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Temporally precise in vivo control of
intracellular signalling
Raag D. Airan1, Kimberly R. Thompson1, Lief E. Fenno1, Hannah Bernstein1 & Karl Deisseroth1,2

In the study of complex mammalian behaviours, technological
limitations have prevented spatiotemporally precise control over
intracellular signalling processes. Here we report the development
of a versatile family of genetically encoded optical tools
(‘optoXRs’) that leverage common structure–function relation-
ships1 among G-protein-coupled receptors (GPCRs) to recruit
and control, with high spatiotemporal precision, receptor-
initiated biochemical signalling pathways. In particular, we have
developed and characterized two optoXRs that selectively recruit
distinct, targeted signalling pathways in response to light. The two
optoXRs exerted opposing effects on spike firing in nucleus
accumbens in vivo, and precisely timed optoXR photostimulation
in nucleus accumbens by itself sufficed to drive conditioned place
preference in freely moving mice. The optoXR approach allows
testing of hypotheses regarding the causal impact of biochemical
signalling in behaving mammals, in a targetable and temporally
precise manner.

To enable optical control over intracellular signalling in mammals
(Fig. 1a), we capitalized on shared structure–function relationships1

among GPCRs to develop and express in vivo multiple distinct opsin/
GPCR2 chimaeras with novel transduction logic that couples signal to
effector. In principle, a chimaeric opsin-receptor protein engineered
to be functional within mammals in vivo, targetable to specific cells,
and responsive to precisely timed light pulses would be of substantial
interest for physiology. Such an approach could take advantage of the
speed of optics to test the importance of (1) intracellular biochemical
events at precisely defined behaviourally relevant times, (2) pulsatile
versus tonic modulation, (3) synchrony between different modulatory
systems, and many other fundamental physiological and pathological
processes in defined cell types over a range of timescales. Whereas
much is known about GPCR structure–function relationships from
mutants and chimaeras1–3, in vivo application of this knowledge for
optical interventional purposes had not been considered feasible as it
is not generally practical to supply chemical cofactors (in this case
retinoids, to allow opsin function by transduction of the light signal)
to intact mammalian tissues and circuits in vivo. However, recent
work on microbial opsins has revealed that the mammalian brain4

contains sufficient retinoid levels to allow opsin function without
addition of cofactors. Here we capitalize on this knowledge to develop
opsin-receptor chimaeras (the optoXR family) as a new class of in vivo
physiology tools.

To validate this concept in mammals, the intracellular loops of
rhodopsin were replaced with those of specific adrenergic receptors
by first aligning conserved5 residues of the Gq-coupled human a1a-
adrenergic receptor (a1AR; NCBI accession no. NP_000671) and the
Gs-coupled hamster b2-adrenergic receptor (b2AR; NCBI accession
no. CAA27430) with the Gt-coupled bovine rhodopsin (NCBI acces-
sion no. P02699; Fig. 1a,b). We then engineered exchanges of intra-
cellular regions (including carboxy-terminal domains, as in ref. 2) for

each receptor based on structural models2,6 (Fig. 1b) to transfer
G-protein coupling from Gt, and optimized each receptor for in vivo
expression in mammals. Upon activation by varied ligands, the
native receptors can explore multiple ensemble states to recruit
canonical and non-canonical pathways in the recently described phe-
nomenon of ligand-biased signalling7–9. The optoXRs are likely to
select a single active ensemble state upon sensing light in a manner
dependent on biological context7–9.

We constructed genes encoding chimaeras (opto-a1AR and opto-
b2AR) fused to a fluorescent protein. To validate functional optoXR
expression, we imaged [Ca21]i (intracellular calcium concentration)
in HEK cells transfected with opto-a1AR alone (expected to recruit
[Ca21]i via Gq), or with both opto-b2AR (expected to recruit cyclic
AMP via Gs) and the cAMP-gated Ca21 channel CNGA2-C460W/
E583M10. Ratiometric [Ca21]i imaging demonstrated that 60 s of
green light stimulation (504 6 6 nm, 7 mW mm22) was sufficient to
drive prominent [Ca21]i signals downstream of either optoXR but not
in control conditions (Fig. 1c), revealing functional expression. To test
specificity of the signalling controlled by each optoXR, transduced
HEK cells were illuminated with 3 mW mm22 504 6 6 nm light for
60 s and then lysed and analysed for levels of cGMP, cAMP and IP1

(a degradation product of IP3) via immunoassays (Methods). We
observed the canonical pattern expected for opto-b2AR correspond-
ing to its molecular design, as optical stimulation yielded significant
production of cAMP in opto-b2AR-expressing cells (Fig. 2a, top),
comparable to that achieved with pharmacological stimulation of
the wild-type b2AR and without recruitment of IP3 (Fig. 2a, middle),
[Ca21]i (Fig. 1c), or substantial dark activity. In contrast, optical
stimulation yielded significant upregulation of IP3 signalling in
opto-a1AR-expressing cells (Fig. 2a, middle), comparable to levels
induced by pharmacological stimulation of the wild-type a1AR.
Together with the [Ca21]i elevations (Fig. 1c), these data reveal the
pattern expected for Gq recruitment, a pattern not seen in opto-b2AR-
expressing cells (Fig. 2a, top). Optical stimulation of cells expressing
either construct was unable to modulate cGMP levels (Fig. 2a,
bottom), further indicating the signalling specificity of the chimaeric
proteins. Similar assays revealed that the optoXRs retain an action
spectrum close to that of native rhodopsin, are able to integrate signals
over a range of biologically suitable light fluxes (Supplementary Fig.
1a), and can activate non-canonical pathways to a similar extent as
wild-type receptors, as shown for p42/p44-MAPK signalling
(Supplementary Fig. 1b, top).

We next tested optoXR performance in intact neural tissue, to
determine if supplementation of retinal cofactors would be required.
Lentiviral vectors carrying the optoXR fusion genes under control of
the synapsin-I promoter (to target biochemical modulation to local
neurons rather than other potentially Gs/Gq-responsive cellular tissue
elements such as glia and endothelial cells; Fig. 2b, top left) were
stereotactically injected into the nucleus accumbens of adult mice
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(Methods). In contrast to pharmacological or electrical interventions,
this strategy targets biochemical modulation to neurons with soma-
todendritic compartments in accumbens (,95% GABAergic medium
spiny neurons11, without further subtype specificity; Fig. 2b, left) and
excludes fibres of passage or afferent presynaptic terminals as these
lentiviruses do not transduce cells via axons12. Two weeks after trans-
duction, acute coronal slices of accumbens were prepared in artificial
cerebrospinal fluid, optically stimulated for 10 min, and immediately
fixed and stained for Ser 133-phosphorylated CREB (pCREB), a
biochemical integrator of both cAMP and Ca21-coupled signalling
cascades13. Indeed, without supplementation of exogenous retinoids,
we observed significantly elevated pCREB in the optoXR-expressing
populations (Fig. 2b, right, Supplementary Table 1) and not in non-
illuminated tissue (Supplementary Fig. 1b, bottom).

We also determined the functional consequences of optoXR activa-
tion on accumbens local electrical activity by recording multiunit in vivo
neuronal firing with an optrode12 targeted to transduced accumbens
(Fig. 3a). No significant differences in baseline firing rates were observed
in the dark with either construct (Fig. 3a, bottom right; Supplementary
Table 2; Supplementary Fig. 2a). Interestingly, optical stimulation
resulted in decreased network firing in opto-b2AR-expressing
accumbens (left trace in Fig. 3b illustrates effect kinetics; summary data
shown in Fig. 3c and d respectively; raw data and description of calcula-
tions in Supplementary Table 3 and Supplementary Fig. 2b), in agree-
ment with previous pharmacological studies targeting Gs (ref. 14). In
contrast, optical stimulation increased firing in opto-a1AR-expressing
accumbens (Fig. 3b right; Fig. 3c, d). Spike frequency histograms
showed that the kinetics of optoXR effects on firing rates was consistent
with biochemical rather than electrical initiation of the signal (Fig. 3d,
Supplementary Fig. 2). These electrophysiological data, in combination
with the earlier biochemical validations, support the conclusion that
optoXRs can be functionally expressed in vivo, to permit differential
photoactivatable control of intracellular cascades and to modulate net-
work physiology.

We next took an optogenetic approach to assess the ability of
precisely timed optoXR stimulation to modulate behaviour15 in freely
moving mice. Portable solid-state light delivery was combined with
transgenic expression of optoXRs to optically control intracellular
signalling within accumbens neurons in the temporally precise manner
required for operant behaviour (Fig. 4a)4,12. Confocal analysis revealed
expression to be limited to local accumbens neurons; in particular no
labelling was observed in afferent fibres, in distant regions projecting to
accumbens, in glia, or in surrounding regions (Supplementary Fig. 3).
We targeted optical stimulation to transduced accumbens as part of a
three-day operant conditioned place preference assay (Fig. 4a,
Supplementary Fig. 3; Methods). On each day of the experimental test,
animals were allowed to freely explore the place preference apparatus
(Fig. 4a, bottom). On day 1, animals freely explored the apparatus
without optical stimulation. On day 2, whenever the animal freely
entered the designated conditioned chamber, a laser-diode-coupled
optical fibre registered to the transduced region delivered light pulses
at 10 Hz to approximate the likely intensity of monoaminergic input
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Figure 1 | OptoXR: optogenetic control of intracellular signal transduction.
a, OptoXR design; DAG, diacylglycerol. b, Primary structure alignment of
wild-type GPCRs (Rhodopsin (rhod), b2AR, a1AR) and optoXRs (opto-
b2AR, opto-a1AR); grey, highly conserved residues; green, swapped
intracellular domains (IL, intracellular loop; Ct, C terminus; TM,
transmembrane domains). c, Fura-2 Ca21 imaging. Mean 6 s.e.m. (shading)
traces of HEK cells transfected with opto-a1AR alone (red; 92 cells over 3
coverslips); opto-b2AR cotransfected with cAMP-gated calcium channel
(CNGA2-C460W/E583M; blue; 120 cells over 3 coverslips); opto-b2AR alone
(light grey; 26 cells over 2 coverslips); mCherry cotransfected with CNGA2
(dark grey; 40 cells over 2 coverslips) during 60 s of 500 nm light (green bar;
7 mW mm22) following 30 s baseline. (Two-tailed Student’s t-test of signals
at end of light stimulation versus baseline; n.s., P . 0.05; ***P , 0.001.)
Inset, pseudocolour images of fura-2 ratio before (left; ‘no stim.’ at 0 s) and
after (right; ‘stim.’ at 150 s) stimulation. dR, fractional change in 340/380
fluorescence excitation ratio. Scale bar, 100mm.
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during strong reward16,17. Path tracing revealed that the flexible optical-
fibre approach allowed full and unimpeded exploration of all chambers
(Fig. 4a, bottom). On day 3, animals again freely explored the
apparatus without optical stimulation, and the time spent in the
conditioned chamber was quantified by two independent, blinded
scorers. Notably, animals expressing opto-a1AR showed a robust
increase in preference for the conditioned side of the apparatus follow-
ing optical stimulation (Fig. 4b, Supplementary Table 4). This effect of
temporally precise biochemical modulation was reproducible across
two separate cohorts of opto-a1AR animals (n 5 5–6, P , 0.05,
Student’s t-test for each cohort for time in conditioned chamber;
n 5 11, P , 0.01 for the total population), whereas the other opsin
genes, opto-b2AR and ChR2, appeared less effective in driving
preference (Fig. 4, Supplementary Fig. 4; Supplementary Table 4).

The effect of opto-a1AR stimulation in accumbens neurons was
specific to reward-related behaviour and did not extend to direct
modulation of anxiety-related behaviours or locomotor activity, as
identical optical stimulation delivered to a cohort of the same animals
in an open field test (Methods) revealed no significant effect on dis-
tance travelled or preference for wall proximity (Fig. 4c;
Supplementary Fig. 4c).

Previously, microbial opsin optogenetics has been developed and
applied to achieve fast, cell-type-targeted optical control of membrane
voltage in neurons. Beyond membrane voltage, biochemical modu-
lation of cell populations may also contribute to the internal
representations of behaviourally relevant brain states, both in
excitable and in non-excitable cells. The results presented here demon-
strate optogenetic control of intracellular signalling that is temporally
precise, operates in vivo within behaving mammals, displays extremely
low dark activity, and recruits the complex fabric of multiple signalling
molecules downstream of native receptors, thereby unifying in a single
technology many of the individual positive aspects of other
approaches18–24. A similar approach could be used to probe directly
the causal significance of seven-transmembrane-dependent signalling
pathways triggered by other modulators, including myriad neuro-
transmitters and endocrine hormones3. Indeed, the optoXR approach
could be extended beyond excitable cells to probe causal significance
of temporally precise biochemical signalling in diverse non-excitable
tissues, capitalizing upon the versatile integration of fibre-optic depth
targeting with optogenetically targeted photosensitivity.
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As noted above, it will be important to carefully consider the
phenomenon of ligand-biased signalling8,9, wherein varied ligands can
stabilize ensemble receptor conformational states and thereby bias the
intracellular action of the receptor in coupling to alternative transduc-
tion cascades. The optoXRs can indeed induce these alternative cascades
to similar levels as with pharmacological manipulation (for example,
opto-b2AR can induce similar changes in MAPK activation compared
with native ligand acting on the wild-typeb2AR; Supplementary Fig. 1b,
top); however, individual optoXRs may not always be found to permit
control of all of the conformational states that contribute to ligand-
biased signalling. Retinal-based tools do provide unique advantages,
including the presence of the endogenous chromophore in mammalian
tissues, and the fact that these retinal-based tools display extremely low
activity in the dark3,25. Optogenetics therefore can take the form of
diverse effectors linked to fast, single-component retinal-binding
modules, capitalizing on the temporal precision of optics.

In summary, the optoXR method complements microbial opsin
strategies, providing another dimension of fast, targetable cellular
control operative in behaving mammals. In the future, wavelength-
shifted versions of the optoXRs, based on known opsin genes with
different action spectra, may provide still further possibilities for
separable channels of biochemical and electrical control. Together,
these technologies could be integrated with fast circuit readout tech-
nologies for increasingly sophisticated interrogation and reverse-
engineering of neural circuitry, both in normal operation and in
disease states26–30.

METHODS SUMMARY
In vivo recording and analysis. Optrodes consisting of a multi-mode optical

fibre 200mm in diameter (Thorlabs) coupled to a recording electrode (1 MV
tungsten, A-M Systems) with an electrode/fibre tip-to-tip distance of 200–

400mm were lowered into the transduced accumbens (electrode tip 4.8–

5.2 mm below bregma) of mice placed in a stereotactic frame (David Kopf

Instruments) and anaesthetized under isoflurane. Light from a 473 nm diode

laser (CrystaLaser) was delivered through the fibre. Electrical signals were band-

pass filtered and amplified (0.3–1 kHz, 1800 Microelectrode AC Amplifier, A-M

Systems) and analysed with pClamp 10.0 (Molecular Devices). Spikes were

detected by threshold and individually confirmed by inspection.

Behavioural analysis. Optical stimulation was applied through an optical fibre

(200mm diameter, Thor Labs) coupled to a 473 nm blue diode laser

(CrystaLaser) and registered with a cannula targeting accumbens (0–100mm

from tip). Light was delivered with 50 ms pulse width for optoXRs via a function

generator (Agilent 33220A). Place preference was conducted in a standard

apparatus (SD Instruments) with walls between chambers removed to permit

free exploration. Data were analysed from video for amount of time spent in each

chamber by two independent, blinded observers using a custom tallying script

run in MATLAB (Mathworks). For open field tests, animals were placed in a

square open field measuring 40 3 40 cm; light stimulation was delivered with the

same parameters as for place preference experiments. Videos were analysed using

automated software (Viewpoint), for total time and distance in the central

15 3 15 cm square versus the outer annulus (remainder of the field).

Statistical analysis. Where indicated, two-tailed Student’s t-tests (calculated in

Microsoft Excel) or one-way ANOVA with Tukey post-hoc tests (GraphPad

Prism) were used. All summary bar graphs are presented as mean 6 s.e.m., with

significance denoted as follows: *P , 0.05, **P , 0.01, ***P , 0.001.
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