28 Bloch theorem

Quantum Mechanics

 for Scientists and EngineersSlides: Lecture 28a Periodic boundary conditions

Text reference: Quantum Mechanics for Scientists and Engineers Section 8.2 - 8.3 (through Eq. 8.6)

The Bloch theorem

Periodic boundary conditions

Quantum mechanics for scientists and engineers

David Miller

One electron approximation

In this approximation, we presume that we can write an effective periodic potential

$$
V_{P}\left(\mathbf{r}+\mathbf{R}_{L}\right)=V_{P}(\mathbf{r})
$$

periodic with the crystal lattice periodicity and therefore
an effective, approximate Schrödinger equation for the one electron in which we are interested

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m_{e}} \nabla^{2} \psi(\mathbf{r})+V_{P}(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r}) \\
& \text { giving our one-electron approximation }
\end{aligned}
$$

Periodicity of $|\psi|^{2}$

In one dimension

the crystal is periodic with "repeat length" a
having the same potential at $x+s a$
as it has at x
Here

s is an integer

Similarly, any observable quantity must also have the same periodicity because the crystal must look the same in every unit cell

Consequences of periodicity of $|\psi|^{2}$

For example charge density $\rho \propto|\psi|^{2}$
must be periodic in the same way

$$
\text { Hence }|\psi(x)|^{2}=|\psi(x+a)|^{2}
$$

which means

$$
\psi(x+a)=C \psi(x)
$$

where C is a unit amplitude complex number
Note that there is no requirement that the wavefunction itself is periodic with the crystal periodicity since it is not apparently an observable or measurable quantity

Periodic boundary conditions

In one dimension, we could argue as follows
Suppose we have a long chain of N equally spaced atoms
and that we join the two ends of the chain together

Periodic boundary conditions

With x as the distance along this loop
then on this loop, the potential can be written

$$
V_{P}(x+m a)=V_{P}(x)
$$

where m is any integer
even possibly an integer much larger than N

Periodic boundary conditions

This expression $V_{P}(x+m a)=V_{P}(x)$ is just like the one for the infinite crystal
If this chain is very long
its internal properties will not be substantially different from an infinitely long chain
so this is a good model that gives us a finite system
while keeping it periodic

Periodic boundary conditions

This loop gives a boundary condition We do want the wavefunction to be single-valued
otherwise how could we differentiate it, evaluate its squared modulus, etc.
So, going round the loop, we must get back to where we started

$$
\psi(x)=\psi(x+N a)
$$

a "periodic boundary condition"

28 Bloch theorem

Quantum Mechanics

 for Scientists and EngineersSlides: Lecture 28b Bloch theorem derivation

Text reference: Quantum Mechanics for Scientists and Engineers

Section 8.3 (from Eq. 8.7)

The Bloch theorem

Bloch theorem derivation

Quantum mechanics for scientists and engineers David Miller

Bloch theorem derivation

If we take this "single value" requirement $\psi(x)=\psi(x+N a)$ and combine it with the required periodicity of a measureable quantity like probability density

$$
|\psi(x)|^{2}=|\psi(x+a)|^{2}
$$

which we deduced implied that $\psi(x+a)=C \psi(x)$ where C is a unit complex number
then $\psi(x)=\psi(x+N a)=C^{N} \psi(x)$

$$
\text { so } C^{N}=1
$$

Hence, C is one of the N " N th roots of unity", e.g.,

$$
C=\exp (2 \pi i s / N) ; s=0,1,2, \ldots N-1
$$

Bloch theorem derivation

Substituting C from

$$
C=\exp (2 \pi i s / N) ; s=0,1,2, \ldots N-1
$$

in

$$
\psi(x)=\psi(x+N a)=C^{N} \psi(x)
$$

gives

$$
\psi(x+a)=\exp (i k a) \psi(x)
$$

where

$$
k=\frac{2 \pi s}{N a} ; s=0,1,2, \ldots N-1
$$

Bloch theorem derivation

Though the form $C=\exp (2 \pi i s / N) ; s=0,1,2, \ldots N-1$ for C is mathematically common, it is not unique We can choose any consecutive set of N values of the integer s
and end up with the same set of possible values for C, just in a different order
Remember, for any integer m

$$
\exp (0)=\exp (2 \pi i)=\exp (2 m \pi i)=1
$$

so the values for C just keep cycling round as we keep increasing s

Bloch theorem derivation

We can therefore end up with correspondingly different sets of values for k all of which are physically equivalent

$$
\text { Instead of } k=\frac{2 \pi s}{N a} ; s=0,1,2, \ldots N-1
$$

we more conventionally use a symmetrical version

$$
k=\frac{2 \pi n}{N a} \quad \ldots n=0, \pm 1, \pm 2, \ldots \pm N / 2
$$

which strictly has one too many values

Bloch theorem derivation

Note also that it makes no difference in our expression

$$
\psi(x+a)=\exp (i k a) \psi(x)
$$

if we add $2 \pi m / a$ (where m is any integer) to k The set of allowed values of $\exp (i k a)$
remains the same

$$
\begin{gathered}
\text { So we can use } k=\frac{2 \pi n}{N a} \ldots n=0, \pm 1, \pm 2, \ldots \pm N / 2 \\
\text { or } k=\frac{2 \pi n}{N a}+\frac{2 \pi m}{a} \ldots n=0, \pm 1, \pm 2, \ldots \pm N / 2
\end{gathered}
$$

This point will have a specific significance later in "extended zone" schemes

Bloch theorem - one statement

The wavefunction in a (one-dimensional) crystal with N unit cells of length a can be written in the form

$$
\psi(x+a)=\exp (i k a) \psi(x)
$$

subject to the condition

$$
k=\frac{2 \pi n}{N a} \quad \ldots n=0, \pm 1, \pm 2, \ldots \pm N / 2
$$

Note the allowed k values are evenly spaced by $2 \pi / L$ where $L=N a$ is the length of the crystal (loop) regardless of the detailed form of the periodic potential

Bloch theorem - alternative (equivalent) statement

Multiply $\psi(x+a)=\exp (i k a) \psi(x)$
by $\exp (-i k(x+a))$
to obtain $\psi(x+a) \exp (-i k(x+a))=\psi(x) \exp (-i k x)$
Hence if we define a function

$$
u(x)=\psi(x) \exp (-i k x)
$$

we have $\quad u(x+a)=u(x)$
Hence $u(x)$ is periodic with the lattice periodicity Equivalently, $u(x)$ is a function that is the same in every unit cell

$$
\text { Rearranging gives } \psi(x)=u(x) \exp (i k x)
$$

Bloch theorem - equivalent statement

The wavefunction in a (one-dimensional) crystal with N unit cells of length a can be written in the form

$$
\psi(x)=u(x) \exp (i k x)
$$

where $u(x)$ is the same in every unit cell subject to the condition

$$
k=\frac{2 \pi n}{N a} \quad . . n=0, \pm 1, \pm 2, \ldots \pm N / 2
$$

Bloch theorem -equivalence of statements

Note that the two forms

$$
\psi(x)=u(x) \exp (i k x) \text { and } \psi(x+a)=\exp (i k a) \psi(x)
$$

are entirely equivalent
We derived the "left" from the "right" one and we can derive the "right" one from the "left" one From the "left" form, we have

$$
\begin{aligned}
\psi(x+a) & =u(x+a) \exp [i k(x+a)]=u(x) \exp [i k(x+a)] \\
& =\exp (i k a) u(x) \exp (i k x)=\exp (i k a) \psi(x)
\end{aligned}
$$

which is the "right" form

Bloch theorem visualization

envelope
Visualization of the real part of the wavefunction

Bloch function

We can think of the $\exp (i k x)$ as an "envelope" function multiplying the unit cell function $u(x)$

28 Bloch theorem

Quantum Mechanics

 for Scientists and EngineersSlides: Lecture 28c Density of states in k-space

Text reference: Quantum Mechanics for Scientists and Engineers

Section 8.4

The Bloch theorem

Density of states in k -space

Quantum mechanics for scientists and engineers David Miller

Bloch theorem in three dimensions

To construct the Bloch theorem in three dimensions we propose a straightforward extension from 1-D
We have

$$
\psi(\mathbf{r}+\mathbf{a})=\exp (i \mathbf{k} \cdot \mathbf{a}) \psi(\mathbf{r})
$$

where \mathbf{a} is any crystal lattice vector or equivalently

$$
\psi(\mathbf{r})=u(\mathbf{r}) \exp (i \mathbf{k} \cdot \mathbf{r})
$$

and $u(\mathbf{r})$ is the same in every unit cell, i.e.,

$$
u(\mathbf{r}+\mathbf{a})=u(\mathbf{r})
$$

Bloch theorem in three dimensions

With the three crystal basis vector directions 1,2 and 3
with lattice constants (repeat distances) $a_{1,}, a_{2}$ and a_{3} and numbers of atoms N_{1}, N_{2}, and N_{3}

$$
k_{1}=\frac{2 \pi n_{1}}{N_{1} a_{1}} \ldots n_{1}=0, \pm 1, \pm 2, \ldots \pm N_{1} / 2
$$

and similarly for the other two components of \mathbf{k} in the other two crystal basis vector directions
Note that the number of possible values of \mathbf{k} is the same as the number of unit cells in the crystal
(formally dropping the k values at one end or the other)

Reciprocal lattice

We see that the allowed values of k_{1}, k_{2} and k_{3} are each equally spaced, with separations

$$
\delta k_{1}=\frac{2 \pi}{N_{1} a_{1}}=\frac{2 \pi}{L_{1}}, \delta k_{2}=\frac{2 \pi}{N_{2} a_{2}}=\frac{2 \pi}{L_{2}}, \text { and } \delta k_{3}=\frac{2 \pi}{N_{3} a_{3}}=\frac{2 \pi}{L_{3}}
$$

respectively along the three axes
where the lengths of the crystal along the three axes are respectively

$$
L_{1}=N_{1} a_{1}, L_{2}=N_{2} a_{2}, L_{3}=N_{3} a_{3}
$$

Reciprocal lattice

We could draw a threedimensional diagram
with axes k_{1}, k_{2}, and k_{3} and mark the allowed values of \mathbf{k}
This set of dots themselves constitutes a mathematical lattice
This kind of lattice is one kind of "reciprocal lattice"

Density of states in k-space

We imagine each point has a volume surrounding it with these volumes touching one another to completely fill all the space

Density of states in k-space

We imagine each point has a volume surrounding it with these volumes touching one another to completely fill all the space
For our cubic lattices, we can define

Density of states in k-space

We imagine each point has a volume surrounding it with these volumes touching one another to completely fill all the space
For our cubic lattices, we can define

$$
\delta k_{1}=\frac{2 \pi}{L_{1}}
$$

Density of states in k-space

We imagine each point has a volume surrounding it with these volumes touching one another to completely fill all the space
For our cubic lattices, we can define

$$
\delta k_{1}=\frac{2 \pi}{L_{1}} \quad \delta k_{2}=\frac{2 \pi}{L_{2}} \quad \delta k_{3}=\frac{2 \pi}{L_{3}}
$$

Density of states in k-space
For our cuboidal lattices these volumes in k-space will be of size $\delta V_{k}=\delta k_{1} \delta k_{2} \delta k_{3}$ i.e., $\delta V_{k}=\frac{2 \pi}{L_{1}} \frac{2 \pi}{L_{2}} \frac{2 \pi}{L_{3}}$

Since the crystal is $V=L_{1} L_{2} L_{3}$ the k-space "volume" round each point is

$$
\delta V_{k}=\frac{(2 \pi)^{3}}{V}
$$

Density of states in k-space

With this specific k-space
"volume" $\delta V_{k}=(2 \pi)^{3} / V$ round each point in k-space we could define
a "density of states in k space"

$$
\frac{1}{\delta V_{k}}=\frac{V}{(2 \pi)^{3}}
$$

Density of states in k-space
This density of states in k -space

$$
1 / \delta V_{k}=V /(2 \pi)^{3}
$$

is \propto crystal volume V
So, more commonly, we define
a "density of states in k-space per unit (real space) volume"

$$
g(\mathbf{k})=\frac{1}{(2 \pi)^{3}}
$$

for quantum mechanical calculations in crystals

