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General single-particle fermion operators 

Here we consider a system with N fermions 
In the r representation of an operator   

e.g., such as the momentum operator 
for a multiple fermion system 

we would add all of the operators 
corresponding to the coordinates of each 
particle, i.e., 

where      is the operator for a specific particle 
e.g., it might be the momentum operator
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General single-particle fermion operators 

In the annihilation and creation operator formalism
we postulate instead that

where  

is the N-particle fermion wavefunction operator, so
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General single-particle fermion operators 

In

each of the a, b, …, n and each of the a’, b’, …, n’
ranges over all single-particle fermion states

Now, all the spatial integrals, except the one over ri
lead to Kronecker deltas of the form 

forcing         ,         , etc., except for particle i
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General single-particle fermion operators 

Hence

where

We can use the anticommutation relation
to progressively swap the operator   

from the right to the center 
and the anticommutation relation

to progressively swap the operator   
from the left to the center
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2îb

† † † †ˆ ˆ ˆ ˆ 0j k k jb b b b 
†
1îb



General single-particle fermion operators 

Each such application of an anticommutation relation 
results in a sign change 

but there are equal number of swaps from the left 
and from the right 

so there is no net sign change in this operation 
Hence we have 
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General single-particle fermion operators 

In practice with any operator
in the end we are working out its matrix elements

Any two operators with identical matrix elements are 
equivalent operators 

We consider two, possibly different, N-fermion basis states 
and   

and consider matrix elements of the operator    in 

between such states 
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General single-particle fermion operators 

Because of Pauli exclusion
the only strings of operators that can survive in 
matrix elements for legal fermion states 

are those in which the operators   
are all different from each other 

i.e., correspond to annihilation operators for 
different single particle states

and are each different from both     and   
since otherwise we would be trying either to 

annihilate two fermions from the same state or 
create two fermions in the same state 
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General single-particle fermion operators 

Hence, for these states
since no two states in the string of creation operators 
or in the string of annihilation operators can be 
identical 

not only do the pairs of annihilation operators 
anticommute and 

the pairs of creation operators anticommute as usual
so also do all the pairs of creation and annihilation 

operators with different subscripts 
other than possibly the pair †
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General single-particle fermion operators 

Hence in

we can swap the creation operator   
all the way from the left 

until we get to the left of the corresponding 
annihilation operator  

only acquiring minus signs as we do so 
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General single-particle fermion operators 

Actually, we acquire an even number of minus signs
because the number of swaps taken to get to the 
middle 

is equal to 
the number to get from the middle to its final 

position 
so there is no change in sign in all these swaps 

We can repeat this procedure for each creation operator 
other than  

which we do not need to move anyway
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General single-particle fermion operators 

Hence, with all these swaps, we can rewrite

as

or more simply
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General single-particle fermion operators 

When this operator

operates on a specific N-fermion basis state 
the only terms in the summation that can survive 

are those for which the list of states   
corresponds to occupied states in  

and so the sum over a, b, …, n (omitting i1 and i2) 
and the number operators 

can be dropped without changing any matrix 
element 
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General single-particle fermion operators 

Hence we can write

It makes no difference which fermion we are considering 
is the same for every fermion

so the sum over i is trivial, and so 

where we also further simplified notation by 
substituting j for i1 and k for i2
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This is the general form for a single-particle fermion 
operator

The Hamiltonian 

is just a special case for a diagonal operator 
Hence we have found a very simple form 

for the single-particle fermion operator 
valid for any number of fermions

General single-particle fermion operators 
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Two-particle fermion operators

Fermions such as electrons interact
e.g., through their Coulomb repulsion

For such cases, we need two-particle operators 
In the r form, we might have an operator   

that depends on the coordinates of both particles 
Then we postulate we can write

using the two-fermion wavefunction operator 
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Two-particle fermion operators

Substituting this two-particle wavefunction operator
into 

we have

or equivalently

where
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Order of suffixes in two-particle fermion operators

Note in

the order of the suffixes on the chain of operators
is not a, b, c, d

The ordering is in the opposite sense for the 
annihilation operators

This different ordering emerges 
from the wavefunction operators 

and the properties of Hermitian conjugation
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Two-particle operators with multiple particles

We presume that the two-particle fermion operator

would remain unchanged as we changed the system 
to have more than two fermions in it 

The arguments would be similar to those for the single-
particle fermion operator   

So we presume this is a general statement 
for a two-particle fermion operator 

in this annihilation and creation operator approach
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Electrons interacting through the Coulomb potential

For two electrons (of the same spin) with Coulomb repulsion 
the Hamiltonian in the r form is 

Hence our two particle operator formalism gives us 

where Habcd is defined analogously to
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Electrons interacting through the Coulomb potential

Suppose specifically we have the two-fermion state 
where one electron is in the basis state   

and the other is in the basis state   
i.e., the two-particle state can be written

We evaluate the expectation value of the energy 
using the Hamiltonian

for this state, i.e. 
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Electrons interacting through the Coulomb potential

Now 

the proof of which is left as an exercise 
Hence we have for the energy expectation value
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Electrons interacting through the Coulomb potential

In

explicitly, we have

and

These are exactly the same terms as previously calculated
using the r formalism 
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Electrons interacting through the Coulomb potential

Remember in

Hkmkm or equivalently                                 is the sum of 
the kinetic energies for the two particles and 
the Coulomb potential energy for two electrons

so it is the energy we would calculate if the 
particles were not identical

is the exchange energy

Hence this approach does reproduce the results of our 
previous r formalism 
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