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Unitary operators to change representations of vectors

Suppose that we have a vector (function) 
that is represented
when expressed as an expansion on 

the functions 
as the mathematical column vector

These numbers c1, c2, c3, … 
are the projections of   

on the orthogonal coordinate axes 
in the vector space 

labeled with  ,       ,        …  
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Unitary operators to change representations of vectors

Suppose we want to represent this vector on a new set 
of orthogonal axes

which we will label      ,       ,        …  
Changing the axes 

which is equivalent to changing the basis set of 
functions 

does not change the vector we are representing 
but it does change 

the column of numbers used to represent the 
vector 

1 2 3



Unitary operators to change representations of vectors

For example, suppose the original vector 
was actually the first basis vector in the old basis

Then in this new representation
the elements in the column of numbers 

would be the projections of this vector 
on the various new coordinate axes

each of which is simply
So under this coordinate transformation 

or change of basis
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Unitary operators to change representations of vectors

Writing similar transformations for each basis vector
we get the correct transformation 

if we define a matrix

where 

and we define our new column of numbers

n
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Unitary operators to change representations of vectors

Note incidentally that here
and          are the same vector in the vector space

Only the representation 
the coordinate axes

and, consequently 
the column of numbers 

that have changed 
not the vector itself
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Unitary operators to change representations of vectors

Now we can prove that     is unitary 
Writing the matrix multiplication in its sum form

so
hence     is unitary 

since its Hermitian transpose is therefore its 
inverse

Û
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Unitary operators to change representations of vectors

Hence any change in basis 
can be implemented with a unitary operator 

We can also say that 
any such change in representation to a new 
orthonormal basis 

is a unitary transform
Note also, incidentally, that

so the mathematical order of this multiplication 
makes no difference

 †† † †ˆ ˆ ˆ ˆ ˆ ˆUU U U I I  



Unitary operators to change representations of operators

Consider a number such as
where vectors and       and operator     are arbitrary

This result should not depend on the coordinate system
so the result in an “old” coordinate system

should be the same in a “new” coordinate system 
that is, we should have

Note the subscripts “new” and “old” refer to representations 
not the vectors (or operators) themselves 

which are not changed by change of representation 
Only the numbers that represent them are changed
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Unitary operators to change representations of operators

With unitary     operator to go from “old” to “new” systems
we can write

Since we believe also that

then we identify 

or since

then 

 †ˆ ˆ
new new new new new newg A f g A f

Û

ˆ ˆ
new new new old old oldg A f g A f

†ˆ ˆˆ ˆ
old newA U A U
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†ˆ ˆˆ ˆ
new oldA UA U
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Unitary operators that change the state vector

For example, if the quantum mechanical state   

is expanded on the basis         to give  
then   

and if the particle is to be conserved 
then this sum is retained as the quantum 
mechanical system evolves in time

But this is just the square of the vector length
Hence a unitary operator, which conserves length

describes changes that conserve the particle
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Hermitian operators

A Hermitian operator is equal to its own 
Hermitian adjoint

Equivalently it is self-adjoint 

†ˆ ˆM M



Hermitian operators

In matrix terms, with

then

so the Hermiticity implies                 for all i and j
so, also 

the diagonal elements of a Hermitian 
operator must be real
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21 22 23

31 32 33
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Hermitian operators

To understand Hermiticity in the most general sense
consider 

for arbitrary       and      and some operator
We examine 

Since this is just a number 
a “1 x 1” matrix

it is also true that    

ˆg M f

f g M̂

 †ˆg M f

   †ˆ ˆg M f g M f






Hermitian operators

We can also analyze using the rule                    
for Hermitian adjoints of products

So

Hence, if      is Hermitian, with therefore
then

even if       and      are not orthogonal
This is the most general statement of Hermiticity

 †ˆg M f  †
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   †ˆ ˆg M f g M f
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Hermitian operators

In integral form, for functions          and 
the statement                                      can be written

We can rewrite the right hand side using

and a simple rearrangement leads to

which is a common statement of Hermiticity in integral form 

 f x  g x
 ˆ ˆg M f f M g




       ˆ ˆg x Mf x dx f x Mg x dx


     
 ab a b  

        ˆ ˆg x Mf x dx f x Mg x dx


  

        ˆ ˆg x Mf x dx Mg x f x dx


  



Bra-ket and integral notations

Note that in the bra-ket notation 
the operator can also be considered to operate to the left

is just as meaningful a statement as 
and we can group the bra-ket multiplications as we wish

Conventional operators in the notation used in integration 
such as a differential operator, d/dx

do not have any meaning operating “to the left” 
so Hermiticity in this notation is the less elegant form 

ˆg A Â f

   ˆ ˆ ˆg A f g A f g A f 

        ˆ ˆg x Mf x dx Mg x f x dx


  



Reality of eigenvalues

Suppose        is a normalized eigenvector of the 
Hermitian operator      with eigenvalue

Then, by definition

Therefore

But from the Hermiticity of  we know

and hence   must be real 
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Orthogonality of eigenfunctions for different eigenvalues

Trivially

By associativity 

Using

Using Hermiticity

Using 

and     are real numbers

Rearranging
But     and     are different, so                    i.e., orthogonality 

ˆ ˆ0 m n m nM M    

 †
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†ˆ ˆM M    †ˆ ˆ0 m n m nM M    

ˆ
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Degeneracy

It is quite possible 
and common in symmetric problems 

to have more than one eigenfunction 
associated with a given eigenvalue 

This situation is known as degeneracy 
It is provable that 

the number of such degenerate 
solutions 

for a given finite eigenvalue 
is itself finite 
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Matrix form of derivative operators

Returning to our original discussion of functions as vectors 
we can postulate a form for the differential operator

where we presume we can take the limit as 

1 1 002 2
1 10 0

2 2

xd x
dx

x x
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Matrix form of derivative operators

If we multiply the column vector whose elements are the 
values of the function then

where we are taking the limit as  
Hence we have a way of representing a derivative as a matrix

 
 

 
 

   

   

1 1 002 2 2
1 210 0

2 2 22

i

i

i i x i

xi

i x ii

x xi

f x x dff x f x x
dxf xx x x

dff x f xf x x
x dxx xf x x 

  
  


   

 
                                                               
  

 

 

 

  

0x 



Matrix form of derivative operators

Note this matrix is 
antisymmetric in reflection 
about the diagonal

and it is not Hermitian 
Indeed

somewhat surprisingly
d/dx is not Hermitian 

By similar arguments, though
d 2/dx2 gives a symmetric 
matrix

and is Hermitian
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Matrix corresponding to multiplying by a function

We can formally “operate” on the function
by multiplying it by the function

to generate another function  
Since          is performing the role of an operator

we can if we wish represent it as a (diagonal) matrix 
whose diagonal elements are 

the values of the function at each of the 
different points

If          is real
then its matrix is Hermitian as required for

     g x V x f x

 f x
 V x

 V x

 V x
Ĥ






