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In large clonally evolving populations, lineages harbouring ben-
eficial ‘driver’ mutations expand, compete with one another and 
acquire further beneficial mutations, shaping genetic diversity1–3. 

Recent studies employing deep genomic sequencing have shown 
that large laboratory4–6 and clinical7–13 cell populations harbour 
high levels of genetic diversity that change through time. In dis-
ease-relevant scenarios, such as cancer7–11 and within-host micro-
bial dynamics13, the timescale over which diversity builds up is 
often short, such that dominant clones only accumulate a handful 
of driver mutations. When the supply of driver mutations is low, 
evolution is characterized by successive selective sweeps, wherein 
a single adaptive lineage periodically purges genetic diversity14,15. 
However, when the supply of driver mutations is high, evolution 
is characterized by clonal interference, with multiple adaptive lin-
eages expanding and competing through time5,16–19. In the clonal-
interference regime, mutations often rise and fall together in coho
rts5,11,20,21. However, due to a limited ability to detect low-frequency 
mutations via genomic sequencing, it remains unclear what con-
trols diversity changes through time in this regime, whether large  
purges of diversity might also occur as happens with a selective 
sweep and whether these diversity crashes are predictable across 
replicates and environments22.

Results
To address these questions, we introduced ~500,000 unique DNA 
barcodes into S. cerevisiae23 and evolved populations of ~5 ×​ 108 
cells in triplicate under two well-mixed environments: carbon 
limitation (C-lim) and nitrogen limitation (N-lim). Lineages were 
tracked by barcode sequencing approximately every 8–24 gen-
erations and those harbouring adaptive mutations were identified 
by deviation from a neutral expectation23. Tracking all adaptive 
lineages reveals the changing levels of adaptive lineage diversity  
(Fig. 1). Initially, adaptive diversity expands, driven by thousands of 

independent mutations. This expansion is quantitatively different 
between environments; in N-lim, the expansion is slower and fewer 
lineages reach high frequencies. Later, however, similarities between 
environments emerge: a handful of lineages dominate the popula-
tion, causing a crash in adaptive lineage diversity.

The distribution of fitness effects shapes early adaptive genetic 
diversity in a predictable way. We suspected that differences in lin-
eage diversity dynamics between environments could be attributed, 
in part, to differences in the mutational distribution of fitnesses 
effects (mDFE), defined as the distribution of mutation rates over 
fitness effects for single beneficial mutations arising on the ances-
tor. We have shown that high-resolution lineage tracking over short 
times can be used to infer the mDFE23. In C-lim, the mDFE results 
in approximately 104 beneficial mutations with fitness effects, s , 
greater than 3% entering over the first approximately 100 genera-
tions. This initially produces a quasi-deterministic expansion in 
diversity because the low fitness-effect beneficial mutations that 
dominate early occur at high rates. Later, the diversity expansion 
becomes more stochastic because the high fitness-effect beneficial 
mutations that dominate occur at lower rates. To test whether these 
features generalize to other environments, we inferred the mDFE 
for N-lim (Supplementary Information: Section 1). We find that the 
shape of the mDFE in N-lim is qualitatively different from C-lim 
(Fig. 2): the rates of mutation to higher fitness effects (s >​ 5%) are 
approximately three-fold lower in N-lim and fall off rapidly, with no 
detectable fitness effects above 8%. With time, the lineage dynam-
ics become exponentially more sensitive to these differences at the 
higher fitness effects (expanded region Fig. 2 and Supplementary 
Information: Section 2). In C-lim, these mutations establish (escap-
ing stochastic loss), expand and compete over shorter timescales 
(Fig. 1a versus c). In N-lim, the lower mutation rate to higher fitness 
effects results in more stochastic dynamics: high-fitness mutations 
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occur in smaller numbers, causing larger variations between repli-
cates (Fig. 1c versus d and Supplementary Information: Section 2).

To verify that single beneficial mutations determine the early 
adaptive diversity dynamics, we whole-genome sequenced hun-
dreds of unique adaptive mutations spanning a wide range of fit-
ness effects. In C-lim, we previously found a near-comprehensive 
spectrum of adaptation-driving single mutations by sequencing 418 
clones24. Here, we repeated this for N-lim, sequencing 310 adaptive 
clones and re-measuring their fitness (Supplementary Information: 
Section 3). In both environments, the majority of clones contain a 
single adaptive mutation (>​75%), consistent with single mutants 
determining the early adaptive diversity dynamics. Lineages con-
taining two adaptive mutations are crucial to the later time-diversity 
dynamics, as discussed below. Focusing on single-mutant clones, we 
find major differences in mutational mechanisms and mutational 

targets (Fig. 2). Surprisingly, Ty transposition events play a major 
role in driving adaptation in N-lim but not C-lim. In both environ-
ments, adaptation is first driven by cells undergoing a frequent dip-
loidization (Dip) event, and later, by cells that acquire mutations in 
a small set of nutrient sensing pathway genes (Fig. 2 and ref. 24). The 
majority of recurrently mutated genes are putative loss-of-function 
(LoF) mutations, with a minority being putative gain-of-function 
(GoF) mutations (Supplementary Information: Section 3).

A crash in adaptive lineage diversity is observed in all evolutions. 
Estimation of the mDFE required approximately 100 generations of 
lineage tracking in C-lim23 and ~192 generations in N-lim. To study 
the clonal dynamics beyond the initial expansion of single-mutant 
clones, we tracked lineages for approximately 300 generations 
in C-lim and N-lim. In both environments, we find that lineage  
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Fig. 1 | Muller plots of adaptive lineages. a–d, The cell numbers of all adaptive lineages (colours) inferred from barcode sequencing (arrows) and  
whole-genome sequencing of picked clones (large arrowheads) of replicate evolutions in C-lim (a and b) and N-lim media (c and d). Colours are for 
visualization purposes only and do not represent lineages harbouring specific mutations.
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diversity crashes, with a handful of lineages dominating (Fig. 1). 
One possible explanation for this is that multiple adaptive clones 
within each lineage contribute to its dominance. Alternatively, a 
single large clone within each lineage may be responsible; how-
ever, it is unclear how such large clones would arise. Also unclear is 
whether crashes are specific to our experiments or are a general fea-
ture of clonal-interference dynamics. To investigate these questions, 
we first appeal to the simplest model of this evolutionary process, 
the fitness-staircase model17. Next, we perform simulations using 
mDFEs measured experimentally. Finally, we validate predictions 
of our model using whole-genome sequencing and tracking the  
frequency of diploids.

A fitness-staircase model predicts a stochastic diversity crash 
and subsequent recovery. In the fitness-staircase model, all ben-
eficial mutations confer fitness advantage s, such that a clone 
with m mutations grows at rate ms relative to the wild type  
(Fig. 3a). Beneficial mutations occur at rate, U, in a constant popu-
lation, of size N and establish with probability proportional to their 
‘lead’, Q, over the mean fitness (Methods17). Mirroring our experi-
ment, we focus on the multiple-mutation regime in which NU » 1 
(Supplementary Information: Section 4). Clone-size dynamics in 
this model (coloured lines, Fig. 3b) are controlled by two param-
eters: the initial feeding rate of mutations from one fitness class 
to the next, R, and the ratio of fitnesses, α =​ g/(g +​ s), between fit-
ness class growing at rate g, and the newly established fitness class 
growing at rate g +​ s. For wild-type cells (g =​ 0) feeding single 
mutants (g +​ s =​ s), the initial feeding rate R =​ NU » 1 and the ratio 
of fitnesses α =​ 0 (Supplementary Information: Section 4). Since R 
is high, new mutations occur frequently and many mutant clones 
(~R) expand together with roughly equal size. This produces deter-
ministic dynamics (Fig. 3b,c, light-green data). For single mutants 
(g =​ s) feeding double mutants (g +​ s =​ 2 s), the initial feeding rate 
R =​ NU2/s « 1 and the ratio of fitnesses α =​ 1/2. Since R is low, new 
mutations occur rarely and the first few mutant clones to occur are 
typically much larger than the rest. This produces large ‘jackpot’ 
events in which a handful of early clones dominate the popula-
tion (Fig. 3b,c, dark green). The size of jackpots is controlled by α.  

If α « 1, the first established clone will become large before the sub-
sequent clones establish and the cumulative size of all subsequent 
clones will be small relative to the first. Thus, the population will 
be dominated by the first mutant clone to occur. In contrast, if the 
new mutant population grows at the same rate as the one feeding 
it (α =​ 1), which is the case for the classic Luria–Delbrück experi-
ment25, a large number of clones that occur late collectively con-
tribute just as much to the expanding mutant population as the  
early clones do.

By considering when the feeding population will give rise to a 
new mutation (Supplementary Information: Section 4 and refs. 15,17), 
we find that the median size of the kth mutant clone to occur will 
have a frequency relative to the first (k =​ 1) clone of
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For single mutants (R » 1 and α =​ 0), the expected rank–frequency 
relationship is k ≈ Rln(fk) (Fig. 3c, purple line), which agrees closely 
with simulated data (Fig. 3c, light-green points). Large numbers of 
single mutants (~NUs) establish and expand together; however, only 
those that enter within the first ~1/s generations contribute substan-
tially to the class. Therefore, approximate NU clones (~NUs ×​ 1/s) 
drive the single-mutant expansion. We characterized adaptive diver-
sity using the Shannon entropy, S =​ −​Σ​kfkln(fk)26 of adaptive clones. 
Because approximately NU single mutants each reach a maximum 
frequency of approximately 1/NU, the entropy peaks at S ≈​ ln(NU), 
around when single mutants peak in abundance, t ≈​ (1/s)ln(s/U) 
(dashed lines, marked (3) and (1), respectively, in Fig. 3d). Because 
many mutations contribute to the single-mutant expansion, sto-
chasticity in establishment times is averaged out, resulting in highly 
predictable entropy dynamics (Fig. 3d).

For double mutants (R « 1 and α =​ ½), the expected rank–fre-
quency relationship is k ≈ fk

−1/2 (Fig. 3c, dashed line), which agrees 
closely with simulated data (Fig. 3c, dark-green points). Because 
the rank–frequency curves of second mutants follow a power law, 
the first double mutants to establish dominate: on average the top 
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Fig. 2 | Barcode-directed whole-genome sequencing of adaptive clones to find the mutational targets underlying the distribution of beneficial fitness 
effects (mDFE). a, C-lim. b, N-lim. Most adaptive events are diploidizations (top, light blue), but high fitness effects are caused by mutations in or near 
genes (bottom, colour key). Each fitness bin is coloured according to the estimated rate of mutation of verified single mutants to each gene in that bin 
(S3). The colour key is roughly ordered from lowest to highest fitness effect of a mutational event. Pie charts indicate the mutational mechanisms of 
adaptive mutations.
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one and five clones comprise >​55% and >​87% of the total double-
mutant class, respectively (Fig. 3b,c). Because a few clones are so 
consequential, variation in their establishment times result in large 
fluctuations in the rank–frequency distribution: sometimes the first 
clone nearly sweeps the population (for example, Fig. 3b). As dou-
ble mutants outcompete single mutants (after t≈ (1/s)ln((s/U)3/Ns), 
the earliest double-mutant clones cause the diversity to crash 
below the long-term average (dashed lines (2) and (4) in Fig. 3d). 
A precedent of this crash is observable: after t ≈ (2/s)ln(s/NU2), 
approximately 180 generations in Fig. 3, lineages harbouring double 
mutants become larger than the predicted size of any single mutant  
(Fig. 3e, dark-green arrows). These double-mutant lineages drive the  
diversity crash.

Triple mutants cause the diversity to recover (Fig. 3d). This is 
because α is higher for triple mutants than double mutants. In gen-
eral, α is controlled by the lead, Q, the difference between the fittest 
mutant class and the mean fitness (Supplementary Fig. 6). Because 
single and double mutants establish when the mean fitness is close 
to ancestral, Q is s and 2s, respectively, and double mutant α =​ ½. 

For triple mutants and subsequent mutant classes, the lead is deter-
mined by (Q/s) ≈ 2ln(Ns)/ln(s/U) ≈​ 3.1 (ref. 17; Supplementary Fig. 6).  
Thus, for triple mutants α =​ 2s/3s =​ 2/3 and the expected rank–fre-
quency relationship is k ≈ fk

−2/3 (Fig. 3c, dashed line), in close agree-
ment with simulated data (Fig. 3c, pink points). This distribution 
results in smaller jackpots than double mutants: on average, the top 
one and five triple-mutant clones comprise only approximately 43% 
and 72% of the triple-mutant class, respectively (Fig. 3b,c). As a con-
sequence, when the triple mutants outcompete double mutants, the 
diversity recovers (Fig. 3d).

Simulations using the experimentally inferred mDFE also predict 
a diversity crash. To investigate whether differences in the rank–
frequency relationship could also cause the crashes in our experi-
ments, we simulated the lineage dynamics using the experimentally 
determined mDFE inferred in each environment, removing any lin-
eages that contain a double mutant (Supplementary Information: 
Section 5). Plotting the Shannon entropy of both adaptive lin-
eages and clones shows that two measures of the adaptive genetic  
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diversity track one another closely until triple mutants first appear. 
Simulations accounting only for the stochastic occurrence of, and  
competition between, single mutants (single-mutant model, with 
no further mutations occuring) predict that diversity should 
crash slowly, at odds with observations (Fig. 4a). However, addi-
tive model simulations, which allow for multiple mutants drawn 
from the single-mutant mDFE, produce diversity crashes that are 
qualitatively consistent with the observed lineage diversity crash  
(Fig. 4b). In qualitative agreement with what is observed in the 
staircase model, typically fewer than five lineages comprise >​90% of 
the population at times beyond 150 generations. This demonstrates 
that, even with a more complicated mDFE, the same general behav-
iour emerges: early jackpot double mutants cause a diversity crash 
of both lineages and clones.

Experimental validation of double-mutant jackpot events driving 
an adaptive diversity crash. We next sought to experimentally vali-
date that early double mutants drive the adaptive diversity crash by 

examining whole-genome sequencing data of single-cell derived col-
onies. While >​75% of sequenced clones were verified single mutants, 
we reasoned that the remaining <​25% might include early double 
mutants that have yet to become abundant. Because these double 
mutants are expected to be highly fit, they should quickly expand 
in frequency. As predicted, these early double mutants do indeed 
dominate the population, driving a diversity crash in both C-lim 
and N-lim (Fig. 4d,e). To our surprise, however, clonal sequencing 
revealed that the dominant double mutants were not composed of 
two high fitness-effect mutations (for example, LoF +​ LoF) as would 
be predicted by our additive model simulations. Instead, sequenced 
dominant clones were Dip +​ GoF double mutants (Dip +​ ras2 in C1; 
Dip +​ mep1 in N1), despite neither GoF mutation occurring at a high 
rate. We reasoned that this inconsistency with the additive model 
could be due to epistasis: some classes of beneficial mutations com-
bine sub-additively and these interactions might determine which 
first mutants eventually dominate. To test this, we modified our 
additive model simulations (above) to ban second mutations that 
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are implausible or unobserved (Dip +​ Dip, Dip +​ LoF, LoF +​ LoF or 
LoF +​ GoF, see Supplementary Fig. 5). Simulations using this ‘epis-
tasis model’ produce diversity crashes and lineage trajectories that 
are in qualitative agreement with observations (Fig. 4c). Crucially, 
the epistasis model (not the additive model) predicts that clones 
driving the diversity crash will usually be Dip +​ GoF if the crash is 
deep and LoF +​ Dip if the crash is shallow. The reason for this dif-
ference relates to α, discussed above. Both Dip +​ GoF and LoF +​ Dip 
double mutants have similar fitnesses (~0.14, see Fig. 2). In the case 
of Dip +​ GoF, the single-mutant fitness (~0.035) results in α ≈​ 0.25, 
a very broad distribution and a deep crash. However, in the case of 
LoF +​ Dip, the single-mutant fitness (~0.10) results in α ≈​ 0.7, a nar-
rower distribution and a shallow crash.

Evidence for broad ‘categorical’ epistasis between mutations. 
Lineage trajectories alone have limited power to quantitatively dis-
tinguish between the additive and epistasis models (Fig. 4b,c). To 
further interrogate our models, we therefore asked if the dynam-
ics of mutations, rather than lineages, are consistent with predic-
tions of either model. We measured the abundance of diploids in 
the population every 8–24 generations using a colony-growth assay 

(Supplementary Information: Section 6 and ref. 24), not only for the 
four evolutions described above, but for two additional evolutions 
(one in C-lim, one in N-lim) that were not characterized by lineage 
tracking (Fig. 5b–e). Consistent with our observations, both mod-
els predict that replicate diploid trajectories will track each other 
closely—first, as large numbers of ancestral cells diploidize and 
expand, and second, as diploids begin to be out-competed by hap-
loids that have acquired fitter LoF and GoF mutations. At later times, 
however, the models deviate. In C-lim, the additive model predicts 
that LoF +​ LoF or LoF +​ GoF double mutants drive the continuing 
decline of diploids (Fig. 5b). In N-lim, the additive model predicts 
that Dip +​ LoF mutations should expand fast enough that diploid 
trajectories never dip (Fig. 5d). However, consistent with observa-
tions, the epistasis model predicts that the diploid trajectory will 
dip and subsequently recover, driven by LoF and GoF haploids that 
diploidize and by diploids that acquire GoF mutations (Fig. 5c,e).  
Since this diploid recovery is driven by rare double mutants, its tim-
ing and depth are predicted to be highly stochastic, resulting in large 
variations between replicates, in agreement with our data.

To further test which model is more consistent with the observed 
data, we calculated the likelihood of the data under a binomial 
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Fig. 5 | Simulations of diploid dynamics using the additive and ‘categorical’ epistasis models. a, The simplified fitness landscape used for simulations 
in C-lim, where μ(s) indicates the mutation rates and s indicates the fitness effects, of Dip, LoF and GoF mutations. Greyed arrows are paths disallowed 
by the epistasis model. Dashed lines indicate the paths taken by the dominant clones in the additive (blue) and epistasis (red) models. b–e, The diploid 
trajectories in C-lim and N-lim predicted by the additive model (b and d, respectively) and the epistasis model (c and e, respectively) compared to the 
measured diploid trajectories (data points) from the three replicate populations in each condition. Colour scale indicates the extent to which the diploid 
rescue is driven by Dip +​ GoF (purple) versus LoF +​ Dip or Dip +​ LoF (yellow) mutants, with early rescue being more likely to be driven by Dip +​ GoF 
mutations. Error bars are one standard deviation.
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error model for the categorical epistasis and the additive mod-
els (Supplementary Information: Section 7). We found a higher 
likelihood when double mutants are restricted to occur through 
the Dip +​ GoF route alone (categorical epistasis model, log-like-
lihood L ≈​ 360) than when all mutations are available (additive 
model, L ≈​ 730). In addition, the maximum-likelihood parameters 
obtained for the additive model are inconsistent with measured val-
ues; for example, the best-fit mutation rate to fit mutations (LoF and 
GoF) is three orders of magnitude smaller than the measured value 
(2 ×​ 10−10 versus 3 ×​ 10−7).

Discussion
In our experiments, the adaptive genetic diversity first increases 
quasi-deterministically, caused by a large number of single mutants, 
and later crashes stochastically, caused by a handful of jackpot 
events: highly fit double mutants occuring anomalously early. These 
diversity dynamics are a consequence of the clone-size distributions 
for single-, double- and subsequent multiple-mutant clones. The 
distribution of clone sizes is controlled by the initial feeding rate 
(R) and the ratio of the fitnesses (α) between a clone and its par-
ent. When the dynamics are dominated by rare beneficial mutations 
(R « 1) that grow exponentially faster than their parent (α <​ 1), clone 
sizes are power-law distributed, with the largest clones dominating 
the population. This effect is closely related to the Luria–Delbrück 
experiment in which one observes jackpots of neutral mutations 
(α =​ 1). However, a key difference is that when adaptive mutations 
are accumulating (α <​ 1), mutants grow faster and the population is 
dominated by small numbers of large clones instead of large num-
bers of small clones. Jackpots drive a predictable crash in diversity 
followed by a subsequent recovery. These diversity expansions and 
crashes are likely to be general features of clonal interference; how-
ever, the expansion rate, timing and the depth of the crash are influ-
enced by population size, mDFE and patterns of epistasis between 
adaptive mutations.

In environments where the mDFE of first mutations lacks 
extremely high fitness effects, mutations that cause the diversity 
expansion are fed from a large, effectively constant-sized (ances-
tral) population, while mutations that cause the crash are fed 
from a small, exponentially growing (single-mutant) population. 
When extremely high fitness-effect mutations are possible, such 
as in the presence of a growth-inhibiting drug27, a crash is some-
times driven by the expansion of very rare highly fit single mutants 
(Supplementary Information: Section 8). Thus, a diversity crash is 
likely to occur, whether driven by a traditional selective sweep of a 
single mutant14,15 or by a multiple mutant that occurs anomalously 
early. While we have focused on well-mixed yeast populations, 
expansion of spatially structured populations exhibit qualitatively 
similar dynamics28. Furthermore, ‘clonal dominance’ is a common 
feature to many cancers11,29,30 with one recent example explicitly 
showing that the stochastic emergence of a highly fit double mutant 
underlies a diversity crash31. High levels of tumour diversity are 
associated with poorer survival29,32. Thus our work raises the pos-
sibility of exploiting fluctuations in diversity to optimize treatment 
schedules. More generally, our work highlights that while genetic 
diversity evolves stochastically and depends on rare events, the 
diversity dynamics are statistically predictable in an analogous way 
to a weather forecast22.

While in our experiments the deterministic to stochastic transi-
tion occurs between first and second mutations, in small popula-
tions (NU <​ 1), first adaptive mutations are stochastic and diversity 
crashes (of neutral mutations) will occur at nearly every adaptive 
event. In even larger populations ((s/U)2 <​ Ns <​ (s/U)3), double 
mutants will occur deterministically, but triple mutants stochasti-
cally, and therefore the diversity crash will be caused by a handful of 
triple mutants. More generally, for mDFEs that lack a supply of high 
fitness-effect mutations, the dynamics are driven by ‘predominant’ 

mutations of similar fitness17 and the diversity crash will be caused 
by clones harbouring q beneficial mutations, where q is the small-
est integer for which (s/U)q >​ Ns, where U is the mutation rate to 
the ‘predominant’ fitness mutations17. Previous work has found that 
beneficial cohorts—multiple beneficial mutations co-occurring in 
clones that are at frequencies below the detection limit of genomic 
sequencing—commonly drive laboratory5,20 and clinical11 evolution. 
Our results suggest that, at least during the early stages of evolution, 
these cohorts are expected, with cohort size being determined by q 
(Supplementary Information: Section 4).

Theoretical work presented here and elsewhere21,33 predicts that 
beneficial cohorts and fluctuations in genetic diversity should occur 
throughout evolution, driven by the stochastic occurrence of anom-
alously early and/or fit multiple mutants. Our results indicate that 
the precise nature of these fluctuations will depend on patterns of 
epistasis. For example, we find that Dip +​ GoF mutations (α ≈​ 0.25) 
are the dominant route for acquiring a fit double mutant in our 
experiments, making the dynamics particularly stochastic. Due to 
limitations of our barcoding platform, we were unable to validate 
that triple mutations resulted in a recovery of the adaptive diversity, 
as is predicted by our simulations. However, the development of 
new double-barcoding technologies34 or barcodes that continuously 
generate diversity through time35–37 offer a promising path forward 
to address these questions.

Methods
Experimental evolutions. The barcoded yeast library from ref. 23, containing 
approximately 500,000 barcodes, was evolved by serial batch culture under carbon 
or nitrogen limitation in 100 ml of ×​5 Delft media23. Nitrogen limited media 
contained 0.04% ammonium sulfate and 4% dextrose. Carbon limited contained 
4% ammonium sulfate and 1.5% dextrose. Cells were grown in 500 ml Delong 
flasks (Bellco) at 30 and 223 r.p.m. for 48 h between each bottleneck. Bottlenecks 
were performed by adding 400 μ​l of the evolution to fresh media. Cell counts were 
performed using a Coulter Counter at each bottleneck to estimate the generation 
time. Contamination checks for bacteria or other non-yeast microbes were 
performed regularly (every 2–4 bottlenecks).

Barcode sequencing. The barcode sequencing follows the same protocol as in  
ref. 23. Briefly, genomic DNA was prepared by spooling. A two-step directed PCR 
was used to amplify the lineage tags for sequencing. We amplified ~14 μ​g of 
template per sample, which corresponds to ~109 genomes or ~2,000 copies per 
barcode initially. First, a three-cycle PCR with OneTaq polymerase (New England 
Biolabs) was performed in 24 reaction tubes, with ∼​600 ng of template and 50 μ​l 
total volume per tube. Primers for this reaction were

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNXXXXXT 
TAATATGGACTAAAGGAGGCTTTT and CTCGGCATTCCTGCTGAACCGC 
TCTTCCGATCTNNNNNNNNXXXXXXXXXTCGAATTCAAGCTTAGATC 
TGATA

where Ns are degenerate bases used for the Unique Molecular Identifiers and 
Xs correspond to a one of several multiplexing tags. The PCR product was pooled 
into four 50 μ​l aliquots using four PCR Cleanup columns (Qiagen) at six PCR 
reactions per column. A second 24-cycle PCR was performed with high-fidelity 
PimestarMAX polymerase (Takara) in 12 reaction tubes, with 15 μ​l of cleaned 
product from the first PCR as template and 50 μ​l total volume per tube. Primers for 
this reaction were

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCT and CAAGCAGAAGACGGCATACGAGATCGG
TCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT

PCR product from all reaction tubes was pooled into 50 μ​l using a PCR 
Cleanup column (Qiagen). The appropriate PCR band was isolated by E-Gel 
agarose gel electrophoresis (Life Technologies) and quantitated by Bioanalyzer 
(Agilent) and Qubit fluorometry (Life Technologies).

Identifying adaptive lineages. Adaptive lineages were identified using the 
same methods as in ref. 23. Briefly, for a given lineage trajectory (read number 
measurements over time) we evaluated two hypotheses: (1) no adaptive mutation 
established in the lineage and (2) an adaptive mutation with fitness effect, s, 
occurred in the lineage and established to grow exponentially with  
an establishment time, 𝛕. We used a uniform prior over a broad range of  
𝛕 (−​150 <​ 𝛕 <​ 100) and an exponential prior over s, with decay length 0.1.  
To calculate the probability of each hypothesis given the data we developed a 
noise model23 that accounted for the variance introduced into barcode frequency 
estimates from three sources: (1) finite depth of coverage during sequencing,  
(2) noise introduced during DNA extraction and PCR amplification of the barcodes 
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and (3) biological noise introduced during the growth cycle. Each of these were 
quantified by performing replicate measurements (1) on the same sequencing 
library, (2) on the sample sample and (3) on samples from adjacent time points, 
respectively (see supplemental information of ref. 23). We then evaluated each (s, 𝛕) 
hypothesis in intervals of (Δ​s =​ 0.005, Δ​𝛕 =​ 1) and determined whether any of these 
were more probable than the neutral hypothesis. If so, we took the (s, 𝛕) hypothesis 
with the largest posterior as our best estimate.

Isolating and sequencing of adaptive clones. We isolated clones from generation 
192 of N1, and re-measured the fitness of the 310 clones within that pool, whose 
trajectories indicated they were adaptive. We whole-genome sequenced all clones 
from this pool to a mean coverage of 30×. Variants were called using the same 
pipeline as outlined in ref. 24. Details of the top 100 clones ranked by re-measured 
fitness are shown in Supplementary Fig. 5.

From the whole-genome sequencing data, we identified single nucleotide  
polymorphisms, small indels, larger deletions and insertions, Ty transposition 
events and copy number variations, including aneuploidy and segmental  
aneuploidy, and annotated the genes within which those mutations fell. To  
determine whether mutations were adaptive, or simply neutral passenger mutations,  
we used the following criteria. First, if a gene was mutated multiple times in clones  
with distinct barcodes, mutations in that gene were designated as adaptive. Because  
of the low mutational burden of clones, the number of times this is expected for 
two neutral mutations is small (<​0.005). Second, if a mutation in a gene was only 
observed once, but that clone was clearly non-neutral (mean re-measured fitness 
>​0.01) and no other mutations were identified in the clone, then that gene was 
labelled as adaptive. A clone was labelled as a multiple mutant if it contained two or 
more mutations that were identified as adaptive via the above criteria.

Simulated lineage and clone dynamics. To simulate lineage and clone trajectories 
in python, we initiate a dictionary object ‘barcodes’ whose keys are tuples that are 
the barcode IDs entered in the form (BC1_id, BC2_id…​), which can be adapted 
for simulating a re-barcoding process. For single-barcodes the keys are (1,), (2,), 
(3,) and so on. The value for each key is a list of all genotypes belonging to that 
barcode, for example, ‘barcodes[(1,0)]’ might return [([(0,‘WT’, 0.0)],10**8), 
([(0,‘WT’, 0.0),(0,‘DIPLOID’, 0.04)],10**4)]. Each entry of the list is a ‘(genotype, 
abundance)’ tuple. The abundance is how many cells share that genotype. The 
genotype itself is list of ‘(unique_mutation_integer, NAME, selective effect)’; 
that is [(0,‘WT’, 0.0), (12,‘DIPLOID’, 0.04), (21,‘IRA1’, 0.10)] would mean that 
the sequence of mutations in this clones was wild-type, then a ‘DIPLOID’ 
mutation (which was the 12th mutation to occur in the simulation and confers a 
4% advantage) and an ‘IRA1’ mutation that was the 21st mutation to occur and 
confers an additional 10% advantage. The genotype would grow at 14% relative 
to wild type. Mutations are generated from another dictionary ‘dfe_dict’, which 
is a dictionary whose keys are floats of possible fitness effects: for example, 0.02. 
The value for each key is a dictionary of ‘{NAME: mutation rate}’ key–value pairs. 
Mutations occur stochastically each generation determined by the mutation rate, 
U. New mutant clones are born from their parents by calling a random Poisson 
variate with mean given by the product of the parent clone size, n, and the 
mutation rate, U. Establishment of new clones is determined by calling a random 
variate from a uniform distribution on the interval [0,1]. If this random variate 
is less than the fitness advantage of the new clone relative to the mean fitness the 
clone establishes with a starting establishment size 1 per fitness advantage, capped 
at 200 for weakly beneficial clones. The dynamics of each established clone is then 
deterministic: obtained by the exponential growth rate of its fitness advantage 
over the mean fitness. Low-frequency and low-fitness clones are removed from 
the population when their fitness advantage is negative and when their size drops 
below n =​ 10.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Python code for simulations and analysis of barcode trajectories 
is available on request.

Data availability
Raw barcode read counts are contained in the Supplementary Data 1. Variant calls 
for sequenced clones are contained in Supplementary Data 2. All other data are 
available on request.
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