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Upon encountering a novel environment, an animal must con-
struct a consistent environmental map, as well as an internal
estimate of its position within that map, by combining infor-
mation from two distinct sources: self-motion cues and sensory
landmark cues. How do known aspects of neural circuit dynam-
ics and synaptic plasticity conspire to accomplish this feat? Here
we show analytically how a neural attractor model that com-
bines path integration of self-motion cues with Hebbian plasticity
in synaptic weights from landmark cells can self-organize a con-
sistent map of space as the animal explores an environment.
Intriguingly, the emergence of this map can be understood as
an elastic relaxation process between landmark cells mediated
by the attractor network. Moreover, our model makes several
experimentally testable predictions, including (i) systematic path-
dependent shifts in the firing fields of grid cells toward the most
recently encountered landmark, even in a fully learned environ-
ment; (ii) systematic deformations in the firing fields of grid cells
in irregular environments, akin to elastic deformations of solids
forced into irregular containers; and (iii) the creation of topolog-
ical defects in grid cell firing patterns through specific environ-
mental manipulations. Taken together, our results conceptually
link known aspects of neurons and synapses to an emergent
solution of a fundamental computational problem in naviga-
tion, while providing a unified account of disparate experimental
observations.

grid cells | attractor dynamics | theoretical neuroscience |
spatial memory | navigation

How might neural circuits learn to create a long-term map
of a novel environment and use this map to infer where

one is within the environment? This pair of problems is chal-
lenging because of their nested, chicken and egg nature. To
localize where one is in an environment, one first needs a map
of the environment. However, in a novel environment, no such
map is yet available, so localization is not possible. Similarly,
building a map of a novel environment from scratch can be dif-
ficult when one cannot even determine one’s own location in
the environment. Thus, neural circuits must create a map over
time, through exploration in a novel environment, without ini-
tially having access to any global estimate of position within
the environment. This chicken and egg problem is known in
the robotics literature as simultaneous localization and mapping
(SLAM) (1).

Here we explore how known aspects of neural circuit dynam-
ics and synaptic plasticity can conspire to self-organize, through
exploration, a solution to the problem of creating a global, con-
sistent map of a novel environment. In particular, neural circuits
receive two fundamentally distinct sources of information about
position: (i) signals indicating the speed and direction of the
animal, which can be path integrated over time to update the
animal’s internal estimate of position, and (ii) sensory cues from
salient, fixed landmarks in the environment. To create a map of
the environment, neural circuits must combine these two distinct
information sources in a self-consistent fashion so that sensory
cues and self-motion cues are always in coregister.

For example, consider the act of walking from landmark A to
landmark B. Sensory perception of landmark A triggers a pattern
of neural activity, and subsequent walking from A to B evolves

this activity pattern, through path integration, to a final pattern.
Conversely, sensory perception of landmark B itself triggers a
neural activity pattern. Any circuit that maps space must obey a
fundamental self-consistency condition: The neural activity pat-
tern generated by perception of A, followed by path integration
from A to B, must match the neural activity pattern triggered by
perception of B alone. Only in this manner can neural activity
patterns be in one to one correspondence with physical positions
in space and become independent of the past trajectory used to
reach any physical location.

In the following, we develop an analytic theory for how
neuronal dynamics and synaptic plasticity can generate self-
consistent neural maps of space upon exploration through a
novel environment. Moreover, our analytic theory makes exper-
imentally testable predictions about neural correlates of space.
Indeed, many decades of recordings in multiple brain regions
have revealed diverse neural correlates of spatial maps in the
brain. In particular, the medial entorhinal cortex (MEC) con-
tains neurons encoding for direction, velocity, and landmarks,
as well as grid cells exhibiting striking firing patterns reflect-
ing an animal’s spatial location (2–6). Moreover, the geometry
of these firing patterns depends on the shape of the envi-
ronment being explored (7–10). In particular, these grid fir-
ing patterns can be deformed in irregular environments (11,
12), in a manner evocative of deformations of solids forced
into an irregular container, suggesting a mechanical model for
these deformations (13–15). Also, these firing patterns are not
simply driven by current sensory cues; there is evidence for
path integration (16–18) in that firing patterns appear almost
immediately (2), phase differences are preserved across envi-
ronments (19), and firing patterns become noisier the longer
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an animal is away from a landmark (20, 21) and can shift,
depending on which landmark the animal most recently encoun-
tered (22, 23).

Despite this wealth of experimental observations, no mech-
anistic circuit model currently explains how known aspects of
neuronal dynamics and synaptic plasticity can conspire to learn,
through exploration, a self-consistent internal map of a novel
environment that both behaves like a deformable medium and
also retains, at higher order, some knowledge of recently encoun-
tered landmarks. Here, we show how an attractor network
that combines path integration of velocity with Hebbian learn-
ing (22, 24–26) of synaptic weights from landmark cells can
self-organize to generate all of these outcomes. Intriguingly,
a low-dimensional reduced model of the combined neuronal
and synaptic dynamics provides analytical insight into how self-
consistent maps of the environment can arise through an emer-
gent, elastic relaxation process involving the synaptic weights of
landmark cells.

Model Reduction of an Attractor Network Coupled to
Sensorimotor Inputs
Our theoretical framework (SI Appendix, section II) assumes the
existence of three interacting neural components: (i) an attrac-
tor network capable of realizing a manifold of stable neural
activity patterns, (ii) a population of velocity-tuned cells that
carry information about the animal’s motion, and (iii) a pop-
ulation of sensory-driven landmark cells that fire if and only
if the animal is in a particular region of space. Our goal is to
understand how these three populations can interact together
and self-organize through synaptic plasticity, sculpted by expe-
rience, to create a self-consistent internal map of the environ-
ment. Here, we describe the neuronal and synaptic dynamics of
each component in turn, as well as describe a model reduction
approach to obtain a low-dimensional reduced description of
the entire plastic circuit dynamics. Our low-dimensional descrip-
tion provides insight into how self-consistency of the neural map
emerges naturally through an elastic relaxation process between
landmarks.

A Manifold of Stable States from Attractor Network Dynamics.
We first consider a 1D attractor network consisting of a large
population of neurons whose connectivity is determined by
their position on an abstract ring, as in Fig. 1. For analyti-
cal simplicity, we take a neural field approach (27), so that
position on the ring of neurons is described by a continuous
coordinate u , with the firing rate of a neuron at position u
given by s(u). Each neuron interacts with neighboring neu-
rons through a translation invariant connectivity, yielding the
dynamics

Fig. 1. Schematic of a ring attractor with short-range excitation (red
arrows) and longer-range inhibition (blue arrows). This yields a 1D family of
bump-attractor states s*(u−φA), which are mapped onto a single periodic
variable, or attractor phase, φA representing the peak of the bump pattern.

ds (u)

dt
=− s(u)

τm
+G

(∫
u′

J(u − u ′)s(u ′)

)
. [1]

Here J(u − u ′) defines the synaptic weight from a cell at posi-
tion u ′ to a cell at u , τm is a single-neuron time constant, and
G is a nonlinearity. Many appropriate choices of G and J, corre-
sponding for example to short-range excitation and long-range
inhibition, will yield a family of stable, or steady-state, localized
bump activity patterns s∗(u −φA), parameterized by the posi-
tion of their peak φA (28, 29) (Fig. 1). This 1D family of stable
bump activity patterns can itself be thought of as ring of stable
firing patterns in the space of all possible firing patterns. Just
as u indexes a family of neurons on the neural sheet, the coor-
dinate φA indexes the different stable neural activity patterns,
with a particular value of φA corresponding to a stable bump
on the neural ring centered at coordinate u =φA. For simplic-
ity we set units such that the coordinate u along the neural ring
and the coordinate φA along the ring of stable attractor patterns
are both angles, defined modulo 2π. Thus, u and φA are phase
variables denoting position along the neural ring and the ring of
bump-attractor patterns, respectively.

Motions Along the Attractor Manifold Due to External Inputs. So far,
the attractor network described above has a ring of stable bump
activity patterns parameterized by the periodic coordinate φA,
but these neural activity patterns are as yet unanchored to physi-
cal space. We will eventually show how to anchor the coordinate
φA along the attractor manifold to the actual position of the ani-
mal in physical space. However, to appropriately form such an
internal map of position, and thereby map the environment, the
attractor state must be influenced by external inputs from both
velocity- and landmark-sensitive cells in a self-consistent manner.

Path Integration Through Velocity-Conjunctive Attractor Cells. Fol-
lowing refs. 28 and 29, we achieve path integration by cou-
pling the attractor network to velocity-conjunctive attractor cells
such that east (west) movement-selective cells form feedforward
synapses onto the attractor ring that are shifted in the positive
(negative) u direction (Fig. 2 A and B). When these inputs are
weak compared with the recurrent inputs determining the bump
pattern (SI Appendix, section III), we can show analytically that
this choice of connectivity leads to path integration:

dφA/dt = kv . [2]

Here, k is a constant of proportionality that relates animal
velocity v to the rate of phase advance in the attractor network
(k = 2π/field spacing). Thus, the connectivity of the velocity-
conjunctive attractor cells in Fig. 2 A and B ensures that as the
animal moves east (west) along a 1D track, the attractor phase
moves clockwise (counterclockwise), at a speed proportional to
velocity. Solving Eq. 2 allows us to recover path integration (Fig.
2C), where the resulting integrated attractor phase is only a
function of current position x (t):

φA(t) =φA(0) + k [x (t)− x (0)]. [3]

The collection of neurons in the attractor traces out periodic fir-
ing patterns as a function of spatial position, all with the same
period but different phases.

However, even though these 1D grid cell firing patterns are
now a function of physical space, they still are not yet anchored to
the environment. There is as yet no mechanism to set the phase
of each cell relative to landmarks, and indeed these grid patterns
rapidly decohere without anchoring to landmarks, as demon-
strated experimentally (20, 30). Coupling the attractor network
to landmark-sensitive cells can solve this problem.
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Fig. 2. (A) A ring of east velocity selective cells has outgoing connections onto the attractor ring that are biased in the clockwise direction. Such cells also
receive unbiased incoming connections from attractor network cells (not shown). Thus, these east velocity selective cells will fire conjunctively if the animal
is moving east and the attractor bump is nearby on the ring. When these cells fire, the biased outgoing connections to the attractor network will then excite
cells clockwise relative to the current attractor bump and inhibit cells active in the bump. Thus, the attractor bump will move in the clockwise direction.
(B) Similarly, when the animal moves west, the firing of west-conjunctive cells with counterclockwise biased connections will cause the attractor pattern to
move counterclockwise. (C) As the animal moves east, the phase of the attractor bump rotates clockwise at a rate proportional to the velocity (Eq. 2). The
firing rate of an individual cell (shaded gray) then becomes a periodic function of position (Eq. 3). The firing rates of all other attractor cells are also periodic
functions of position with the same period but different phases, yielding a module of 1D grid cells. (D) Schematic of a landmark cell correcting the attractor
bump phase (Eq. 4). A single landmark cell can provide excitation that is centered at a certain location on the attractor network ring. When this landmark
cell fires, its efferent synapses provide excess excitation to this location, thereby pulling the phase of the attractor bump toward the peak of the landmark
cell’s efferent synaptic strength profile.

Landmark Cells. We model each landmark cell i as a purely
sensory-driven cell with a firing rate that depends on location
through sL

i (t) = Hi(x (t)). Here Hi(x ) is the firing field of the
landmark cell. An example of a landmark cell could, for exam-
ple, be an entorhinal border cell (4). Every landmark cell forms
feedforward connections onto each cell in the attractor network
at ring position u with a synaptic strength Wi(u).

Consider for example a single landmark cell whose synap-
tic strength W(u) as a function of position u on the neural
ring consists of a single bump centered at a particular location
u =φL (Fig. 2D). When the landmark inputs are weak relative
to the recurrent inputs that determine the shape of the bump
pattern, then the external landmark inputs will not change the
shape of the attractor bump, but will cause it only to change
its position. Intuitively, landmark cell firing should cause the
attractor bump to move to the location φL on the ring at which
the landmark cell provides its peak synaptic strength. Thus, we
expect the attractor phase φA to move to and be pinned at
the phase φL.

We confirm this intuition analytically in SI Appendix, section
III.2 by deriving an effective dynamics obeyed by the attractor
phase in response to landmark cell input:

dφA/dt =ωF(φL−φA). [4]

Here, F is a force law that determines how a landmark cell
with peak synaptic strength at φL causes the attractor phase
φA to move. We have also introduced a parameter ω that con-
trols how strongly landmark cells influence the attractor phase.
Generically, the force law F is positive (negative) when its argu-
ment is positive (negative). Thus, it acts as a restoring force:
When each landmark cell fires, it causes the attractor phase φA

to flow toward the phase φL corresponding to the location of
the landmark cell’s peak outgoing synaptic strength. An attrac-
tor phase φA that is smaller (larger) than the landmark cell
synapses’ peak location φL will increase (decrease) and settle
down at φL (Fig. 2D). In SI Appendix, section III.2, we show
how to analytically compute the force law F(φL−φA) govern-
ing the velocity of the bump peak; in general, the force law
will have the same qualitative features as sin(φL−φA). [See SI
Appendix, section VI for attractor dynamics where F is exactly
sin(φL−φA).]

In summary, we have so far described path integration dynam-
ics that enable the attractor phase to move in response to motion
in Eq. 2 and pinning dynamics of a landmark cell that force the

attractor phase to move to a particular phase φL through Eq. 4.
However, there is as yet no mechanism to enforce consistency
between the attractor phases arrived at through path integration
and the various attractor phases arrived at through pinning by
landmark cells. We next introduce Hebbian plasticity of effer-
ent landmark cell synapses during exploration while both path
integration and landmark cells are active. This plasticity will self-
organize each landmark cell’s pinning phase (i.e., the position of
its peak synaptic strength profile onto the attractor network), to
yield a self-consistent spatial map.

Hebbian Learning of Landmark Cell Synapses. We assume that each
synapse Wi(u) from a landmark cell i to an attractor cell at
position u undergoes Hebbian plasticity with some weight decay,
thereby learning to reinforce attractor patterns that are active
when the landmark cell fires. Moreover, we assume plasticity
acts slowly, over a timescale T that is much longer than the
timescale t over which exploration occurs. Hebbian learning then
drives the synaptic strengths of each landmark cell i toward
the long-time average of attractor patterns s(u) that occur
conditioned on cell i firing (Fig. 3 B2) through (SI Appendix,
section III.5)

A1

A2

B1

B2

C

Fig. 3. (A1) Before learning, the synaptic weights W(u) from a land-
mark cell to the attractor network need not match the average firing
rate of the network conditioned on the landmark cell firing. (A2) In the
reduced model description, this prelearned state reflects a situation in which
the average attractor phase φA when the landmark cell fires does not
match the peak position of the synaptic weights θL. (B1) During learn-
ing, the old weights (dashed lines) will decay, while new weights (solid
lines) will be formed at locations of peak firing. (B2) In the reduced
model description this Hebbian learning plus decay will cause the peak
synaptic weight position θL to match the average attractor phase φA seen
while the landmark cell is firing. (C) Schematic of Eq. 7, where the land-
mark pinning phase θL linearly approaches the average attractor state
〈φA|Firing〉.

E11800 | www.pnas.org/cgi/doi/10.1073/pnas.1805959115 Ocko et al.
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dWi(u)/dT = 〈s(u)|i Firing〉−Wi(u). [5]

Combined Neural and Synaptic Dynamics During Navigation. Be-
cause the learned synaptic weight profiles of each landmark cell
tend to become localized, we can approximate the entire weight
profile Wi(u) of landmark cell i by a single number θL

i that
closely reflects the position on the ring at which the landmark cell
i provides its peak synaptic excitation (see SI Appendix, section
III.6 for details). Also, because the attractor bump is close to this
distribution when the landmark cell fires, we can derive simpli-
fied, linearized equations for the combined neural and synaptic
dynamics valid after the initial steps of learning (SI Appendix,
section IV):

dφA/dt = kv +
∑

i
ωiHi(x (t))

(
θL
i −φA

)
, [6]

dθL
i /dT = 〈φA(t)|i Firing〉− θL

i . [7]

In essence Eqs. 6 and 7 constitute a significant model reduc-
tion of Eqs. 1 and 5. In this reduction, the entire pattern of neural
activity of the attractor network is summarized by a single num-
ber φA, denoting a point, or phase, on the ring manifold of stable
attractor states. Similarly, the entire pattern of synaptic weights
Wi(u) from landmark cell i into the attractor network is sum-
marized by a single number θL

i , denoting the learned attractor
network phase associated with the landmark cell’s synapses.

Intuitively, the reduced Eq. 6 describes both path integration
and dynamics in which each landmark cell i attempts to pin the
attractor phase φA to the landmark cell’s learned phase, θL

i , each
time the physical position x (t) of the animal is within the land-
mark’s firing field Hi . In turn, synaptic plasticity described in Eq.
7 aligns the learned pinning phase θL

i of each landmark cell i to
the average of the attractor phases φA that occur when the animal
is in the firing field of the landmark cell (Fig. 3).

As we will see below, as an animal explores its environment,
these coupled dynamics between attractor phase φA and land-
mark pinning phases θL

i settle into a self-consistent steady state
such that the attractor phase yields an internal estimate of the
animal’s current position that is, to first order, largely indepen-
dent of the history of the animal’s previous trajectory. Moreover,
each landmark cell learns a pinning phase θL

i , consistent with the
location of its firing field in physical space.

Learning a Simple Environmental Geometry
We now examine solutions to these equations to understand how
neuronal dynamics and synaptic plasticity conspire to yield a
consistent map of the environment. To build intuition, we first
consider the dynamics of Eqs. 6 and 7 for the simple case of an
animal moving back and forth between the walls of a 1D box
of length L, at a constant speed v0 = L/τ , yielding a total time
of 2τ to complete a full cycle (Fig. 4A). In this environment we
assume two landmark cells with firing fields localized at the east
(west) wall. Their pinning phases θL

E (θL
W) encode the peak posi-

tion of their outgoing synaptic weights. How does circuit plas-
ticity yield a consistent environmental representation through
exploration?

We build intuition in the limit ω→∞, where landmark cells
fully anchor the attractor state when the animal touches the
edge. At t = 0, the animal starts at the west wall at physical posi-
tion x (0) =−L/2. Through Eq. 6, the west border cell pins the
initial attractor phase so that φA(0) = θL

W. At t = τ , the animal
travels to the east wall at physical position x (τ) = +L/2, and
the attractor phase advances due to path integration to become
φA(τ−) = θL

W + kL. However, upon encountering the east wall,
the east border cell pins the attractor phase to θL

E.

B

D

E

A

C

Fig. 4. (A) An animal moving between two landmarks at the edges of a 1D
track. (B) A single cycle of exploration as the animal moves from the west to
the east wall and back. When the animal encounters the west (east) wall, the
attractor phase (black arrow) is pinned to the associated landmark pinning
phase (blue/red arrow for west/east wall). As the animal moves from one
wall to the other, the attractor phase advances from this pinned phase due
to path integration. During learning, the pinning phase from any one wall,
plus the phase advance due to path integration, will not equal the pinning
phase of the other wall. However, plasticity will adjust the pinning phase
of each wall to reduce this discrepancy (motion of red and blue arrows).
During this inconsistent prelearned state, the attractor phase at any inte-
rior position will depend on path history. (C) After learning, the pinning
phase from any one wall, plus the phase advance due to path integration,
equals the pinning phase of the other wall, yielding a consistent internal
representation of space in which the attractor phase assigned to any interior
point becomes independent of path history. (D) We can “unroll” the attrac-
tor and landmark phases into linear position variables. Thus, landmark cell
synapses can be thought of as points in physical space (blue and red circles).
(D, Top) If the phase advance due to path integration exceeds the phase
difference between the pinning phases of the landmarks, then the distance
between the landmark cells in unrolled phase is closer than the physical
distance between the firing fields of the landmarks. (D, Bottom) Plastic-
ity then exerts an outward force pushing the two landmark cells farther
apart until their separation in unrolled phase equals the physical distance
between their firing fields. (E) In general, the changing positions in unrolled
phase associated with landmark cell synapses due to synaptic plasticity can
be described by a damped spring-like interaction as in Eqs. 8 and 9. If the
separation between the two landmark cell synapses in unrolled phase is
smaller (larger) than the physical separation between their firing fields, then
the spring will be compressed (extended), yielding an outward (inward)
force. This force will move the positions associated with landmark cell
synapses until their separation in unrolled phase equals the rest length of
the spring, which in turn equals the physical separation between landmark
firing fields.

Ocko et al. PNAS | vol. 115 | no. 50 | E11801
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Before any learning, there is no guarantee that the east bor-
der cell pinning phase θL

E equals the attractor phase θL
W + kL,

obtained by starting at the west wall and moving to the east wall;
sensation and path integration might disagree (Fig. 4B). How-
ever, plasticity described in Eq. 7 will act to move θL

E closer to
θL

W + kL. Then as the animal returns to the left wall at time
t = 2τ , path integration will retard the attractor phase φA(2τ) =
θL

E− kL, and an encounter with the west wall leads the west
border cell to pin the attractor phase to θL

W. Again, there is no
guarantee that the west border cell pinning phase θL

W agrees with
the attractor phase θL

E− kL obtained by starting at the east wall
and traveling to the west wall, but circuit plasticity will change θL

W
to reduce this discrepancy. Overall, plasticity over multiple cycles
of exploration (Fig. 3 B2) yields the iterative dynamics

θL
E→ θL

W + kL, θL
W→ θL

E− kL.

Thus, the phase difference θL
E− θL

W between the pinning phases
of the two landmark cells will approach the phase advance kL
incurred by path integration between the two landmarks. Thus,
learning can precisely coregister sensation and path integration
so that these two information sources yield a consistent map of
space (Fig. 4C). In particular, the attractor phase assigned by
the composite circuit to any point in the interior of the environ-
ment now becomes independent of which direction the animal
is traveling, in contrast to the case before learning (compare the
assigned interior phases in Fig. 4B with those in Fig. 4C).

Learning as an Elastic Relaxation Between Landmarks
To gain further insight into the learning dynamics, it is useful
to interpret the periodic attractor phase φA(t) as an internal
estimate of position through the “unrolled” coordinate variable
XA =φA/k . Likewise, we can replace the landmark phase θL

i with
another linear variable X L

i = θL
i /k , denoting the internal repre-

sentation of the position of landmark i (Fig. 4D). This enables us
to associate physical positions to landmark cells, or more pre-
cisely their pinning phases, although these assigned positions
are defined only up to shifts of the grid period. By “unrolling”
the learning rule of Eq. 7, we derive the learning and plasticity
dynamics of unrolled phase for the landmark cells over the long
timescale T of exploration,

dX L
E /dT =−MWE

[
X L

E −
(
X L

W + ∆XA
W→E

)]
[8]

dX L
W/dT =−MWE

[
X L

W−
(
X L

E + ∆XA
E→W

)]
, [9]

where ∆XA
W→E =−∆XA

E→W = L (SI Appendix, section V).
These dynamics for the two landmark cell synapses in unrolled

phase are equivalent to those of two particles at physical posi-
tions X L

W and X L
E , connected by an overdamped spring with rest

length L and spring constant MWE (Fig. 4E). If the separation
X L

E −X L
W between the particles is less (greater) than L, then the

spring is compressed (extended), yielding a repulsive (attractive)
force between the two particles. Learning stabilizes the two parti-
cle positions when their separation equals the spring rest length,
so that X L

E −X L
W = L.

This condition in unrolled phase is equivalent to the fun-
damental consistency condition for a well-defined spatial map,
namely that the phase advance due to path integration equals
the phase difference between the pinning phases of landmark
cells (Fig. 4C). However, the utility of the unrolled phase repre-
sentation lies in revealing a compelling picture of how a spatially
consistent map arises from the combined neuronal and synap-
tic dynamics, through simple, emergent first-order relaxational
dynamics of landmark particles connected by damped springs. As
we see below, this simple effective particle–spring description of

synaptic plasticity in response to spatial exploration generalizes
to arbitrary landmarks in arbitrary 2D environments.

We note that if the environment has not been fully learned
or has been recently deformed, the internal representation of
landmarks will lag behind the true geometry for a time, leading
to “boundary-tethered” firing fields seen in refs. 22, 25, and 31.
Additionally (SI Appendix, section V), we have solved the dynam-
ics when the firing fields of the border cells have a finite extent
LWall and the landmark cells have a finite strength ω, and we find
the dynamics obey those of Eqs. 8 and 9, with a different rest
length ∆XA

W→E = L− 2 (LWall− v0 tanh (ωLWall/2v0)/ω).

Generalization to 2D Grid Cells
To make contact with experiments, we generalize all of the
above to 2D space. Now grid cells live on a periodic 2D neural
sheet, where each cell has position u = (u1, u2). The analogue of
Eq. 1 is

ds (u)

dt
=− s(u)

τm
+G

(∫∫
u′

J(|u− u′|)s(u′)
)

, [10]

where J includes short-range excitation and long-range inhibi-
tion (Fig. 5A). Attractor dynamics on this sheet can yield a
2D family of steady-state bump activity patterns s∗(u−φA) with
hexagonal symmetry (SI Appendix, section VII). The attractor
state is now a 2D phase φA on the periodic rhombus (Fig.
5B). Velocity-conjunctive attractor cells yield a generalization
of Eq. 2:

dφA/dt = K dr/dt . [11]

Here we have replaced k in 1D with K, a two-by-two matrix
that translates 2D animal velocity into phase advance in the
2D attractor network. K determines both grid spacing and
orientation.

We again assume the effect of landmark cells on the attractor
network is strong enough to affect the position of the bump pat-
tern, but not strong enough to change its shape. Then learned
Hebbian synaptic weights Wi(u) of landmark cell i onto the
attractor network can be expressed as a weighted superposition
of attractor bump patterns with weighting coefficients W̃i(φ

L):

Wi(u) =

∫∫
φL

W̃i(φ
L)s∗(u−φL). [12]

The learning dynamics are then (see SI Appendix, section XI1 for
a proof)

dW̃i(φ
L)/dT = Pr(φA(t) =φL|i Firing)−W̃i(φ

L), [13]

where W̃i(φ
L) is a distribution over the periodic rhombus (Fig.

5C). Also, each landmark cell i will affect the attractor phase
through

dφA/dt =ωiHi(r(t))

∫∫
φL

W̃i

(
φL
)
F
(
φL−φA

)
, [14]

where F is a 2D force law that pulls φA toward φL. In general,
a landmark cell i will pull the attractor state φA on the rhombus
toward the center of mass of the cell’s synaptic weights W̃i(φ

L)
when viewed as a density over the rhombus (Fig. 5C).

Combined 2D Neural and Synaptic Dynamics During
Exploration
By combining the effects of path integration in Eq. 11 with land-
mark cells in Eq. 14, we obtain the full dynamics of the 2D
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Fig. 5. (A) A 2D neural sheet with short-range excitation and long-range inhibition, analogous to Fig. 1. Each neuron on the continuous sheet now has
coordinates u = (u1, u2). (B) A 2D analogue of a single attractor pattern on the neural sheet, with high firing rates in red (compare with Fig. 1). The set
of all unique stable attractor patterns is now indexed not by a single phase variable as in 1D, but by a 2D phase variable φA ranging over a rhombus or
unit cell. Copies of the unit cell are shown via white lines. (C) The landmark cell Hebbian weights will be a combination of 2D attractor states (Eq. 13). As
the animal travels along the south wall, the average firing rates will form a “streak” across the neural sheet. This leads the Hebbian weights on the neural
sheet to form the same streak; this learned state can be represented as a distribution over the periodic rhombus. Analogously, there is a force law, where
the state of an attractor network φA will be pulled toward this distribution W̃i(φ

L) (Eq. 15). (D) Similar to Fig. 4D, we can unroll the 2D attractor phase into
a 2D position variable, thereby associating landmark pinning phases to points in physical space. Given landmarks in all four corners, the landmark pinning
phases correspond to different points on the phase rhombus, but through unrolling this rhombus, each one can be associated to a physical corner of the
environment.

attractor phase driven by both animal velocity and landmark
encounters:

dφA/dt = K dr/dt

+
∑

i
ωiHi(r(t))

∫∫
φL

W̃i

(
φL
)
F
(
φL−φA

)
. [15]

Now in an analogy to Fig. 4D, we can unroll the attractor phase
φA(t) into a 2D linear variable RA(t) = K−1φA(t), reflecting an
internal estimate of the animal’s physical position (up to the grid
period). Furthermore, by linearizing the force law, we can sim-
plify Eq. 15 by summarizing W̃i(φ

L) by its mean phase and then
unrolling it to obtain another 2D position variable RL

i reflecting
an internal estimate of the center of mass of landmark firing-
field i (Fig. 5D and SI Appendix, section VII.4.D). In analogy to
Eqs. 6 and 7 this yields dynamics for the 2D internal position and
landmark estimates given a 2D animal trajectory r(t):

dRA/dt = dr/dt +
∑

i
ωi Hi(r(t))

(
RL

i −RA
)
, [16]

dRL
i /dT =

〈
RA(t)|Cell i Firing

〉
−RL

i . [17]

Spatial Consistency Through Emergent Elasticity
We showed in Eqs. 8 and 9 and Fig. 4 D and E that the emergence
of spatial consistency between path integration and landmarks
through Hebbian learning dynamics, during exploration of a sim-
ple 1D environment, could be understood as the outcome of
an elastic relaxation process between landmark cell synapses,
viewed as particles in physical space connected by damped
springs. Remarkably, this result generalizes far beyond this sim-
ple environment. As long as the exploration dynamics are time
reversible [time reversible means that for any r(t), the reverse
path r(−t) is equally likely], the learning dynamics of any set
of landmark cells in any 2D geometry yield this particle–spring
interpretation:

dRL
i /dT =−

∑
j

Mij

(
RL

i −
[
RL

j + ∆RA
j→i

])
. [18]

The spring constant Mij is related to the frequency with which
the animal moves between each pair of landmark firing fields
i , j , while the rest displacement ∆RA

j→i is the average change in
unrolled attractor phase as the animal moves from firing-field j
to firing-field i , roughly related to the distance between the land-
mark firing fields. Precise expressions for the spring constants
and rest lengths are derived from the statistics of exploration in
SI Appendix, section VIII.

Overall, this elastic relaxation process converges toward an
internal map where all pairs of landmark cell synapses, viewed
as particles in unrolled phase, or physical space, become sep-
arated by the physical distance between their firing fields. This
convergence ensures a consistent internal environmental map of
external space in which velocity-based path integration of attrac-
tor phase starting at the pinning phase of landmark i and ending
at landmark j will yield an integrated phase consistent with the
pinning phase of landmark j itself. These relaxation dynam-
ics explain path-dependent shifts in firing patterns observed in
recently deformed environments (22). Also, the experimental
observation in ref. 10 that, in multicompartment environments,
consistent maps within compartments form before consistent
maps between compartments is also explained by these relax-
ation dynamics. In essence, the longest-lived learning mode
of the relaxation dynamics corresponds to differences in maps
between compartments.

Furthermore, as we explain in the next three sections, these
relaxation dynamics yield several experimental predictions: (i)
systematic path-dependent shifts in fully learned 2D envi-
ronments, (ii) mechanical deformations in complex environ-
ments, and (iii) the prediction of creation of topological
defects in grid cell firing patterns through specific environmental
manipulations.

Path Dependence in 2D Environments
We saw above that exploration in a simple 1D geometry led to a
consistent internal map in which the attractor network phase was
mapped onto the current physical position alone, independent of
path history (Fig. 4C). This consistency arises through the elas-
tic relaxation process in Eqs. 8 and 9, which makes the distance
between the landmark cells in unrolled phase X L

E −X L
W equal to
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C1

C2

BA1

A2

Fig. 6. (A1) For two landmark cells, the rest length ∆RA
W→E of the spring connecting them equals the physical width L of the environment, and so the

two landmark particles learn unrolled pinning phases RL
E and RL

W obeying the spatial consistency condition (RL
E−RL

W)Eq = ∆RA
W→E = Lx̂ as in Fig. 4C.

Blue and red arrows represent animal trajectories between the west and east walls, having path integration distance ∆RA
W→E, ∆RA

E→W. (A2) The addition
of a southern landmark cell will cause a pinning effect which pulls RL

W, RL
E closer together. The animal can travel from the east and west landmark fields

to the southern landmark field with little path integration (blue/black and black/red arrow pairs), yielding ∆RA
W→S≈ 0, ∆RA

S→E≈ 0. (B) If the attractor
phase is advanced on a west to east trajectory (blue) relative to an east to west trajectory (red), then any particular grid cell (in this case the shaded gray
cell) will fire earlier (later) on a west to east (east to west) trajectory. Thus, grid fields computed from trajectories leaving the west (east) border will shift
west (east). (C1) When landmark pinning phases are pulled together closer than the path integration distance between them, then the attractor phase
will shift away from whichever wall the animal last encountered. Therefore it will phase advance on west to east trajectories relative to east to west
trajectories, as in Fig. 4B and in B. (C2) Thus simulations of Eqs. 13 and 15 lead to grid cell firing patterns shifted toward whichever wall the animal last
encountered.

the physical distance between their firing fields L, just like two
particles connected by a spring with rest length L (Fig. 4E). This
situation will generalize to 2D if there are only two landmarks,
namely a west and an east border cell (Fig. 6 A1). However, it
becomes more complex with the addition of a third landmark
cell, for example a south border cell (Fig. 6 A2).

In this case, east and west landmark particles will be con-
nected by a spring of rest length ∆RA

E→W = Lx̂, as before, but
they will each also be connected to the south landmark parti-
cle with springs. Intuitively, as the animal travels from the east
or west walls to the south walls, the landmark pinning phases of
each of these three border cells will be attracted toward each
other. (More complex, nonoverlapping distributions yield the
same deformations.) The combined three-particle elastic system
will settle into an equilibrium configuration in which the differ-
ence in unrolled phase between east and west landmarks will be
less than the physical separation L or equivalently the rest length
∆RA

E→W of the spring connecting them. This in turn implies that
the attractor phase assigned to any physical position in the inte-
rior will be relatively phase advanced (retarded) if the mouse is
on a trajectory leaving the west (east) wall. This path dependence
in the attractor phase is entirely analogous to that seen in Fig. 4B.
However, the reason is completely different. In Fig. 4B, the land-
mark particles are not separated by the rest length of the spring
connecting them because the environment is not fully learned
and so the particles are out of equilibrium, whereas in Fig. 6 A2,
the particles are not separated by the rest length, even in a fully
learned environment, because additional springs from the south
landmark create excess compression (See SI Appendix, section
IX for details).

This theory makes a striking experimentally testable predic-
tion, namely that even in a fully learned 2D environment, grid
cell firing fields, when computed on subsets of mouse trajecto-
ries conditioned on leaving a particular border, will be shifted
toward that border (Fig. 6B). This shift occurs because at any
given position, the attractor phase depends on the most recently
encountered landmark. In particular, on a west to east (east to
west) trajectory, the attractor phase will be advanced (retarded)
relative to an east to west (west to east) trajectory. Thus, on a
west to east trajectory, the advanced phase will cause grid cells to
fire earlier, yielding west-shifted grid cell firing fields as a func-
tion of position. Similarly on an east to west trajectory, grid fields
will be east shifted. In summary, the theory predicts grid cell fir-
ing patterns conditioned on trajectories leaving the west (east)

border will be shifted west (east). While we have derived this
prediction qualitatively using the conceptual mass–spring picture
in Fig. 6 A2, we confirm this intuition through direct numerical
simulations of the full circuit dynamics in Eqs. 13 and 15 (Fig.
6 C2). Under reasonable parameters, our simulations can yield

A

B

C

Fig. 7. (A) Our theory predicts that grid cell firing patterns will be shifted
toward whichever wall the animal last encountered, even in a fully learned
environment. In B, Left (B, Right) this shift is detected by computing the
cross-correlation between west (south) conditioned firing fields, shifted by a
spatial offset ∆r, and the unshifted east (north) conditioned firing field. The
cross-correlation peaks when the spatial shift is positive in the x direction
(positive in the y direction), as predicted by theory. Cross-correlations are
averaged over all grid cells. (C) This effect can also be seen by comparing
histograms of spike positions around firing-field centers for different path
conditions.
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Fig. 8. (A) Experimental data of grid cell firing patterns deformed, curv-
ing away from a wall in an irregular geometry. (B1) A full simulation of
Eq. 15. Eq. 13 also yields grid firing patterns bent away from the wall. (B2)
Visualization of the average attractor state as a function of position φA(r)
(periodicity removed for visualization purposes). The reversal between the
bending of the internal attractor phase and the bending of firing-rate maps
is similar to the reversal seen in Fig. 6B. (C1 and C2) Same as B1 and B2, but
for a slightly different geometry.

path-dependent shifts of up to∼2 cm toward the wall the animal
last touched (SI Appendix, section XII).

We searched for such subtle shifts in a population of 143 grid
cells from 14 different mice that had been exploring a familiar,
well-learned, 1-m open field (SI Appendix, section XII.2), using
two separate analyses, based on cross-correlations and spike
shifts with respect to field centers.

Cross-Correlations. One method for detecting a systematic firing-
field shift across many grid fields is to cross-correlate firing-rate
maps conditioned on trajectories leaving two different borders
(SI Appendix, section IX.1.A). For example, for each cell, we can
ask how much and in what direction we must shift its west border-
conditioned firing field to match, or correlate as much as possible
with, the same cell’s east-conditioned firing field. In particular,
for each cell, we can compute the correlation coefficient between
a spatially shifted west-conditioned field and an unshifted east-
conditioned field and plot the average correlation coefficient as
a function of this spatial shift. The theory predicts that we will
have to shift the west-conditioned firing field eastward to match
the east-conditioned firing field (Fig. 7A). This prediction is con-
firmed by a peak in the cross-correlation as a function of spatial
shift when the spatial shift is positive or directed east (Fig. 7B).
A similar logic holds for north and south.

Overall, this analysis shows that grid patterns are shifted
toward the most recently encountered wall, both for the north–
south (NS) walls (3 cm, P = 1.5 · 10−5, binomial test; P =
1.5 · 10−5, sign-flip test) and the east–west (EW) walls (1.5 cm,
P = 10−7, binomial test; P = 10−7, sign-flip test), matching the
sign and magnitude seen in simulations.

Firing-Field Centers. These results can be corroborated by com-
puting shifts in spikes relative to firing-field centers, when condi-
tioning spikes on the path history (SI Appendix, section IX.1.B).
For each firing-field center, we calculate the average spike posi-
tion within that firing field conditioned on the animal having
last touched a particular wall. For each cell, we calculate the
average shift across all firing fields and examine how the shifts
depend on which wall the animal last touched. Again, the pat-
terns are shifted toward whichever wall the animal last touched
(Fig. 7C) for both the NS walls (0.5 cm, P = 10−5, binomial test;
P = 10−5, sign-flip test) and the EW walls (0.5 cm, P = 3 · 10−4,
binomial test; P = 2 · 10−2, sign-flip test). The discrepancy in the
estimated magnitude of the shift between the methods of analy-
sis is likely due to poorly defined firing fields; a method based
on firing-field centers will give a lower signal-to-noise ratio,
and thus a lower shift magnitude, than the cross-correlogram
method.

Mechanical Deformations in Complex Environments
Another experimental observation that can be reproduced by
our theory is the distortion (11) of grid cell patterns seen in an
irregular environment (Fig. 8A). Landmark cells with firing fields
distributed across an entire wall will pull the attractor phase to its
associated landmark pinning phase regardless of where along the
wall the animal is. The presence of a diagonal wall then causes
the average attractor phase as a function of position to curve
toward the wall, yielding spatial grid cell patterns that curve away
from the wall (Fig. 8 B1, B2, C1, and C2). Previous theoreti-
cal accounts of this grid cell deformation have relied on purely
phenomenological models that treated individual grid cell firing
fields as particles with mostly repulsive interactions (15), with-
out a clear mechanistic basis underlying this interaction. Our
model instead provides a clear mechanistic basis for such defor-
mations, grounded in the interaction between attractor-based
path integration and plastic landmark cells. Such dynamics yield
an emergent elasticity where the particles are landmark cell
synapses rather than individual firing-field centers.

Topological Defects in Grid Fields: A Prediction
While the dynamics of the linearized Eqs. 16 and 17 will always
flow to the same relative landmark representations RL

i , this is
not the case for the full dynamics of Eqs. 13 and 15, which can

A

B

C

Fig. 9. (A) Two steady-state grid cell patterns emerging from the same cue-
rich environment. In the first firing pattern, the combination of landmark
pinning and path integration yields a phase advance of four firing fields in
traveling from west to east along either corridor. The second pattern has a
topological defect: Traveling from the west to the east through the north
corridor yields a phase increase of ∼1.5 firing fields; traveling east to west
through the south corridor yields a phase decrease of∼2.5 firing fields. This
second pattern is stable nonetheless. (B) Schematic of 1D underlying attrac-
tor state as a function of space. The two patterns in A correspond to two
different landmark pinning-phase patterns learned by the many landmarks.
Both landmark pinning patterns are stable under Eqs. 13 and 15. In the first
pattern, the combination of landmark pinning and path integration yields
the same phase advance in both the north and south corridors. The second
pattern has a topological defect: The phase advance in the north corridor
is one full rotation less than the phase advance through the south corri-
dor. This is possible because many landmark cues (colored arrows) can yield
many landmark cells with multiple stable synaptic configurations or pin-
ning phases under Eqs. 13 and 15. (C) Schematic of proposed “deformation
schedule” that could yield a topological defect in grid cell firing patterns. By
separating/truncating the northern corridor, stretching it (along with spatial
cues, denoted by colored arrows), and then reconnecting it, it may be pos-
sible to introduce one of these defects. Even though the initial geometry is
identical to the final geometry, the deformation schedule has led to a fir-
ing pattern which is three fields wide in the north and four fields wide in
the south.
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learn multiple different stable landmark cell synaptic configura-
tions. One striking example of this is the ability of the learning
dynamics to generate “topological defects,” where the number
of firing fields traversed is not the same for two different paths
(Fig. 9 A and B and SI Appendix, section XII). An environ-
mental geometry capable of supporting these defects will yield
a set of firing patterns that depends not only on the final geom-
etry, but also on the history of how this geometry was created
(Fig. 9C).

Discussion
Overall, we have provided a theoretical framework for explor-
ing how sensory cues and path integration may work together to
create a consistent internal representation of space. Our frame-
work is grounded in biologically plausible mechanisms involving
attractor-based path integration of velocity and Hebbian plas-
ticity of landmark cells. Moreover, systematic model reduction
of these combined neural and synaptic dynamics yields a sim-
ple and intuitive emergent elasticity model in which landmark
cell synapses act like particles sitting in physical space connected
by damped springs whose rest length is equal to the physical
distance between landmark firing fields. This simple emergent
elasticity model not only provides a conceptual explanation of
how neuronal dynamics and synaptic plasticity can conspire to
self-organize a consistent map of space in which sensory cues
and path integration are in register, but also provides predictions
involving small shifts in firing fields even in fully learned envi-
ronments, potential topological defects in grid cells, and grid cell

mechanical deformation when borders are irregular. Further-
more, a special case of this model can explain sudden grid cell
remapping events in altered virtual reality environments as the
disagreement between landmarks and path integration is gradu-
ally increased; the model remaps due to sudden phase transitions
in its dynamics (32).

This work opens up many interesting avenues. For example,
further explorations of the nonlinear regime of our model may
yield interesting experimental signatures that distinguish differ-
ent modes of interaction between attractors, path integrators,
and landmark cells. Incorporating heterogeneity of neural repre-
sentations observed in MEC (33) into our framework is another
intriguing direction. Also, as the reliability of sensory and velocity
cues changes, it is interesting to ask what higher-order mech-
anisms may differentially regulate the effect of landmarks and
velocity on the internal representation of space. More gener-
ally, our theory provides a unified framework for understanding
how systematic variations in environmental geometry and the
statistics of environmental exploration interact to precisely sculpt
neural representations of space.
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