14 Vector spaces, operators and matrices

Slides: Lecture 14a Vector space
Text reference: Quantum Mechanics for Scientists and Engineers

Section 4.2

Quantum Mechanics for Scientists and Engineers

Vector spaces, operators and matrices

Vector space

Quantum mechanics for scientists and engineers David Miller

Vector space

We need a "space" in which our vectors exist
For a vector with three components $\left[a_{1}\right.$

$$
\left.\begin{array}{l}
a_{2} \\
a_{3}
\end{array}\right]
$$

we imagine a three dimensional Cartesian space
The vector can be visualized as a line starting from the origin
with projected lengths $a_{1^{\prime}} a_{2^{\prime}}$ and a_{3} along the x, y, and z axes respectively
with each of these axes being at right angles

Vector space

For a function expressed as its value at a set of points instead of 3 axes labeled x, y, and z
we may have an infinite number of orthogonal axes
labeled with their associated basis function

$$
\text { e.g., } \psi_{n}
$$

Just as we label axes in conventional space with unit vectors
one notation is $\hat{\mathbf{x}}, \hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$ for the unit vectors so also here we label the axes with the kets $\left|\psi_{n}\right\rangle$

Either notation is acceptable

Geometrical space has a vector dot product that defines both the orthogonality of the axes

$$
\hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=0
$$

and the components of a vector along those axes

$$
\mathbf{f}=f_{x} \hat{\mathbf{x}}+f_{y} \hat{\mathbf{y}}+f_{z} \hat{\mathbf{z}} \text { with } f_{x}=\mathbf{f} \cdot \hat{\mathbf{x}}
$$

and similarly for the other components
Our vector space has an inner product that defines both the orthogonality of the basis functions

$$
\left\langle\psi_{m} \mid \psi_{n}\right\rangle=\delta_{n m}
$$

as well as the components $c_{m}=\left\langle\psi_{m} \mid f\right\rangle$

Mathematical properties - addition of vectors
With respect to addition of vectors
both geometrical space and our vector space are commutative

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =\mathbf{b}+\mathbf{a} \\
|f\rangle+|g\rangle & =|g\rangle+|f\rangle
\end{aligned}
$$

and associative

$$
\begin{aligned}
\mathbf{a}+(\mathbf{b}+\mathbf{c}) & =(\mathbf{a}+\mathbf{b})+\mathbf{c} \\
|f\rangle+(|g\rangle+|h\rangle) & =(|f\rangle+|g\rangle)+|h\rangle
\end{aligned}
$$

Mathematical properties - linearity

Both the geometrical space and our vector space are
linear in multiplying by constants

$$
c(\mathbf{a}+\mathbf{b})=c \mathbf{a}+c \mathbf{b}
$$

our constants may be complex

$$
c(|f\rangle+|g\rangle)=c|f\rangle+c|g\rangle
$$

And the inner product is linear both in multiplying by constants

$$
\mathbf{a} \cdot(c \mathbf{b})=c(\mathbf{a} \cdot \mathbf{b})
$$

$$
\langle f \mid c g\rangle=c\langle f \mid g\rangle
$$

and in superposition of vectors

$$
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}
$$

$$
\langle f|(|g\rangle+|h\rangle)=\langle f \mid g\rangle+\langle f \mid h\rangle
$$

Mathematical properties - norm of a vector
There is a well-defined "length" to a vector formally a "norm"

$$
\begin{aligned}
& \|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}} \\
& \|f\|=\sqrt{|f| f\rangle}
\end{aligned}
$$

Mathematical properties - completeness

In both cases

any vector in the space
can be represented to an arbitrary degree of accuracy as a linear combination of the basis vectors

This is the completeness requirement on the basis set
In vector spaces
this property of the vector space itself is sometimes described as "compactness"

Mathematical properties - commutation and inner product
In geometrical space, the lengths $a_{x^{\prime}} a_{y^{\prime}}$ and a_{z} of a vector's components are real
so the inner product (vector dot product) is commutative

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}
$$

But with complex coefficients rather than real lengths we choose a non-commutative inner product of the form

$$
\langle f \mid g\rangle=(\langle g \mid f\rangle)^{*}
$$

This ensures that $\langle f \mid f\rangle$ is real
even if we work with complex numbers as required for it to form a useful norm

14 Vector spaces, operators and matrices

Slides: Lecture 14b Operators
Text reference: Quantum Mechanics for Scientists and Engineers

Sections 4.3 - 4.4

Quantum Mechanics for Scientists and Engineers

Vector spaces, operators and matrices

Operators

Quantum mechanics for scientists and engineers David Miller

Operators

A function turns one number
the argument into another
the result
An operator turns one function into another
In the vector space representation of a function
an operator turns one vector into another

Operators

Suppose that we are constructing the new function $g(y)$ from the function $f(x)$
by acting on $f(x)$
with the operator \hat{A}
The variables x and y might be the same kind of variable as in the case where the operator corresponds to differentiation of the function

$$
g(x)=\left(\frac{d}{d x}\right) f(x)
$$

Operators

The variables x and y might be quite different as in the case of a Fourier transform operation where
x might represent time and y might represent frequency

$$
g(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \exp (-i y x) d x
$$

A standard notation for writing any such operation on a function is

$$
g(y)=\hat{A} f(x)
$$

This should be read as \hat{A} operating on $f(x)$

Operators

For \hat{A} to be the most general operation possible it should be possible for the value of $g(y)$ for example, at some particular value of $y=y_{1}$
to depend on the values of $f(x)$ for all values of the argument x
This is the case, for example, in the Fourier transform operation

$$
g(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \exp (-i y x) d x
$$

Linear operators

We are interested here solely in linear operators
They are the only ones we will use in quantum mechanics
because of the fundamental linearity of quantum mechanics
A linear operator has the following characteristics

$$
\begin{gathered}
\hat{A}[f(x)+h(x)]=\hat{A} f(x)+\hat{A} h(x) \\
\hat{A}[c f(x)]=c \hat{A} f(x)
\end{gathered}
$$

for any complex number c

Consequences of linearity for operators

Let us consider the most general way we could have the function $g(y)$ at some specific value y_{1} of its argument that is, $g\left(y_{1}\right)$
be related to the values of $f(x)$ for possibly all values of x and still retain the linearity properties for this relation

Consequences of linearity for operators

Think of the function $f(x)$
as being represented by a list of values $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots$, just as we did when considering $f(x)$ as a vector We can take the values of x to be as closely spaced as we want
We believe that this representation can give us as accurate a representation of $f(x)$ for any calculation we need to perform

Consequences of linearity for operators

Then we propose that for a linear operation
the value of $g\left(y_{1}\right)$ might be related to the values of $f(x)$
by a relation of the form

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$ where the $a_{i j}$ are complex constants

Consequences of linearity for operators

This form $g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots$ shows the linearity behavior we want

If we replaced $f(x)$ by $f(x)+h(x)$
then we would have

$$
\begin{aligned}
g\left(y_{1}\right)= & a_{11}\left[f\left(x_{1}\right)+h\left(x_{1}\right)\right]+a_{12}\left[f\left(x_{2}\right)+h\left(x_{2}\right)\right]+a_{13}\left[f\left(x_{3}\right)+h\left(x_{3}\right)\right]+\ldots \\
& =a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots \\
& +a_{11} h\left(x_{1}\right)+a_{12} h\left(x_{2}\right)+a_{13} h\left(x_{3}\right)+\ldots
\end{aligned}
$$

as required for a linear operator relation from

$$
\hat{A}[f(x)+h(x)]=\hat{A} f(x)+\hat{A} h(x)
$$

Consequences of linearity for operators

And, in this form $g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots$ if we replaced $f(x)$ by $c f(x)$
then we would have

$$
\begin{aligned}
g\left(y_{1}\right) & =a_{11} c f\left(x_{1}\right)+a_{12} c f\left(x_{2}\right)+a_{13} c f\left(x_{3}\right)+\ldots \\
& =c\left[a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots\right]
\end{aligned}
$$

as required for a linear operator relation from

$$
\hat{A}[c f(x)]=c \hat{A} f(x)
$$

Consequences of linearity for operators

Now consider whether this form

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$

is as general as it could be and still be a linear relation We can see this by trying to add other powers and "cross terms" of $f(x)$
Any more complicated relation of $g\left(y_{1}\right)$ to $f(x)$
could presumably be written as a power series in $f(x)$ possibly involving $f(x)$ for different values of x
that is, "cross terms"

Consequences of linearity for operators

If we were to add higher powers of $f(x)$ such as $[f(x)]^{2}$
or cross terms such as $f\left(x_{1}\right) f\left(x_{2}\right)$ into the series $g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots$
it would no longer have the required linear behavior of

$$
\hat{A}[f(x)+h(x)]=\hat{A} f(x)+\hat{A} h(x)
$$

We also cannot add a constant term to this series
That would violate the second linearity condition

$$
\hat{A}[c f(x)]=c \hat{A} f(x)
$$

The additive constant would not be multiplied by c

Generality of the proposed linear operation

Hence we conclude

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$

is the most general form possible for the relation between $g\left(y_{1}\right)$ and $f(x)$
if this relation is to correspond to a linear operator

Construction of the entire operator

To construct the entire function $g(y)$
we should construct series like
$g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots$
for each value of y
If we write $f(x)$ and $g(y)$ as vectors
then we can write all these series at once

$$
\left[\begin{array}{c}
g\left(y_{1}\right) \\
g\left(y_{2}\right) \\
g\left(y_{3}\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots
\end{array}\right]
$$

Construction of the entire operator

We see that $\left[\begin{array}{c}g\left(y_{1}\right) \\ g\left(y_{2}\right) \\ g\left(y_{3}\right) \\ \vdots\end{array}\right]=\left[\begin{array}{cccc}a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & a_{23} & \cdots \\ a_{31} & a_{32} & a_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}f\left(x_{1}\right) \\ f\left(x_{2}\right) \\ f\left(x_{3}\right) \\ \vdots\end{array}\right]$
can be written as $g(y)=\hat{A} f(x)$
where the operator \hat{A} can be written as a matrix

$$
\hat{A} \equiv\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Bra-ket notation and operators

Presuming functions can be represented as vectors
then linear operators can be represented by matrices
In bra-ket notation, we can write $g(y)=\hat{A} f(x)$ as

$$
|g\rangle=\hat{A}|f\rangle
$$

If we regard the ket as a vector we now regard the (linear) operator \hat{A} as a matrix

14 Vector spaces, operators and matrices

Slides: Lecture 14c Linear operators and their algebra

Text reference: Quantum Mechanics for Scientists and Engineers
Sections 4.4-4.5

Quantum Mechanics for Scientists and Engineers

Vector spaces, operators and matrices

Linear operators and their algebra

Quantum mechanics for scientists and engineers David Miller

Consequences of linear operator algebra

Because of the mathematical equivalence of matrices and linear operators
the algebra for such operators is identical to that of matrices
In particular
operators do not in general commute
$\hat{A} \hat{B}|f\rangle$ is not in general equal to $\hat{B} \hat{A}|f\rangle$
for any arbitrary $|f\rangle$
Whether or not operators commute
is very important in quantum mechanics

Generalization to expansion coefficients

We discussed operators
for the case of functions of position (e.g., x)
but we can also use expansion coefficients on basis sets

We expanded $f(x)=\sum_{n} c_{n} \psi_{n}(x)$ and $g(x)=\sum_{n} d_{n} \psi_{n}(x)$
We could have followed a similar argument requiring each expansion coefficient d_{i} depends linearly on all the expansion coefficients c_{n}

Generalization to expansion coefficients

By similar arguments

we would deduce the most general linear relation between the vectors of expansion coefficients could be represented as a matrix

$$
\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & \cdots \\
A_{21} & A_{22} & A_{23} & \cdots \\
A_{31} & A_{32} & A_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots
\end{array}\right]
$$

The bra-ket statement of the relation between f, g, and \hat{A} remains unchanged as $|g\rangle=\hat{A}|f\rangle$

Evaluating the matrix elements of an operator

Now we will find out how we can write some operator
as a matrix
That is, we will deduce how to calculate all the elements of the matrix
if we know the operator
Suppose we choose our function $f(x)$
to be the j th basis function $\psi_{j}(x)$
so $f(x)=\psi_{j}(x)$ or equivalently $|f\rangle=\left|\psi_{j}\right\rangle$

Evaluating the matrix elements of an operator
Then, in the expansion $f(x)=\sum_{n} c_{n} \psi_{n}(x)$
we are choosing $c_{j}=1$
with all the other c's being 0
Now we operate on this $|f\rangle$ with \hat{A}

$$
\begin{gathered}
\text { in }|g\rangle=\hat{A}|f\rangle \\
\text { to get }|g\rangle
\end{gathered}
$$

Suppose specifically
we want to know the resulting coefficient d_{i} in the expansion $g(x)=\sum_{n} d_{n} \psi_{n}(x)$

Evaluating the matrix elements of an operator

From the matrix form of $|g\rangle=\hat{A}|f\rangle$

$$
\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & \cdots \\
A_{21} & A_{22} & A_{23} & \cdots \\
A_{31} & A_{32} & A_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots
\end{array}\right]
$$

with our choice $c_{j}=1$ and all other $c^{\prime} s 0$ then we would have

$$
d_{i}=A_{i j}
$$

Evaluating the matrix elements of an operator

For example, for $j=2$ that is, $c_{2}=1$ and all other $c^{\prime} s 0$ then

$$
\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{12} \\
A_{22} \\
A_{32} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & \cdots \\
A_{21} & A_{22} & A_{23} & \cdots \\
A_{31} & A_{32} & A_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right]
$$

so in this example

$$
d_{3}=A_{32}
$$

Evaluating the matrix elements of an operator
But, from the expansions for $|f\rangle$ and $|g\rangle$ for the specific case of $|f\rangle=\left|\psi_{j}\right\rangle$

$$
|g\rangle=\sum_{n} d_{n}\left|\psi_{n}\right\rangle=\hat{A}|f\rangle=\hat{A}\left|\psi_{j}\right\rangle
$$

To extract d_{i} from this expression we multiply by $\left\langle\psi_{i}\right|$ on both sides to obtain

$$
d_{i}=\left\langle\psi_{i}\right| \hat{A}\left|\psi_{j}\right\rangle
$$

But we already concluded for this case that $d_{i}=A_{i j}$
So

$$
A_{i j}=\left\langle\psi_{i}\right| \hat{A}\left|\psi_{j}\right\rangle
$$

Evaluating the matrix elements of an operator

But our choices of i and j here were arbitrary
So quite generally
when writing an operator \hat{A} as a matrix when using a basis set $\left|\psi_{n}\right\rangle$
the matrix elements of that operator are

$$
A_{i j}=\left\langle\psi_{i}\right| \hat{A}\left|\psi_{j}\right\rangle
$$

We can now turn any linear operator into a matrix
For example, for a simple one-dimensional spatial case

$$
A_{i j}=\int \psi_{i}^{*}(x) \hat{A} \psi_{j}(x) d x
$$

Visualization of a matrix element

Operator \hat{A}

Evaluating the matrix elements

We can write the matrix for the operator \hat{A}
$\hat{A} \equiv\left[\begin{array}{cccc}\left\langle\psi_{1}\right| \hat{A}\left|\psi_{1}\right\rangle & \left\langle\psi_{1}\right| \hat{A}\left|\psi_{2}\right\rangle & \left\langle\psi_{1}\right| \hat{A}\left|\psi_{3}\right\rangle & \ldots \\ \left\langle\psi_{2}\right| \hat{A}\left|\psi_{1}\right\rangle & \left\langle\psi_{2}\right| \hat{A}\left|\psi_{2}\right\rangle & \left\langle\psi_{2}\right| \hat{A}\left|\psi_{3}\right\rangle & \ldots \\ \left\langle\psi_{3}\right| \hat{A}\left|\psi_{1}\right\rangle & \left\langle\psi_{3}\right| \hat{A}\left|\psi_{2}\right\rangle & \left\langle\psi_{3}\right| \hat{A}\left|\psi_{3}\right\rangle & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$
We have now deduced how to set up
a function as a vector and
a linear operator as a matrix
which can operate on the vectors

