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Temporally precise inhibition of distinct cell types in the intact nervous system has been enabled by
the microbial halorhodopsin NpHR, a fast light-activated electrogenic Cl2 pump. While neurons can be
optically hyperpolarized and inhibited from firing action potentials at moderate NpHR expression
levels, we have encountered challenges with pushing expression to extremely high levels, including
apparent intracellular accumulations. We therefore sought to molecularly engineer NpHR to achieve
strong expression without these cellular side effects. We found that high expression correlated with
endoplasmic reticulum (ER) accumulation, and that under these conditions NpHR colocalized with ER
proteins containing the KDEL ER retention sequence. We screened a number of different putative
modulators of membrane trafficking and identified a combination of two motifs, an N-terminal signal
peptide and a C-terminal ER export sequence, that markedly promoted membrane localization and ER
export defined by confocal microscopy and whole-cell patch clamp. The modified NpHR displayed
increased peak photocurrent in the absence of aggregations or toxicity, and potent optical inhibition
was observed not only in vitro but also in vivo with thalamic single-unit recording. The new enhanced
NpHR (eNpHR) allows safe, high-level expression in mammalian neurons, without toxicity and with
augmented inhibitory function, in vitro and in vivo.

Introduction

A subset of naturally-occurring microbial opsin
genes, originally characterized in non-neural sys-
tems, encode light-sensitive transmembrane ion
conductance regulators (e.g., Hegemann et al.,
1985; Kalaidzidis et al., 1998; Nagel et al., 2003;
Zhang et al., 2008). If successfully adapted as a
neuroscience technology, these proteins could be
enormously significant, since controlling the mem-
brane potential of targeted cell types with high
temporal resolution may allow elucidation of cellular

codes underlying neural circuit computation and
behavior. Three functionally distinct classes of these
microbial opsin genes have now been introduced to
and adapted for neurobiology (VChR1, NpHR, and
ChR2; discussed below). Among other important
properties, all three operate on the millisecond
timescale and can function in mammalian neurons
without addition of exogenous chemical cofactors,
since the chromophore for these proteins, all-trans
retinal, appears to be already present at sufficient
levels in mammalian brains (Zhang et al., 2006).
Moreover, light and gene delivery challenges have
been overcome, as integrated genetic, fiberoptic,
and solid-state optical approaches have provided
complementary technology to allow specific cell
types, deep within the brain, to be controlled in freely
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behaving mammals (Adamantidis et al., 2007;
Aravanis et al., 2007; Gradinaru et al., 2007).

First to be brought to neuroscience, the chan-
nelrhodopsin ChR2 allows blue light-induced action
potentials to be triggered with millisecond-precision
in neurons (Boyden et al., 2005), due to depolariz-
ing cation flux through a light-gated pore (Nagel
et al., 2003); this approach has since been shown to
be versatile in many experimental systems (Li et al.,
2005; Nagel et al., 2005; Bi et al., 2006; Deisseroth
et al., 2006; Ishizuka et al., 2006; Schroll et al.,
2006; Zhang et al., 2006; Airan et al., 2007;
Aravanis et al., 2007; Gradinaru et al., 2007; Hwang
et al., 2007; Petreanu et al., 2007; Zhang and
Oertner, 2007; Zhang et al., 2007a, b; Huber et al.,
2008), including generation of transgenic mouse
lines (Arenkiel et al., 2007; Wang et al., 2007) and
probing neural codes underlying complex behav-
ioral state transitions important in neuropsychiatric
disease (Adamantidis et al., 2007). Second, we
found that neurons targeted to express the light-
activated chloride pumping halorhodopsin from
Natronomonas pharaonis (NpHR) can be hyperpo-
larized and inhibited from firing action potentials
when exposed to yellow light (Zhang et al., 2007a);
because of the excitation wavelength difference,
ChR2 and NpHR can be coexpressed for bidirec-
tional control and integrated with imaging and
behavior (Gradinaru et al., 2007; Han and Boyden,
2007; Zhang et al., 2007a) even in intact tissue and
behaving animals (Zhang et al., 2007a), and may
turn out to be versatile across a range of in vitro and
in vivo applications (reviewed in Gradinaru et al.,
2007; Zhang et al., 2007b). Third, a yellow light-
activated channelrhodopsin gene was discovered
and tested in mammalian neurons (VChR1; Zhang
et al., 2008) that opens the door to combinatorial
excitation experiments when used together with
ChR2, described below. The properties of this third
microbial tool also allow for deep penetration of
redshifted excitation light, use of well-tolerated low-
energy photons for excitation, and improved inte-
gration with existing Ca2+ indicators.

Technical challenges still remain, including
refining optical and cell type-specific targeting
strategies, as well as tuning activation wavelengths
and ion permeabilities for different classes of
experiments. One major challenge in adapting
tools across large evolutionary distances (e.g., to
mammals from prokaryotes and simple eukaryotes
such as Volvox carteri, Natronomonas pharaonis,
and Chlamydomonas reinhardtii) is that expressing

heterologous membrane proteins in mammalian
cells can lead to poor folding, assembly, and
trafficking. We have previously reported that at
high expression levels, NpHR (codon optimized for
mammalian expression) forms aggregates that
could cause cellular toxicity (Gradinaru et al.,
2007), and noted that this problem could be
alleviated by returning to moderate expression
levels, but this was not an ideal solution because
large photocurrents are useful for efficient inhibition
in a variety of experiments, especially for in vivo
applications. Therefore, we report here on a strat-
egy to increase the efficiency of NpHR membrane
targeting to maximize photocurrents without aggre-
gations or toxicity, even for high expression levels
under strong promoters, in vitro and in vivo.

Results

In order to reduce the incidence of intracellular
aggregates observed with NpHR at high expres-
sion levels, we first attempted to regulate distribu-
tion of the NpHR protein within the cell by using
signal peptides from either ChR2 (Nagel et al.,
2003) or the a and b subunits of the nicotinic
acetylcholine receptor (nAChR; Isenberg and
Meyer, 1989; Bocquet et al., 2007), PDZ binding
motifs (Zito et al., 1999; Weick et al., 2003;
Guerrero et al., 2005), and actin binding motifs
(Petrecca et al., 2000) (Fig. 1A). Although for most
of the NpHR variants this strategy considerably
reduced the number of cells with aggregates while
maintaining photocurrents (Fig. 1B, C), aggregates
were still observed and when present were as large
as with wild-type NpHR. Next, after extensive
analysis of the formation, distribution, and evolution
of the NpHR aggregates in cultured neurons (data
not shown) we observed that the localization of the
aggregates appeared similar to ER localization in
the soma and dendrites. Indeed, immunocyto-
chemistry confirmed that NpHR aggregates colo-
calized with proteins containing the KDEL signal for
ER retention (Fig. 2B, top row), while NpHR itself
does not contain a KDEL motif or other known ER
retention signals (e.g., the KKAA- or RSRR-class
signals).

Transport along the secretory pathway, with
ER export being the first step in the pathway, is
crucial for surface expression of integral membrane
proteins. Although some proteins can exit the ER
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by bulk flow, ER export of membrane proteins can
be impaired if the protein is either misfolded or
lacks specific export signals (Li et al., 2000;
Ellgaard and Helenius, 2003). Because NpHR is
functional in mammalian neurons even in vivo
(Zhang et al., 2007a) we hypothesized that aggre-
gate formation might be due to lack of an ER export
signal rather than frank misfolding, and therefore
sought to determine if adding different ER export
signals to the NpHR sequence would abolish
aggregate formation. C-terminal ER export signals
have been shown to be important for efficient
processing and surface expression of many mem-
brane proteins (Farhan et al., 2008). Additionally,
previous work has found that when the C-terminal
ER export signals on Kv1.4 (VXXSL) or Kir2.1
(FCYENEV) are either mutated or deleted, the

resulting protein forms large spheroidal intracellular
accumulations similar to NpHR aggregates, and
corresponding channel activity is reduced due to
lower protein levels in the plasma membrane
(Levitan and Takimoto, 2000; Ma et al., 2001;
Stockklausner et al., 2001). Moreover, suggesting
that functionality can be transferred solely with
these motifs, the FCYENEV sequence accelerated
surface expression and increased current levels for
the lobster shal potassium channel (Kv4) when
added to the C-terminus (Zhang andHarris-Warrick,
2004). Indeed, in the course of our modification
screen we found that adding FCYENEV to the
NpHR C-terminus along with the signal peptide
from the b subunit of the nAChR to the NpHR
N-terminus prevented aggregate formation
(Fig. 1B, asterisk), with such markedly improved

Fig. 1. Protein aggregation and photocurrents altered by changes in intracellular targeting of NpHR. (A) Table of screened intracellular

targeting strategies usingN- andC-terminal peptides fused toNpHR. (B) The fraction of neurons containing one ormoreNpHRaggregateswas

determined in cultured hippocampal neurons transducedwith quantitatively titer-matched viral CaMKIIa::NpHR-EYFP constructs, and allowed

to express for 10 days. Compared to the unmodified NpHR (orange), some constructs (gray) had little effect on aggregates while others (blue)

partially reduced aggregate incidence. Notably, for one construct (*) aggregates and toxicity were virtually abolished (only a single possible

aggregate observed in >400 neurons). Data shown are relative to wild-type NpHR, and the number of neurons sampled for each construct is

shown in parenthesis after the construct label. (C) Functionality was assessed by whole-cell patch clamp (for details see ‘‘Methods’’ and

Fig. 3B). All the constructs were functional as indicated by photocurrents that were comparable to the original NpHR, but one construct, the

optimal construct from (B) (*), gave rise to significantly higher photocurrent per cell than all other variants (eNpHR). Data shown are relative to

wild-type NpHR, and the number of neurons sampled for each construct is shown in parenthesis after the construct label.
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properties that we named the resulting tool eNpHR
(enhanced NpHR; Fig. 2A) and studied its behavior
further (summarized in Figs. 2–4).

First, we found that in contrast to NpHR,
eNpHR did not colocalize with ER proteins
(Fig. 2B), or show evidence of toxicity even at high
expression levels. eNpHR appeared to be present
in somatic Golgi structures, typical for transmem-
brane proteins as they are packaged for transport
(Ma et al., 2001; Horton and Ehlers, 2003; Hofherr
et al., 2005). Notably, eNpHR showed more surface
membrane localization as defined by whole-cell
photocurrents (Fig. 3). Indeed, presumably due to

increased export from the ER and increased mem-
brane localization, eNpHR displayed significantly
higher photocurrents compared to NpHR in cultured
neurons infected with quantitatively titer-matched
virus levels and allowed to express for the same
amount of time (Fig. 3: NpHR: 38.9 ± 6.8 pA;
eNpHR 68.1 ± 7.2 pA; mean ± SEM; unpaired
t-test P = 0.008), while membrane resistance was
indistinguishable in the two groups (NpHR: 113.5 ±
13.9 mX; eNpHR: 116.8 ± 13.9 mX; unpaired t-test
P = 0.87).

To assess eNpHR function in the setting of
high in vivo expression levels, we injected highly

Fig. 2. Intracellular targeting of eNpHR. (A) Primary structure of the selected construct (eNpHR) showing addition of the N-terminal signal

peptide derived from nAChR and the C-terminal ER export signal derived from Kir2.1. Expression here was driven by the CaMKIIa promoter

and visualized by fusion to EYFP. (B) Top row: Untargeted NpHR (green) colocalized with somatic ER (KDEL ER protein staining in red;

overlap indicated in yellow and by arrows) and also notably aggregated in ER-rich regions of the dendrites (overlap indicated in yellow and

by arrowheads). Bottom row: Little colocalization of eNpHR with somatic ER staining could be found, and indeed pronounced accumulations

of ER staining in eNpHR dendrites were not observed. Right column: representative images of neuronal populations expressing NpHR and

eNpHR. The neurons were infected with quantitatively titer-matched CaMKIIa-NpHR-EYFP or CaMKIIa-eNpHR-EYFP.
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concentrated and quantitatively titer-matched virus
for both NpHR and eNpHR under the strong
CaMKIIa promoter into the CA1 region of adult
mouse hippocampus. While NpHR showed aggre-
gates after 10 days of expression in vivo, eNpHR
did not show any aggregates or affect cellular
integrity, confirming the tolerability and improved
targeting of the engineered protein even at these
very high expression levels (Fig. 4A, top row);
enhanced membrane localization of eNpHR in vivo
was also evident in dendrites (Fig. 4A, bottom row).
To confirm functionality, we conducted in vivo
recordings using a combined optical fiber/electrode
‘‘optrode’’ previously described (Gradinaru et al.,
2007), and found that activity of single units in
adult mouse thalamus expressing eNpHR (Fig. 4B,

confocal image) could be readily and reversibly
inhibited with yellow light (Fig. 4B, middle) in vivo;
no such effect was seen in non-transduced tissue
(Fig. 4B, bottom).

Discussion

In this study we have identified and corrected a
major limiting factor in the application of optoge-
netic inhibition (complementary results have
been obtained with our colleagues at Duke Univer-
sity; Zhao et al., 2008). We traced the problem
associated with high NpHR expression back to a
membrane trafficking complication (Figs. 1 and 2),

Fig. 3. Summary of eNpHR functional properties. Summary of electrophysiological properties of NpHR and eNpHR in cultured hippocampal

neurons. Top: Representative confocal images in cultured hippocampal neurons revealed that like a typical membrane protein, eNpHR did

not appear to fill cytoplasm like NpHR (left) (right). NpHR and eNpHR were expressed for 10 days in cultured hippocampal neurons. Insets:

magnified views of selected regions. Bottom: 593 nm light (yellow bar) induced outward photocurrents (top right: sample traces in voltage

clamp), with eNpHR evoking significantly stronger photocurrents per cell than NpHR (left bar graph; NpHR: 38.9 ± 6.8 pA; eNpHR: 68.1 ±

7.2 pA; unpaired t-test P = 0.008). Viral titers were quantitatively matched across groups (see ‘‘Methods’’). Membrane input resistance was

similar for all neurons patched (right bar graph; NpHR: 113.5 ± 13.9 mX; eNpHR: 116.8 ± 13.9 mX; unpaired t-test P = 0.87). Values

plotted are mean ± SEM; n = 12 for NpHR, n = 10 for eNpHR. Bottom right: Illumination with yellow light as expected sufficed to inhibit

spiking induced by current injection in eNpHR+ neurons.
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tested a large number of possible solutions (Fig. 1),
and validated the efficacy of the best strategy both
in vitro (Figs. 1–3) and in vivo (Fig. 4). We found
that eNpHR completely abolished accumulations
seen at very high expression levels with the original
NpHR, apparently in part by allowing normal export

of NpHR from the ER (assessed by confocal
imaging) andbydriving increasedsurfacemembrane
expression (validatedbyquantifiedphotocurrents).At
this point we recommend use of eNpHR for all
applications, and certainly those involving high
expression levels in mammalian neurons, including

Fig. 4. In vivo function of eNpHR at high expression level. (A) Confocal images showing NpHR and eNpHR expression in rodent

hippocampal CA1. NpHR aggregations were clearly visualized after 10 days of strong expression of high titer virus (left) while eNpHR

showed no signs of aggregates or toxicity (right) with quantitatively matched viral titers (see ‘‘Methods’’). Lower panels: magnified views of

the dendritic layer. Compared to NpHR, eNpHR revealed not only absence of aggregates but also more membrane localization in distal

processes in vivo. (B) Simultaneous optical stimulation and electrophysiology in living mice demonstrates eNpHR potency in vivo: single unit

recordings in deep brain structures. Yellow illumination delivered by the optrode method (Gradinaru et al., 2007) in vivo inhibited electrical

activity in thalamus previously transduced with eNpHR by lentiviral stereotactic injection (middle trace). Top trace: same thalamic region,

recording without illumination. Bottom trace: control recording 1 mm ventral and anterior from the eNpHR injection site. As expected, in non-

transduced tissue, light did not inhibit recorded spikes. Confocal image: eNpHR expression in the thalamus (same animal). Inset: expanded

view of a spike from unit (*) represented in the top trace.

Gradinaru et al. eNpHR: a Natronomonas halorhodopsin

134



transgenic mouse line generation (Zhao et al., 2008)
andviral transductionapproaches.Wealsoanticipate
that these modifications may enhance the expres-
sion of other microbial opsins at high levels and
over long durations, pointing to the likely utility of
generating similarly enhanced versions of ChR2
and VChR1.

The altered properties of eNpHR as described
here clearly do not simply represent a subtle
quantitative change in performance, but rather a
distinct step in the development of this optogenetic
technology. Future improvements could incremen-
tally further advance eNpHR function, perhaps
including the Golgi export signals from Kir2.1
(Stockklausner and Klocker, 2003; Hofherr et al.,
2005), subcellular localization motifs (as in Gradi-
naru et al., 2007), and mutations that shift wave-
length dependence, kinetics, light sensitivity, and
ion selectivity. For example, blueshifting ChR2
and redshifting eNpHR and VChR1 will improve
the ease with which combinatorial experiments are
conducted, and a roadmap for the key residues
likely to be involved and the type of changes likely
to be helpful in this regard has been described
(Zhang et al., 2008).

Finally, it has been noted (Zhang et al., 2008)
that VChR1 and ChR2 (representing yellow light
excitation and blue light excitation, respectively)
when used together will allow combinatorial tests of
the importance of specific activity patterns in
interacting cell types. For example, a principal cell
population can be recruited with VChR1/yellow
light, in the presence or absence of precisely
patterned activity in a candidate modulatory cell
type driven by added blue light/ChR2. Combinato-
rial experiments are important to consider now for
eNpHR as well, given its improved functionality in
vitro and in vivo. For example, coexpression of
eNpHR and ChR2 in the same cell type could allow
testing the necessity and sufficiency of that specific
cell type in neural circuit or animal behavior.
Moreover, epistatic relationships among different
cell groups within a neuronal network could be
probed by expressing eNpHR and ChR2 in different
cell types and determining if the functional signif-
icance of cell population A excitation is expressed
through or ‘‘read out’’ via a candidate downstream
cell population B; this hypothesis could be tested
by reversibly inhibiting cell population B (yellow
light/eNpHR) in the presence of population A
activation (blue light/ChR2). In this way the causal
neural codes underlying circuit computation and

behavior may be slowly assembled, moving toward
the long term goal of understanding how neural
system properties emerge from component dynam-
ics, both in health and disease.

Methods

DNA constructs
All NpHR variants were produced by PCR amplifi-
cation of the NpHR-EYFP construct previously
published (Zhang et al., 2007a) and cloned in-frame
into the AgeI and EcoRI restriction sites of a
lentivirus carrying the CaMKIIa promoter according
to standard molecular biology protocols. All con-
structswere fully sequenced to check for accuracy of
the cloning procedure. The map for eNpHR is
available online at www.optogenetics.org.

Lentivirus preparation and titering
Lentiviruses for cultured neuron infection and for
in vivo injection were produced as previously
described (Zhang et al., 2007a). Viral titering was
performed in HEK293 cells that were grown in
24-well plates and inoculated with 5-fold serial
dilutions in the presence of polybrene (8 lg/ll).
After 4 days, cultures were resuspended in PBS
and sorted for EYFP fluorescence on a FACScan
flow cytometer (collecting 20,000 events per sam-
ple) followed by analysis using FlowJo software
(Ashland, OR). The titer of the virus was deter-
mined as follows: [(% of infected cells) 9 (total
number of cells in well) 9 (dilution factor)]/(volume
of inoculum added to cells) = infectious units/ml.
The titer of viruses for culture infection was 105 i.u./ml.
The titer of concentrated virus for in vivo injection
was 1010 i.u./ml.

Hippocampal cultures
Primary cultured hippocampal neurons were pre-
pared from P0 Spague-Dawley rat pups. The CA1
and CA3 regions were isolated, digested with 0.4
mg/ml papain (Worthington, Lakewood, NJ), and
plated onto glass coverslips precoated with 1:30
Matrigel (Beckton Dickinson Labware, Bedford,
MA) at a density of 65,000/cm2. Cultures were
maintained in a 5% CO2 humid incubator with
Neurobasal-A media (Invitrogen Carlsbad, CA)
containing 1.25% FBS (Hyclone, Logan, UT), 4%
B-27 supplement (Gibco, Grand Island, NY), 2 mM
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Glutamax (Gibco), and FUDR (2 mg/ml, Sigma, St.
Louis, MO).

In vitro electrophysiology
Hippocampal cultures grown on coverslips were
transduced at 4 div with titer-matched viruses for all
CaMKIIa-NpHR-EYFP constructs (final dilution 104

i.u./ml in neuronal growth media) and allowed to
express for 10 days. Whole-cell patch clamp
recordings were performed as previously described
(Gradinaru et al., 2007) (intracellular solution: 129
mM K-gluconate, 10 mM HEPES, 10 mM KCl, 4
mM MgATP, 0.3 mM Na3GTP, titrated to pH 7.2;
extracellular solution, tyrode: 125 mM NaCl, 2 mM
KCl, 3 mM CaCl2, 1 mM MgCl2, 30 mM glucose,
and 25 mM HEPES, titrated to pH 7.3). Light
(7 mW/mm2) was delivered from a 300 W DG-4
lamp (Sutter Instruments, Novato, CA) through a
593 nm ± 20 nm filter (Semrock, Rochester, NY)
and a 20X/0.45NA air objective (Olympus, Center
Valley, PA).

Immunostaining and aggregate count
Primary hippocampal cultures grown on coverslips
were infected at 4 div with titer matched virus (final
dilution 104 i.u./ml in neuronal growth media). At 14
div cultures were fixed for 30 min with ice-cold 4%
paraformaldehyde and then permeabilized for 30
min with 0.4% saponin in 2% normal donkey serum
(NDS). Primary antibody incubations were per-
formed overnight at 4�C using a monoclonal
marker of endoplasmic reticulum recognizing
endogenous ER-resident proteins containing the
KDEL retention signal (KDEL 1:200, Abcam, Cam-
bridge, MA). For detection we used Cy3-conju-
gated secondary antibodies (Jackson Laboratories,
West Grove, PA) in 2% NDS for 1 h at room
temperature. Close-up images of neurons were
taken on a Leica confocal microscope using a 63X/
1.4NA oil objective. The percentage of cells with
aggregates was estimated by an unbiased count
over multiple fields and coverslips.

Stereotactic injection into the rodent brain
Adult C57BL/6 mice were housed according to the
Laboratory Vertebrate Animal protocols at Stanford.
All surgeries were performed under aseptic condi-
tions. The animals were anesthetized with intra-
peritoneal injections of ketamine (80 mg/kg)/
xylazine (15–20 mg/kg) cocktail (Sigma). The
head was shaved, cleaned with 70% ethanol and

betadine and then placed in a stereotactic appara-
tus (Kopf Instruments, Tujunga, CA; Olympus
stereomicroscope). Ophthalmic ointment was ap-
plied to prevent eye drying. A midline scalp incision
was made and then a small craniotomy was
performed using a drill mounted on the stereotactic
apparatus (Fine Science Tools, Foster City, CA).
The virus was delivered using a 10 ll syringe and a
thin 34 gauge metal needle; the injection volume
and flow rate (1 ll at 0.1 ll/min) was controlled with
an injection pump fromWorld Precision Instruments
(Sarasota, FL). After injection the needle was left in
place for 10 additional minutes and then slowly
withdrawn. The skin was glued back with Vetbond
tissue adhesive. The animal was kept on a heating
pad until it recovered from anesthetic. Buprenor-
phine (0.03 mg/kg) was given subcutaneously
following the surgical procedure to minimize dis-
comfort. For hippocampal slice imaging: 1 ll of
concentrated lentivirus (1010 i.u./ml) carrying NpHR
or eNpHR under the CaMKIIa promoter was micro-
injected into the CA1 region of the left and right adult
mouse hippocampus, respectively (anteroposterior,
-2.0 mm from bregma; lateral, ±1.5 mm; ventral, 2
mm). For in vivo electrophysiology: 1 ll of eNpHR
(1010 i.u./ml) virus was injected in the adult mouse
thalamus (anteroposterior -1.8, mm from bregma;
lateral, 1.5 mm; ventral, 3.5 mm).

Slice preparation and confocal imaging
For preparation of brain slices, mice were sacri-
ficed 10 days after viral injection. Acute coronal
brain slices (250 lm) were prepared in ice-cold
cutting solution (64 mM NaCl, 25 mM NaHCO3, 10
mM glucose, 120 mM sucrose, 2.5 mM KCl, 1.25
mM NaH2PO4, 0.5 mM CaCl2, 7 mM MgCl2, and
equilibrated with 95% O2/5% CO2) using a vibra-
tome (VT1000S, Leica). The slices were then fixed
for 1 h in 4% paraformaldehyde, washed with PBS,
and mounted on microscope slides. Single confocal
optical sections through the CA1 region or thala-
mus were acquired using a 40X/1.4NA oil objective
on a Leica confocal microscope.

In vivo multiunit recordings
Simultaneous optical stimulation and electrical
recording in living mice was done as described
previously (Gradinaru et al., 2007) using an optrode
composed of an extracellular tungsten electrode
(1 MX, ~125 lm) tightly attached to an optical fiber
(~200 lm, ThorLabs, Newton, NJ) with the tip of the
electrode deeper (~0.3 mm) than the tip of the fiber,
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to ensure illumination of the recorded neurons. The
fiberoptic was coupled to a 561 nm laser diode from
CrystaLaser (Reno,NV).Single unit recordingswere
done in animals anesthetized with intraperitoneal
injections of ketamine (80 mg/kg)/xylazine (15–20
mg/kg) cocktail (Sigma). pClamp 10 and a Digidata
1322A board (Axon Instruments, Sunnyvale, CA)
were used to both collect data and generate light
pulses through the fiber. The recorded signal was
band pass filtered at 300 Hz low/5 kHz high (1800
Microelectrode AC Amplifier, A-M Systems). For
precise placement of the fiber/electrode pair, ste-
reotactic instrumentation (Kopf; Olympus stereomi-
croscope) was used. Immediately after recordings
the animal was sacrificed and brain slices were
prepared as described above to check for opsin
expression and accurate placement of the optrode.
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