a series resistor and a voltage supply connected to a quantum well
diode. Ultimate speeds of such devices will probably be limited by the transport time
of the carriers out of the wells to the electrodes, perhaps to ~ 100ps timescales,
although the dynamics of such processes is not currently fully understood.
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Nonlinear optical effects with below-gap excitation in biased QWs present some
specific aspects due both to the charge separation induced by the static electric field
and the virtual nature of the photoexcited populations. Generation of ultrafast
electrical transients (Chemla et al. 1987c) and enhanced cubic nonlinear effects for
excitation close to the gap (Yamanishi 1987, Hiroshima ez al. 1988, Shimizu 1988b)
or close to mid-gap (Shimizu 1988b) have been predicted theoretically. By breaking
the symmetry, the biasing field can also induce a quadratic response, such as second
harmonic generation (Tsang et al. 1987, Shimizu 1988a). This effect is formally
similar to the d.c. field induced second-harmonic generation used extensively to
measure the nonlinearities of molecules in solution. Let us note that in heterostructures
the symmetry breaking can also be introduced during the growth, for example by
grading the composition of some alloy or using coupled asymmetric QWs (Khurgin
1987). So far, no experimental observation of these effects has been reported, most
likely because of the complex structures of the samples required to observe them. They
present nevertheless some novel and interesting features; in the following we will give
a brief overview of the origin of these nonlinearities.

The most novel of these nonlinear effects is the production of ultrafast electrical
transients, in that it is a completely different kind of nonlinear optical effect from the
others discussed so far (Chemla ef al. 1987). As shown in section 3.2, below-gap
excitation generates virtual exciton populations in the QWs that last essentially only
as long as the laser field is applied. Nevertheless the virtual excitons are polarized by
the biasing electrostatic field. Their wavefunctions are approximately given by
equation (2.2.5) with, according to equation (2.2.8), electron and hole distributions
displaced towards opposite sides of the QW. Thus, during their transient presence in
the QW, the virtual excitons generate a macroscopic polarization Py, proportional to
the e-h charge separation and density,

Po = —e TN [Jabscores - | aWfdn ] 63D

where N, is the virtual-pair density in the n,th subband as given by equation (3.2.11).
In the case of infinite barriers and if the e-h Coulomb attraction is neglected, it is
possible to carry out the summation over the subbands exactly (Chemla et al. 1987,

Yamanishi 1987). It is found that P, induces an electrostatic field 8F/F = — 8¢y/€,,
with

5, _ leroEpl ( R )’/2

« - QR \W u(4, o) (3.3.2)

where W = w¥/(2mL?) = E; + E} measures the confinement energy of the e-h pair
and u(4, o) is a universal function of the normalized pump detuning, 4 = (E, +
W — w,)/W, and the electron/hole mass ratio, 6 = m,/m,. The plot of the function
u(4, o) is given in figure 44, showing two different regimes. For small detunings,
A < 1, the most resonant n, = 1 ground state is dominant giving the intuitive result

that the change of dielectric constant is proportional to the pair densityinthen, = 1
subband, N,, and to the sum of the corresponding electron and hole polarizabilities,

€, ~ 4N, (o + ), (3.33)
where the polarizabilities a;, (j = e, h) are given by

_ Kn.l211)F
| = 2&2————(&.:_ 8 (3.3.4)

a
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Figure 44. A plot of the universal function #(4, o), which determines the change of dielectric

constant, against the log of the normalized pump detuning, A. Two curves are shown for

electron-hole mass ratio 6 = m./my, = 0-1 and 1. The inset shows the n, = 1 electron

and hole wavefunctions in the direction normal to the layer for a biased quantum well.
(After Chemla et al. (1987).)

In the other limit of large detuning (4 > 1), B¢, /€, becomes independent of the well
thickness and tends toward the bulk value. It is interesting to note that the relative
change in the applied field, 5F/F, becomes larger as the QW thickness increases
because of the larger charge separation. On the other hand, the magnitude of the field
that can be applied before the excitons are field-ionized decreases very quickly with
L., hence reducing the usefulness of the effect. Optimum QW thicknesses probably
correspond to those showing well defined QCSE, L, ~ 100A. We note that the effect
also works for bias fields applied in the QW plane, with a magnitude close to the bulk
value, except for very small detunings.

In first order in the virtual population density, this effect can also be viewed as a
field-induced rectification (Bloembergen 1965). Using the language of nonlinear
optics, it is possible to consider that the QCSE and QCFK discussed in section 2.2 arise
from the imaginary part of the third-order susceptibility x®(— ®,®,0,0) such that

P = ¥(-0, 00, 0)F’E. (3.3.5)

We can expect that corresponding to the real part of ¥®(— ®,,0,0) there is also a
quadratic electrorefraction, namely a change of refractive index in the transparency
region of the QW, proportional to the square of the applied field, F, as was discussed
above in section 2.2.

By virtue of the general permutation symmetries of nonlinear optical suscepti-
bilities (Bloembergen 1965) this implies that there must be another susceptibility 3
(0, 0, —w, w) exactly equal to 19 (— w,0,0,0) which describes the generation of a static
polarization proportional to the biasing field and the intensity of the pump laser,

Py = 10,0, —w,, @ )FEES. (3.3.6)
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This, of course, is nothing more than the polarization, P,, calculated from con-
sideration of the microscopic processes in equation (3.3.1). The expression in equation
(3.3.6) can be exploited-to obtain from the experimental QCSE an estimate of the
transient static field, 5F, including excitonic corrections that are not contained in
equation (3.3.1). For example, it is found that for a I0GW cm™~? excitation (corre-
sponding to 100 pJ, 100 fs optical pulses focussed to a 10 um? area), 42 meV below the
gap of GaAs QWs and a F ~ 10°Vem™' applied field, a 8F ~ 2 x 10°Vem™!,
100 fs transient pulse would be produced. The signature of such an effect would be to
demonstrate the propagation of the transient pulse by observing its effects outside the
region of the QW where it is produced, but at the time of writing this has not yet been
achieved.

4. Conclusions

Despite the length of this article, and the many references contained therein to an
impressive body of work, it represents only the start of the field of study of optics in
semiconductor microstructures. At the time of writing, only work in GaAs quantum
wells is in any sense mature. Consequently, this review covers primarily III-V semi-
conductors, with emphasis on quantum well structures, and deals primarily with
direct gap type I systems. Work in other materials systems and in structures confined
in more dimensions is much less advanced, and will doubtless be.the subject of much
future research.

The basic linear optical properties of these structures are now relatively well
understood for undoped systems both with and without electric fields. Although good
experimental data on the optical properties of doped quantum well structures are now
available, the theory is still in a primitive state at least for quantitative predictions;
some features are qualitatively understood.

As for the nonlinear optical effects, there is a large body of work especially on real
populations close to the fundamental gap. The theory accounts rather well for the
experiments in the low and medium density regime. At high density, for multiple
subband occupation, much theoretical work remains to be done. The effects of virtual
populations have just started to be investigated experimentally as well as theoretically.
At this time, theory and experiments are in qualitative agreement in the regimes that
have been explored. The nonlinear effects in the presence of electrical fields are
understood in the quasi-steady state regime, although the dynamic behaviour is only
now being explored. As for virtual transitions with electric fields, the many interesting
proposals remain mere theoretical speculations at this time.

An obvious extension of these investigations would be toward lower dimensional
structures such as quantum wires and boxes. Some phenomena have been theoretically
explored, but much remains to be done experimentally because of the extreme
difficulty in the fabrication of these structures.
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