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a b s t r a c t

Genetic exchange in microbes and other facultative sexuals can be rare enough that evolution is almost
entirely asexual and populations almost clonal. But the benefits of genetic exchange depend crucially on
the diversity of genotypes in a population. How very rare recombination together with the accumulation
of newmutations shapes the diversity of large populations and gives rise to faster adaptation is still poorly
understood. This paper analyzes a particularly simple model: organisms with two asexual chromosomes
that can reassort during rare matings that occur at a rate r . The speed of adaptation for large population
sizes,N , is found to depend on the ratio∼ log(Nr)/log(N). For larger populations, the r needed to yield the
same speed decreases as a power of N . Remarkably, the population undergoes spontaneous oscillations
alternating between phases when the fittest individuals are created by mutation and when they are
created by reassortment, which – in contrast to conventional regimes – decreases the diversity. Between
the two phases, the mean fitness jumps rapidly. The oscillatory dynamics and the strong fluctuations this
induces have implications for the diversity and coalescent statistics. The results are potentially applicable
to large microbial populations, especially viruses that have a small number of chromosomes. Some of
the key features may be more broadly applicable for large populations with other types of rare genetic
exchange.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The reasons for the ubiquity of sex, or more broadly genetic
exchange, across all domains of life have been the subject of a long
and ongoing debate (reviewed recently by Otto, 2009 and Hart-
field and Keightley, 2012). Evolutionary explanations for sex must
explain its advantages over its disadvantages in a spectrum of evo-
lutionary scenarios and justify the benefits of its continuedmainte-
nance. Producing and maintaining diversity for selection to act on
is a traditional explanation for sex. But when genetic exchange is a
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rare process – as it is now formany groups of organisms– even ana-
lyzing such advantages quantitatively can be challenging. Between
instances of genetic exchange, asexual evolution produces genetic
correlations in the population that limit the utility of sex. Close
relatives gain little by mating with each other, so the evolution of
a population dominated by clones will depend sensitively on how
its diversity is created and maintained by the combined effect of
asexual accumulation of mutations and genetic exchange.

In large populations – as microbial populations usually are –
many beneficial mutations can occur each generation. In asexual
populations these mutations compete with each other and only
one can ultimately takeover the population: such competition is
known as clonal interference (Gerrish and Lenski, 1998). A classic
hypothesis for the advantage of sex is the Fisher–Muller effect: sex
reduces the competition between different beneficialmutations by
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enabling them to recombine onto the same genome, thus decreas-
ing the ‘‘wastage’’ of beneficial mutations (Fisher, 1930; Muller,
1932, 1964; Hill and Robertson, 1966; Otto and Barton, 1997;
Barton andOtto, 2005). But to understand the Fisher–Muller effects
quantitatively in populations with low rates of recombination, a
detailed understanding of asexual evolution in large populations
is needed. A major complication beyond the simple clonal inter-
ference picture is that multiple beneficial mutations can arise on
the same lineage before any of them fix. In this case, the success
of a newmutation strongly depends on the genetic background on
which it arises: only on an already very fit background does it have
a substantial chance of fixing (Barrett et al., 2006; Desai and Fisher,
2007; Park and Krug, 2007; Fogle et al., 2008). Evidence of clonal
interference and complex accumulation of beneficial mutations
has been found in many laboratory experiments with bacteria,
viruses, and S. cerevisiae (De Visser et al., 1999;Miralles et al., 1999;
Desai et al., 2007; Sniegowski and Gerrish, 2010), as well as in
natural viral populations (Strelkowa and Lässig, 2012; Batorsky et
al., 2011; Zanini et al., 2016).

To understand the interplay between clonal interference, ac-
quisition of multiple beneficial mutations, and recombination,
analysis of simple scenarios and models is needed. If the environ-
ment has recently changed,many beneficialmutations can become
available and, at least for some time, the population can evolve
under sustained directional selection with the supply of beneficial
mutations only slowly depleting. (This appears to be the case in
the long-term experiments of Lenski and collaborators, see Barrick
et al., 2009.) The simplest model is to assume that only beneficial
mutations occur, that their supply is not depleted, that they all have
the same fitness effect, s, and that these effects are additive. There
is now a large body of work analyzing asexual evolution in this
model ( Tsimring et al., 1996; Rouzine et al., 2003; Desai and Fisher,
2007; Rouzine et al., 2008; Hallatschek, 2011; reviewed in Park et
al., 2010). For small populations the evolution is mutation limited
with a beneficial mutation arising occasionally and sweeping to
takeover the population before another occurs: the rate of fitness
increase – the speed, v, of the evolution – is then simply pro-
portional to the population size, N , times the beneficial mutation
rate, U (= Ub). But in large populations, multiple mutations arise,
compete – via clonal interference – and accumulate mutations in
the same lineage before any fix. This results in a broad fitness
distribution that forms a traveling-wave moving steadily towards
higher fitness with a speed that grows only logarithmically with
N . The statistics of the genetic diversity in such rapidly evolving
asexual populations have also been analyzed: the phylogenies are
characterized by multiple mergers and skewed branching, and
the site frequency spectrum is strikingly different than neutral
theory (Neher and Hallatschek, 2013; Desai et al., 2013).

Simple models of rapid adaptation have been extended to in-
clude the effects of sex. With enormous recombination rates, all
mutations are independent and clonal interference is negligible.
But in large populations, with any reasonable recombination rate
mutations still compete. Nevertheless, the behavior simplifies for
relatively high recombination rates, in particular for facultative
sexuals with recombination frequent enough that mutations have
a substantial chance of recombining onto a good genetic back-
ground before they are out-competed to extinction. For this to
occur, the recombination rate, r , needs to be comparable or larger
than the selective strength, s, up to logarithmic factors (Neher
et al., 2010). In this regime, the dynamics of new mutations are
determined by the distribution of fitness backgrounds on which
they arise and with which they can recombine. When many ben-
eficial mutations are segregating at the same time, linkage is very
transient and the correlations betweenmutational frequencies are
weak: the behavior can then be analyzed by following the statistics
of single mutations. To fix, some of the descendants of mutations

that arise need to recombine onto a high fitness background, grow
in number, recombine again, and so on until themutant population
becomes large enough to avoid extinction by linkage to ‘‘only’’
average genetic backgrounds. Neher et al. (2010) find that the
speed of evolution grows linearly or quadratically (depending on
themodel) with the recombination rate, r , becausemore andmore
mutations can segregate in parallel.

For obligate sexualswith linear chromosomes, the behavior also
simplifies somewhat. The chromosomes act roughly as if broken up
into effectively asexual segments whose evolution can be approx-
imated by rapid asexual adaptation within each of the weakly cor-
related segments with the effective recombination rate between
these being comparable to the selection coefficients. The speed of
evolution is then proportional to the genomic recombination rate
(map length), R, times log(N) (Neher et al., 2013; Weissman and
Hallatschek, 2014;Neher et al., 2010;Weissman andBarton, 2012).

We are interested in the behavior with much lower recom-
bination rates—not only r ≪ s, when the previous analyses
already breakdown, but down to when r is of order an inverse
power of the population size. This regime is increasingly important
for very large and nearly asexual populations since the dynam-
ics become increasingly sensitive to small recombination rates
for larger populations. Recombination is infrequent enough that
clonal growth, asexual accumulation of multiple mutations, and
close relationships between recombining genomes are essential.
Aswell shall see, the behavior is rathermore complex. Rouzine and
Coffin (2005, 2007, 2010) have studied the purging of deleterious
alleles starting from standing variation when mating is very rare
but still results in a lot of recombination when it does occur.
They found that the interplay between exponential growth of sub-
populations from selection and recombination to produce higher
fitness genomes results in a rate of fitness increase that depends
only logarithmically on the frequency of sex. They also considered
the effects of correlations due to common descent, which are an
important effect for rare sex (Gheorghiu-Svirschevski et al., 2007),
and approximated the effects of these (Rouzine and Coffin, 2010).
But these studies do not consider a crucial feature: how diversity
in the fitness distribution is created and maintained by an influx
of new mutations. It is the interplay between mutation, selection,
and recombination that needs to be understood.

Simulations of simple models of asexual evolution can be car-
ried out efficiently. For many aspects only fitnesses are relevant,
and aspects of the diversity, such as the site frequency spectrum
of individual mutations, can be inferred from methods based on
fitness classes (Neher and Hallatschek, 2013; Desai et al., 2013).
But simulations of sexual populations with low rates of recombi-
nation need to keep track of the full genomic diversity. This can
be computationally prohibitive for large population sizes, such
as those found in microbial experiments, because they require
keeping track of a huge number of genomes (roughly of order NU).
Thus studying simpler models that include the key effects of both
asexual mutation accumulation and occasional recombination is
called for.

In this paper, we study a particular – and in some ways the
simplest – compromise model: a facultative sexual population
with two asexual chromosomes that can undergo reassortment but
not recombination within the chromosomes. Under an assump-
tion of additivity of the fitnesses of the two chromosomes, only
the fitnesses of each chromosome are needed. This model was
introduced and studied by Park and Krug (2013), who focused
on the limit when mating is frequent enough that the speed sat-
urates at its value for obligate sexuals. Here we focus on the rare
reassortment regime and analyze the crossover from asexual to
obligate sexual. Because mating is rare, we can leverage much
of the intuition and results from the asexual case. Reassortment
can provide many of the benefits of recombination, so genome
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segmentation and reassortment could have been important in the
origin of sex (Antezana and Hudson, 1997).

Although not the primary motivation, we note that models
with reassortment of chromosomes but no recombination within
them are natural for some RNA viruses such as influenza that have
segmented genomes (Froissart et al., 2004). When two viruses co-
infect a cell, segments from both can be repackaged into new viral
particles, which results in reassortment. The rate of reassortment
thus depends on the probability of co-infections and hence on the
ratio of viruses to host cells so that reassortment is rare when viral
densities are low.

2. Model and parameters

We consider a population of N haploid individuals with
genomes consisting of two chromosomes. They are facultatively
sexual and two individuals mate at a rate r , resulting in the reas-
sortment of their two chromosomes but no recombination. Benefi-
cial mutations occur at a rate U (= Ub) per chromosome. We are
interested in continual evolution of large populations for which
beneficial mutations are the driving force of the dynamics and
deleteriousmutations haveminor effects (Desai and Fisher, 2007).
Thuswe consider an infinite-sitesmodel inwhich allmutations are
beneficial and each chromosome can accumulate any number of
such mutations with no back mutations.

For simplicity, we take all mutations to have the same small
(log-)fitness effect s ≪ 1 and assume additive fitnesses. The
fitnesses of the two chromosomes, X and Y , are then simply s
times the number of mutations on each, and the total fitness is
Z = (X + Y ). Despite the assumption of fixed effect size, the
basic results of our analysis should hold more generally: asexual
evolution with a distribution of mutation sizes has been shown
to be dominated by a small range around a single effective s and
an effective U if the distribution of mutation sizes falls off quickly
enough (Fisher, 2013; Good et al., 2012).

When mating, parental chromosomes are reassorted. Parents
with fitnesses (X1, Y1) and (X2, Y2) will produce offspring with
(X1, Y2) and (X2, Y1). Individuals are chosen randomly to undergo
reassortment. Therefore the probability of reassortment producing
the genome (X, Y ) is proportional to the number of individuals
with X and the number with Y . With discrete values of fitness, the
subpopulations of the ‘‘fitness classes’’ we denote n(X, Y ) and the
total number with X by n(X) =

∑
Yn(X, Y ). Long-term increases in

fitness rely on the nucleation of new high fitness classes by either
mutation or reassortment. The parameters introduced in this sec-
tion and main variables used throughout the text are summarized
in Table 1.

The schematic stochastic differential equation for the dynamics
of a subpopulation (approximated as being continuous) is

dn(X, Y ) = (X + Y − ⟨X + Y ⟩) dt n(X, Y )
+ Udt [n(X − s, Y ) + n(X, Y − s) − 2n(X, Y )]

+ rdt
[
n(X)n(Y )

N
− n(X, Y )

]
+

√
n(X, Y )dt η(X, Y , t). (1)

The first term represents growth and selection determined by the
relative fitness above the population-mean fitness, ⟨Z⟩: henceforth
we will denote absolute fitness (in units of s) with capital letters,
e.g. X , and relative fitness with lowercase, e.g. x = X − ⟨X⟩. The
second term is the net influx of mutations into the (X, Y ) fitness
class. The third term describes reassortment: the number of new
offspring is proportional to the total number of matings in the
population, Nr , times the frequencies of the two chromosomes
with the needed fitnesses, i.e. n(X)/N and n(Y )/N . The final term
represents the stochasticity of births and deaths. The distribution

of the random variables {η} are essentially independent gaussians
for each fitness class with small – but essential – corrections to
enforce the fixed population size constraint (Fisher, 2013). The√
n factor mimics the effects of discrete individuals (the ‘‘diffusion

approximation’’), and allows subpopulations to go extinct. Wewill
approximate this stochasticity in other ways that do not affect any
substantial properties.

Primary quantities of interest are the mean speed of evolution
defined as

v ≡ d⟨Z⟩/dt, (2)

the shape of the two-dimensional distribution of non-zero sub-
populations – in particular its fitter-than-mean boundary we call
the front – and the fluctuations of these quantities.

We will consider the range of parameters for which the asexual
dynamics simplify: strong selection (Ns ≫ 1) and weak mutation
(s ≫ U). This regime is applicable for large microbial populations.
We are interested in the effects of multiple mutations that are
simultaneously segregating in the population, and thus focus on
the regimeNU ≫ 1 inwhichmanybeneficialmutations occur each
generation. (See, for example, (Kim and Orr, 2005) for the effects
of sex when clonal interference is weak and NU is order one.) The
roles of these assumptions will be discussed in Section 3. Park and
Krug (2013) studied the limit r ≫ s of the two chromosomemodel.
They found that in this regime the speed of evolution rapidly
approaches the obligate sexual (r → ∞) limit. When r is sub-
stantially greater than s, the reassortment rate is high enough that
any linkage between chromosomes is broken up before growth
becomes important, so each chromosome evolves independently.
Thus for r ≫ s, v(U) ≈ 2va(U) where va(U) is the asexual speed
for a single chromosome. Our focus is the regime when mating is
rare (r ≪ s). In this regime almost all subpopulations grow clonally
with negligible loss or gain due to reassortment. But reassortment
is crucialwhen it produces individuals in new fitness classes earlier
than mutations can. As the mating rate is increased from zero to
much larger than s, v should increase from va(2U) to 2va(U). It is
this crossover regime, in which the interplay between mutation
accumulation and reassortment ismost subtle, thatwe particularly
wish to understand.

Because the subpopulations with fitnesses higher than the
mean are growing exponentially, the times at which key events
occur depend only logarithmically on the parameters. Thus it is
useful to define logarithmic variables for the large parameters of
the model:

L ≡ log(Ns), ℓ ≡ log(s/U). (3)

As in the asexual case reviewed below, the behavior and analysis of
the model simplifies in an asymptotic regime where the logarith-
mic parameters are themselves large, and more so if in addition
L ≫ ℓ ≫ 1. Although these are never strong inequalities in
practice, the approximations they lead to capture the qualitative
behavior and are quite good quantitatively for reasonable param-
eter ranges (Desai and Fisher, 2007).

With reassortment, new high fitness subpopulations are pro-
duced by subpopulations that are growing exponentially. Thus
again characteristic times might be expected to depend only loga-
rithmically on parameters. It is convenient to define a logarithmic
measure for the reassortment rate in terms of the population-total
rate of mating:

λ ≡ log(Nr). (4)

As the reassortment rate increases fromO(1/N) toO(s),λ increases
from 0 to L. (When λ < 0 there are typically no reassortments in
the whole population and their effect is negligible.)

For very large populations an important simplification is that
many sums over subpopulations are dominated by a small subset
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Table 1
Parameters and variables.

Model parameters

N Population size
s Mutation effect size
U Beneficial mutation rate per chromosome
r Mating rate
L ≡ log(Ns) Logarithmic parameters
ℓ ≡ log(s/U)
λ ≡ log(Nr)
q ≡ 2L/ℓ Asexual nose fitness is qs, see Section 3

Variables

v, va , vs Speed of evolution: steady state, asexual, and sexual speeds
X , Y Absolute fitness of the two chromosomes
Z ≡ X + Y ,W ≡ X − Y Total fitness, ‘‘transverse’’ fitness
⟨Z⟩ Mean fitness of population
x, y, z, w Relative fitnesses, e.g. x = X − ⟨X⟩

f (w) Relative fitness of the ‘‘front’’: high fitness edge of population
distribution

x̃ ≡ xs/vℓ, t̃ = ts/ℓ Rescaled fitness and time
n(X, Y ) Size of subpopulation with fitnesses (X, Y )
n(X) ≡

∑
Yn(X, Y ) Size of all subpopulations with X chromosome of fitness X

α ≡ log (ns) /L Scaled logarithmic subpopulation size
ν(X, Y ) ‘‘Feeding’’ rate of new individuals due to mutation or reassortment

Properties of steady state

Q Nose fitness
R ≡ vℓ2/2Ls2 Rescaled speed
(fs, ws) or (xs, ys) Wing start fitnesses
fM , zG , τM , τG Fitnesses (fM , zG) after time that lineage mutates (τM ) or grows (τG)

of them. Subpopulations near the boundary of the fitness distribu-
tion have sizes, n, of order unity while those near its maximum
have sizes a substantial fraction of N . Thus log(ns) ranges from
O(1) to L. The exponential growth (or decay) with time implies
that it is natural to express these using a normalized logarithmic
variable α such that ns ≡ exp(Lα). A sum over subpopulations
can then be approximated as

∫
exp(Lα) ≈ exp(Lαmax) for L ≫ 1,

where we have dropped factors that are not exponential in L. For
example, the sum n(X) =

∑
Yn(X, Y ) determines how many X

chromosomes are available for reassortment. For large L, nearly
all such X chromosomes come from one subpopulation or from a
narrow range of subpopulations relative to the full width of the
fitness distribution.

3. Review of asexual dynamics

In the limit of no mating, the dynamics are asexual. Qualitative
concepts and scalings from the asexual dynamics are crucial for
understanding the regimes of rare mating, thus we first review the
asexual limit following the heuristic analysis of Desai and Fisher
(2007). The picture of asexual evolution can be greatly simplified
by a separation of scales. The growthof a clonal subpopulation is af-
fected by both stochastic fluctuations and the nonlinear population
size constraint. However, for strong selection (Ns ≫ 1) stochastic
fluctuations only matter when a subpopulation is relatively small,
long before it grows enough that the nonlinear constraint becomes
important. Conversely, for the large subpopulations that dominate,
the total population size constraint is crucial but the fluctuations
are small. This separation of scales allows the influence of fluctua-
tions and the population size constraint to be analyzed separately.
But an essential property of the dynamics is the coupling between
the fluctuations of small subpopulations and the effects of these
fluctuations when those subpopulations become large and nonlin-
earities become important: this is what makes the full stochastic
dynamics so difficult to analyze theoretically (Fisher, 2013).

The crucial subpopulation is the onewith highest fitness, which
on average grows exponentially faster than the others. Conditional
on a new subpopulation surviving drift and becoming established,
its fluctuations can be neatly packaged into an establishment time,

roughly the time at which the lineage appears to have started
growing deterministically. A lineage with fitness z above themean
has probability z of establishing. At long times, an established
lineage grows as

n(t) ≈
1
z
ez(t−τest) (5)

where the random variable τest is the establishment time whose
distribution captures the randomness of the early-time fluctua-
tions of a new sub-population (Desai and Fisher, 2007).

In the multiple mutations regime (NU ≫ 1), there are many
subpopulations that are fitter than the mean. Mutations from the
fittest subpopulation – referred to as the nose of the distribution –
will start nucleating a new fitter subpopulation. This new nose has
some fitness, Q , above the mean. This subpopulation, nQ , receives
mutations from the subpopulation nQ−s. In the weak mutation
limit (s/U ≫ 1), nQ−s will already be growing deterministically
before the nose is likely to establish. After establishing with size
1/Q , the subpopulation grows as nQ−s = exp [(Q − s)t] /Q with t
measured from its own establishment time. It can be shown that
the establishment time of nQ has a mean of

τ est ≈
ℓ

Q
(6)

for large ℓ (Desai and Fisher, 2007).
For rapid asexual adaptation, the balance of selection and mu-

tation results in a steady state population distributionwhosemean
fitness increases at some average speed va. For consistency, the
nose must advance, one mutation at a time, at the same speed va.
Hence va = s/τ est.

Behind the nose, the dynamics are essentially deterministic
with negligible contributions from newmutations (for ℓ ≫ 1). The
speed and shape of the distribution are determined by the balance
between selection and the constraint on the total population size.
After establishment, the subpopulation formerly at the nose will
grow deterministically but with ever decreasing relative fitness,
Q − vat . This subpopulation grows until its fitness is the same as
the mean and reaches a maximum size in a time τnm = Q/va,
called the nose-to-mean time. At this time, it has become the
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largest subpopulation with a size of order N . Thus (to logarithmic
accuracy) this subpopulation size is

n(t) ∼
1
Q
e[

∫ t
0 (Q−vat) dt] ∼

1
Q
eQt−

vat2
2

−→ nmax ∼
1
Q
eQ

2/2va ∼ N. (7)

Thus for consistency we need va = Q 2/2 log(Ns) where we have
dropped a factor of Q/s inside the logarithm since log(Ns) ≫

log(Q/s). Equating this speed to the advance of the nose, va =

s/τ est ≈ Qs/ℓ, yields
Q
s

≈
2L
ℓ

and va ≈
2L
ℓ2

s2. (8)

Note that the speed does not depend directly on the total mutation
rate NU because of clonal interference between the mutations
that arise. Only the small fraction of mutations that arise near the
anomalously fit backgrounds near the nose have a chance of fixing.
The shape of the fitness distribution also follows simply by tracking
the subpopulations: it is very close to gaussian except right at
the nose where it is ‘‘cutoff’’ (Tsimring et al., 1996) and strongly
fluctuating (Fisher, 2013).

3.1. Approximations and their validity

The accuracy of the approximations that lead to eq. (8) depend
on combinations of parameters. The basic regime of validity of
the primary approximations is L → ∞, but how large L must
be depends also on ℓ and differs somewhat depending on the
quantity of interest. If the number of mutations of the nose above
the mean, q = Q/s ≈

2L
ℓ
, is only a few, then there are several

sources of corrections to the simple asymptotic expressions. The
nose fitness changes from Q to Q − s while establishing, so a
somewhat more accurate analysis using the average fitness Q −

1
2 s

yields va/s2 ≈ (2L − ℓ)/ℓ2. This also matches correctly to the
speed at the crossover, at L = ℓ, from the successive mutations
regime with va ≈ NUs2 for NU ≪ 1/ℓ to the multiple mutations
regime for larger NU . However this assumes smooth motion of the
mean, which is not the case for small q. The motion is jerky even
in the deterministic approximation and the fitness distribution is
not so well approximated by a smooth gaussian. Smoothmotion of
the mean requires high enough speeds that the root mean square
width, σ ≈

√
va, of the fitness distribution is greater than a single

mutation, s: this requires L ≳ ℓ2, or q ≳ ℓ. Note, however, that
because sums over the discrete populations approximate verywell
a smooth gaussian, in practice already for q ∼ ℓ/3 the effects of the
jerkiness are small (Fisher, 2013).Moreover, formany properties of
interest, the effects of the jerky motion of the mean are minor as
long as q is relatively large.

We will generally analyze the asymptotically large L limit in
which most aspects of the asexual dynamics become essentially
deterministic and the fitness distributions smooth enough that the
fitness can be considered as a continuous variable. There are major
simplifications thatwemake use ofwhen ℓ is also large.We largely
restrict the analysis to this limit and discuss corrections when
needed to compare with simulations and study crossover regimes.
A discussion of the effects of fluctuations and their scalingwith the
reassortment rate can be found in Section 8. As we shall see, much
of the behavior is captured, even quantitatively, for realistic values
of parameters that are far from the asymptotic limits of validity of
the analyses.

3.2. Scaled variables

The asexual analysis suggests some basic rescalings that will
be useful for studying the two chromosome model. The important

fitness and time scales are the nose fitnessQ = vaℓ/s and the nose-
to-mean time, τnm = Q/va = ℓ/s. Thus a natural set of rescalings
for fitness and time, which we will use more generally, are

z̃ =
z

(vℓ/s)
and t̃ =

t
(ℓ/s)

(9)

where v is the actual average speed—as yet unknown with reas-
sortment but in general greater than the asexual speed va. In these
rescaled variables the speed is unity and a subpopulation’s fitness
relative to the advancing mean has a simple expression:

z̃
(
t̃
)

= z̃0 − t̃. (10)

For the two chromosome model, we will define

q ≡ 2L/ℓ (11)

for convenience. In the asexual limit q is the number of mutations
that the nose is above the mean, Eq. (8). While this is not true for
nonzero mating rates, q is a convenient parameter combination
that turns out to be always within a factor of two of the number of
mutations between themean and the nose. The asymptotic regime
in which most of our analyses become accurate corresponds to
q ≫ 1, so that many fitness classes are populated and the fitness
is effectively continuous.

4. Simulation results

The separation of scales when evolution is rapid allows efficient
simulations for large population sizes. In particular, one can ignore
stochasticity except in small subpopulations forwhich fluctuations
are important. Although these fluctuations will eventually effect
the large subpopulations, we directly incorporate the resulting
non-linearities by keeping the total population size fixed. The
establishment size (above which it is unlikely to go extinct) for a
subpopulation with fitness z is nest ∼ 1/z, so we conservatively
set a threshold for stochasticity of n < 10/s. Eq. (1) is used
to generate the expected number, nexp, of individuals for each
subpopulation (X, Y ) for the next time step. For nexp ≥ 10/s we
simply set n = nexp, corresponding to deterministic growth. For
small subpopulations nexp < 10/s, we sample n from a Poisson
distribution with mean nexp. This scheme slightly alters the birth–
death process but the differences are small even on linear scales
and are negligible when the logarithmic parameters that control
the very large N behavior become substantial. (In an exponentially
growing population the fluctuations are dominated by early times:
from a size n0, the late time fluctuations in the subpopulation size
are δn(t)/n(t) ∼ 1/

√
n0. With n0 = 10/s these fluctuations are at

most a few percent, much smaller than those from the time when
the subpopulation is establishing, when n(t) ∼ 1/qs or smaller,
that are accounted for by our simulation scheme.)

To understand the behavior, it is useful to study a fully deter-
ministic approximation to the dynamics, For the asexual case, a
deterministic approximation of the nose dynamics approximates
very well the mean shape and speed of the fitness distribution.
This approach of using a deterministic model with a cutoff at high
fitness goes back to the study of the asexual model by Tsimring
et al. (1996). What is needed is a way to decide when a new
deterministic subpopulation establishes. One simple approach is
based on the expected number of established lineages. Consider an
influx ν(t) of new mutants into an initially empty subpopulation
with fitness z. Then the expected number of established lineages
at time t is

m ≡ E[number of established lineages]

=

∫ t

−∞

z ν(t ′) dt ′. (12)
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Fig. 1. Stochastic simulation results for the speed of evolution for different values
of N , r , and U compared to the steady state analysis and deterministic simulations.
Simulations were run for a time 200ℓ/s for the q = 20 and q = 60 curves (green)
and a time 600ℓ/s for the N = 108 and N = 1012 curves (red), with ℓ/s being
roughly the time for the nose population to become the largest subpopulation. The
quantity plotted is the normalized increase in speed due to reassortment: the ratio
of the speed increase from asexual, v − va , to the maximum speed increase in
the sexual limit, vs − va . The q = 20 and q = 60 curves are for asymptotically
large populations, both with L ≡ log(Ns) = 600, so that the fitness distribution
is essentially continuous. The red curves illustrate two realistic sets of parameter
values for large microbial populations feasible in evolution experiments (These
correspond to q ∼= 2.7, ℓ ∼= 11 for N = 108 and q ∼= 9, ℓ ∼= 5.3 for
N = 1012 .) The N = 108 curve is shifted due to corrections of order one in the
effective λ caused by fluctuations as discussed in Section 5.1. The purple curves
show the results of the steady state analysis which exhibits two regimes: low
mating (λ/L < 0.8) and intermediate mating (λ/L > 0.8). The observed speed from
the stochastic simulations also changes non-smoothly near the boundary between
these two regimes. The blue curve shows the results of deterministic simulations
illustrating excellent agreement with the stochastic simulations for a particular
set of parameter values in the large q regime. A more extensive comparison of
deterministic and stochastic simulations is in Fig. D.13.

For our specific deterministic approximation, whenever m(t)
reaches an integer, we add a new lineage of size 1/z to the subpop-
ulation. This procedure removes stochasticity without allowing
fractions of an individual to have an effect. For the asexual case,
it corresponds almost exactly to the approximation used above in
Section 3 of treating the stepward advance of the nose at constant
intervals of τ est.

An implementation of the stochastic and deterministic simu-
lations used in this paper are provided via an online data repos-
itory, see (Pearce and Fisher, 2017). Fig. 1 shows results for the
mean speed from the stochastic simulations and compares these
to steady state approximations analyzed in the following sections.
The quantity plotted is the ratio of the increase in speed above
the two chromosome asexual speed, v − va(2U), to the increase
of a fully sexual population, vs − va(2U) (with reassortment but no
recombination). This ratio thus goes from 0 to 1 as r is increased
fromO(1/N) toO(s). A primary result from the steady state approx-
imation analyzed below is that, asymptotically, the speed should
depend on the recombination rate only through the combination,
λ/L ≡ log(Nr)/log(Ns). The simulation results show that the λ/L
dependence indeed captures the overall scaling of the speed. In
the asymptotic limit of large ℓ and large q = 2L/ℓ, the normalized
speed predicted for the steady state does not depend on q or ℓ. The
stochastic simulations in Fig. D.13 show that, indeed, the speed
does not depend much on q, but at low reassortment rates there
is substantial dependence on ℓ. We will elucidate and expand on
various aspects of Fig. 1 in the following sections, including the
derivation of the steady state approximations and a discussion of
the more complicated – and interesting – features of the dynamics
beyond the mean speed.

5. Two chromosome asexual limit

Without reassortment, the two chromosome model is equiva-
lent to asexual evolution but with each mutation having a label:
X or Y. With twice the overall mutation rate, the speed is va(2U) ≈

2L/log(s/2U)2 = 2L/(ℓ − log(2))2. (Note that the small log(2)
correction to ℓ yields corrections to v of the sameorder as other 1/ℓ
termsneglected in the approximations used in deriving the asexual
speed, but in ratios its effects are noticeable for any reasonable ℓ.)
In principle, the population distribution n(X, Y ) could be inferred
from the asexual diversity statistics derived in Desai et al. (2013)
by accounting for the random X or Y labels. We shall see that
the subpopulations important for small reassortment have a very
asymmetric division of mutations – anomalously high fitness on
one chromosome and low or average fitness on the other – corre-
sponding to tails of the distribution of labels. Thus to understand
the behavior with reassortment we must track the dynamics of
anomalous lineages that mutate mostly on a single chromosome.
These are not so readily amenable to the asexual approaches of
Desai et al. (2013), thus we instead use a fitness class approach
similar to Section 3.

With two chromosomes there is a one-dimensional front in
fitness space thatmarks the leading edge of the fitness distribution.
A useful variable to parametrize the fitness distribution is the
difference in fitness between the two chromosomes, w ≡ X −

Y − ⟨X − Y ⟩ = x − y, which on average does not change as the
mean fitness advances. The front is the set of subpopulations with
the highest fitness for a given w value and their fitnesses relative
to the mean we denote f (w). These subpopulations at the front
are the ones that have most recently established. The steady state
asexual fronts are plotted in Fig. 2 for different mutation rates. If
the transverse coordinate, w, is integrated over, the nose of the
resulting fitness distribution is dominated by only part of the front,
and likewise the mean by only a small part of the range of w.
Nevertheless, we shall see that with reassortment, a wider range
of both the front and the bulk of the distribution will be important.

The establishment time calculations in Section 3 can be used
to derive a self-consistency condition for a steady state front. In
the limit of large q and f ≫ s, one can approximate the front
as continuous, so that the condition will become a differential
equation for f (w). A new mutant with (X, Y ) can come from two
parental fitness classes: (X − s, Y ) and (X, Y − s). The combined
size of the two feeding subpopulations is

n(t) ≈
1
f
ef (t−τ1) +

1
f
ef (t−τ2), (13)

where τ1 and τ2 are their two establishment times (here ignoring
the difference between f and f − s as in the asexual case). The
combined subpopulation grows exponentially as exp[f (t − τ0)]/f
with an effective establishment time

τ0 = −
1
f
log

[
e−f τ1 + e−f τ2

]
. (14)

Therefore, we can directly use the result of Eq. (6) to find the mean
establishment time of the (X, Y ) population:

τ est ≈ τ0 +
ℓ

f
= −

1
f
log

[
U
s

(
e−f τ1 + e−f τ2

)]
. (15)

If one population never established (τ2 → ∞) we recover the one
chromosome result, τest = τ1 + ℓ/f .

If we know the establishment times of all subpopulations along
the front, then we can use Eq. (15) to determine how the front
advanceswith time. In the pseudo-deterministic approximation, as
used in Section 3, we expect a steady state shape for the front with
themean and front advancing at the same speed v = va(2U). There
is, of course, a trivial solution with a completely straight front,
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Fig. 2. Shape of asexual fitness front f (w) – the boundary of the populated region of
fitnesses, (x, y) of the two chromosomes – for several values of ℓ ≡ log(s/U): from
inside to outside, ℓ = 4, 8, 16, and 32. The diagonal directions are the total fitness,
f = x + y and the difference between the fitnesses of the two chromosomes, w ≡

x− y. The width of the distribution (in w) grows as ∼ log(ℓ) for large ℓ. The colored
region is the population distribution for ℓ = 4 in the deterministic approximation
with colors indicating contours of log-population size. The population evolves by
moving at constant speed in the upper right direction. Fitnesses are measured
relative to the mean in normalized units.

but this is inconsistent with the fixed population size constraint.
Thus the steady state fitness distribution, and hence the front,must
be localized in some range of w. The natural Ansatz is that the
front has a single point (or two neighboring points)withmaximum
fitness: we will again call this point the nose. In two steps, each
taking time s/v, the nose will advance from (X, Y ) to (X + s, Y + s).

The detailed analysis of the steady state front is in Appendix A:
we summarize here its key features. When q, which characterizes
the range of occupied fitness classes, is very large, we expect that
the width of the distribution will be also. In this limit, the front
can be approximated as a smooth curve. The front is comprised
of two regions characterized by how establishment occurs. In the
middle region around the nose, establishment occurs because of
mutations from both parent populations. This means that τ1 and
τ2 are close. In the outer ‘‘wings’’, establishment is dominated
by mutations from only one parent population because the other
parental subpopulation established too late to contribute many
mutants. This occurs when the difference in establishment times,
|τ1 − τ2|, is much larger than the time, 1/f , for the populations to
grow significantly.

The behavior in the wings is easier to understand and will be
needed for the analysis with reassortment. Subpopulations at the
front that are further from the nose have smaller fitness. So for
the X wing, an X mutation from the X parent will establish earlier
and with greater fitness than a Y mutation from the Y parent,
thus establishment is mainly due to mutations from the X parent.
Lineages in the X wing therefore stay at the front by accumulating
mutations predominantly on the X chromosome, moving their
descendant lineage even further from the nose. Such a lineage
accumulates mutations more slowly than the nose advances so it
loses relative fitness over time. Its total fitness is f = X+Y−vt with
Y constant. Since amutation of size s is added to theX chromosome
in a time ℓ/f , X increases at speed fs

ℓ
. Therefore

df
dt

≈
fs
ℓ

− v. (16)

At the same time, w = X − Y is increasing at rate fs
ℓ
. For

the shape of the front to remain the same requires df
dt =

dw
dt

df
dw ,

which yields a differential equation for f (w) valid in the X-wing.
The shape in this region does not depend on any parameters, since
Eq. (16) becomes df̃

dt̃ = f̃ − 1 in our normalized variables.

In themiddle region near the nose, the behavior is more subtle:
here the difference between ℓ and ℓ − log 2 (i.e. U and 2U) is
important (the nose fitness satisfies a similar differential equation
to (16)with ℓ replaced by ℓ− log 2). The shape, f (w), of the steadily
moving front near the nose thus satisfies a more complicated
differential equation. Matching together this nose region with the
X and Y wings, as described in Appendix A, yields a shape of
the fitness distribution controlled entirely by ℓ with the other
parameter q ≡ 2L/ℓ only setting its overall size in fitness space.
The shape of the front for different ℓ values is shown in Fig. 2. The
ratio of the width wmax to the max fitness fmax, or ‘‘aspect ratio’’,
depends weakly on ℓ, going as
wmax

fmax
∼ log(ℓ) (17)

for large ℓ. Since ℓ ≡ log(s/U) is itself a logarithmic parameter, the
dependence on the underlying parameters is very weak—although
it will turn out to account for the ℓ dependence of the speed seen
in Fig. 1 at low λ/L.

Similarly to the aspect ratio, the time to relax to the asexual
steady state depends weakly on ℓ. For our later discussion of oscil-
lations, the relevant initial condition is a distribution with a nose
fitness roughly Q but with the shape and width of the distribution
far from the steady state, being substantially more curved near the
nose. Tracking how the wings mutate away from the nose and lose
fitness, one finds that the distribution relaxes to the steady state
in a time ≈

ℓ
s log(ℓ) which can be several times the nose-to-mean

time, ℓ/s.
Note that the analysis above and in Appendix A is formally valid

in the limit in which q → ∞ before ℓ → ∞. This limit ensures that
the thickness in f of the nose region is large compared to s (which
requires q ≫ ℓ) so that the continuum approximation is justified.
But the simulations show that the behavior is essentially the same
in the opposite limit. In that regime, the mean as well as the front
moves jerkily. The fitness does not vary smoothly across the front,
but the timings of the establishments are still a smooth function of
w so the continuum approximation can still be valid.

5.1. Initial deviations from asexual

In the very rare sex regime, as r is increased from zero the
reassortment alters the asexual dynamics when it can result in the
establishment of a new subpopulation in a fitness class beyond the
front. The reassortment feeding has the form ν = Nr n(x)

N
n(y)
N and

establishment occurs when ν ∼ 1, as detailed in Section 6.1. For
the asexual steady state analyzed above, there is a gently curving
ridge of large subpopulations with fitness z = 0. In the approx-
imation that those that can first reassort to the nose have n(x) ∼

n(y) ∼ N – themaximumpossible – the condition for reassortment
to increase the speed is simply λ/L = 0. As derived in Appendix C,
the curvature of the ridge, which arises from the curvature of
the asexual front, reduces the size of the mating subpopulations
and changes the borderline condition to λ/L ≈ 2/ℓ for large ℓ
consistentwith the deterministic simulations in Fig. D.13. However
the stochastic simulations in Fig. 1 show that the speed starts to
increase already for λ/L ∼= 0. This is a consequence of fluctuations.
Anomalously early establishments in the nose region of the front
can result later in a temporarily broader population distribution
that has large subpopulations sufficiently far apart to advance the
nose via reassortment for smaller λ/L. In the asymptotic limit,
these establishments due to fluctuations still require λ/L ≥ 0.
But for modest size populations, deviations from asexual behavior
before λ < L can occur, as seen in Fig. 1 for N = 108. For that
population size,with L ≈ 15, the sub-exponential prefactors inn(x)
and the feeding rate, ν, required for establishing a subpopulation
are not negligible. The leading corrections can be incorporated into
an effective reassortment parameter, λeff = λ+O(1). Thiswill shift
the speed curve byO(1/L), consistentwith the simulations in Fig. 1.
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6. Reassortment steady state

We now turn to an analysis of the behavior for small reassort-
ment under the assumption of a steady state fitness distribution.
This is a good starting point for understanding the key aspects of
the dynamics and dependence on the basic parameters as well
as analyzing fluctuations (as for the asexual model, see Fisher,
2013). As we shall see, for the two chromosome model, the steady
state turns out to be unstable to oscillations as discussed in a later
section. But it is still instructive to study the steady state because
the important features of the oscillations – a cycle of accumulating
mutations, clonal growth, and then reassortment – already occur
in the steady state.

Wemake a basic Ansatz for the nature of the fitness front: that it
has two types of regions that depend on how new subpopulations
are nucleated at the front. In one region, the reassortment front,
individuals in a new subpopulation are produced by reassortment
of parents in the interior of the fitness distribution. In the other
regions, called the mutation wings, individuals are the product of
mutation and have a single parent that is (or more accurately,
recently was) at the front. The wings are similar to those of the
asexual limit already analyzed above.

The reassortment front is located in the middle of the front
where x ≈ y, with thenose at x = y = Q/2with the largest relative
fitness, Q . For this region, parents typically have one quite high
fitness chromosome and one quite average fitness chromosome,
resulting in offspring that have two quite high fitness chromo-
somes. There is a mutation wing on either side of the reassort-
ment front. Establishment in the wings is due to mutation because
reassortment produces too few individuals. For large populations
we expect the transitions between the reassortment front and the
wings to be sharply delineated, i.e. the influx of individuals will
either be dominated by reassortment or mutation.

The total population is dominated by the subpopulations that
arise near the nose that later foundnear the peak of the distribution
at (0, 0). These subpopulations reach a maximum size after grow-
ing from a time t = Q/v. Ignoring sub-exponential prefactors, the
maximum size should be ∼ N so

exp
[
Qt − v

t2

2

]
= exp

[
Q 2

2v

]
∼ Ns ≡ eL (18)

as for the asexual case. In terms of the scaled variable,

Q̃ ≡
Qs
vℓ

: (19)

this implies that the scaled speed is related to the scaled nose
fitness by

R ≡
vℓ2

2Ls2
≈

v

va(U)
≈

1

Q̃ 2
. (20)

Using its relationship to Q̃ , the speed drops out of the analysis
of the fitness distribution’s shape, which then amounts to finding
Q̃ as a function of λ/L. There is a dual meaning of Q̃ : since the
speed at which the nose can advance by mutations is Qs/ℓ, Q̃ is
the ratio between this would-be mutational-driven speed and the
actual speed with reassortment. Alternatively, Q̃ can be viewed as
the nose-to-mean time in rescaled variables.

The mutation wing and the asexual front in Section 5 share the
same mutational dynamics and therefore obey the same differen-
tial equation for their shape, which depends on ℓ. In the large ℓ

limit, however, the dynamics simplify because the wing will start
with low enough fitness that only mutation from a single parent
population matters. The shape of the mutation wing would then
be independent of ℓ. We will discuss when this approximation is
valid.

6.1. Low mating rate steady state

At low mating rates, the reassortment front is narrow and is
solely the product ofmating between subpopulations that descend
from the two mutation wings. These subpopulations typically
have one anomalously fit chromosome and one close-to-average
chromosome. The subpopulations along the reassortment front
will grow to large sizes, but they are not important for further
reassortment. Their fitness is split equally between the two chro-
mosomes so they do not contribute especially fit chromosomes
during mating.

The low mating steady state is relatively simple because the
mutation wings are determined entirely by the boundary point
between the two regions, called the wing start. We will solve for
the steady statemoving at a speed v in a series of steps: (1) Assume
the location of the wing start; (2) find the shape of the mutation
wing; (3) determine the total number of individuals, n(x), with an
X chromosome of fitness x that the wing gives rise to; (4) from n(x)
and n(y), determine the shape of the reassortment front by finding
the establishment times for the front; (5) match the mutation
wing to the reassortment front to fix the location of the wing
start; (6) connect the mating rate λ/L to the nose fitness Q via the
condition that the establishment times of new subpopulations at
the front match the assumed mean speed.

The mutation wings for the reassortment steady state have the
same dynamics as the wings for the asexual case of Section 5. Let
theX (w > 0)wing start have fitnesses (x̃, ỹ) = (x̃s, ỹs)with x̃s > ỹs
and define f̃s = x̃s+ ỹs. The front in themutationwing is composed
of lineages that began at thewing start and accumulatedmutations
on the X chromosome, as illustrated in Fig. 3(a). Mutations are
added at a rate of 1/τest = f /ℓ so the X fitness increases at a speed
fs/ℓ. Therefore the relative front fitness, f = X + Y − vt , obeys
Eq. (17) or equivalently

df̃
dt̃

= f̃ − 1 (21)

in rescaled units. After mutations accumulate for a rescaled time
τM starting from f̃s the relative fitness of this lineage is

f̃M = 1 − (1 − f̃s)eτM . (22)

Because themean advances, the relative Y fitness simply decreases
to ỹM = ỹs −

1
2τM and the relative X fitness is found from x̃M =

f̃M − ỹM . This determines the shape of the mutation wing (x̃M , ỹM )
as a parametric function of τM .

Various lineages in the mutation wings contribute to the total
number, n(x̃), of chromosomes with fitness x̃ that are available for
reassortment. As shown in Fig. 3, these lineages mutated out from
thewing start for different times before growing clonally. Consider
a specific lineage that hasmutated for a time τM from thewing start
and then grows for a time τG without furthermutations. During the
growth, its relative X fitness decreases until it becomes x̃. Thus τG
is determined by

x̃ = x̃M −
1
2
τG = f̃M −

(
ỹs −

1
2
τM

)
−

1
2
τG (23)

which gives τG as a function of τM and x̃. After this period of growth
the size of this lineage is

log(ns) ≈
vℓ2

s2

∫ (
f̃M − t̃

)
dt̃ (24)

=
vℓ2

s2

(
f̃MτG −

1
2
τ 2
G

)
≡ 2RL αx(τM ) (25)

where α is a convenient rescaled quantity for log-populations and
we have used Eq. (20) to scale out v in exchange for R.
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(a) Mutate out from boundary. (b) Grow and reassort. (c) Co-moving frame.

Fig. 3. Schematic of the dynamics of the low mating rate steady state. The front is divided into the reassortment front (blue) and the mutation wings (red), which begin at
the wing starts (black dot). (a) Lineages in the mutation wing started at a wing start some time in the past and accumulated mutations on only one of the chromosomes. (b)
Subpopulations formerly at the front grow for a period of time and fall behind the advancing front. The conditional distribution of X-chromosome fitness, X1 , is shown in
green. The maximum of this distribution contributes the most copies of the X chromosome for reassortment (blue arrow). Reassortment results in establishment along the
reassortment front and advances it. (c) The same dynamics shown in the moving frame. Mutating along one chromosome (red arrow) moves a lineage out along the wing.
A subpopulation loses relative fitness while growing clonally (green arrow). After a period of growth, reassortment (blue arrow) can yield establishments at the front. The
important X-wing-supporting cycle is shown. Note that the upper path shown that produces the Y chromosome for the X-wing-start, is not the Y -wing-supporting cycle,
which is distinct (obtained by reflection of the X-wing cycle along the diagonal).

The reassortment rate depends on the total number of individ-
uals with an X chromosome with fitness x̃ as shown in Fig. 3. This
total number is approximated by the integral

n(x̃)s ≈

∫
exp [2RL αx̃(τM )] dτM . (26)

In the large L regime of interest this integral will be dominated
by the largest subpopulation, so n(x̃)s ≈ exp(2RLαmax) up to sub-
exponential prefactors. The number of subpopulations contribut-
ing to the integral is roughly ∆y/s ∼

√
L/ℓ. Even though this is

large in the high speed regime (L ≫ ℓ2), the peak of αx̃(τM ) is
narrow in the rescaled units, ∆ỹ ∼ 1/

√
L.

The integral in Eq. (26) is maximized when

τM = 2(ỹs + x̃) − 1 (27)

for which the fitness is z̃G = f̃M − τG = (1 − f̃s) exp[2(ỹs + x̃) − 1]
and the normalized log-population

α(x̃) ≡
log

[
n(x̃)s

]
2RL

≈
1
2

− z̃G. (28)

This determines how many chromosomes with fitness x̃ are avail-
able for reassortment.

We now find the shape of the reassortment front by using the
condition for establishment by reassortment. From Eq. (1), the rate
at which mating produces individuals with (x̃, ỹ) is

ν =
r
N
n(x̃)n(ỹ)

∼ exp
[
λ − 2L + 2RL

(
α(x̃) + α(ỹ)

)]
(29)

using the logarithmic measure for the mating rate, λ ≡ log(Nr).
This rate ν grows exponentially with time at rate φ̃ = z̃G(x̃)+ z̃G(ỹ),
which is the sum of the fitnesses of the dominant subpops for n(x̃)
and n(ỹ). Because the growth rate of ν is not close to the fitness of
the new individuals, i.e. φ̃ < f̃ = x̃+ ỹ, establishment is dominated
by the first established individual, roughly when

∫ t f ν eφtdt = 1
with solution t = − log (νf /φ) /φ ≈ − log(ν)/φ. This gives the
establishment time for the front to advance by s from position
(x̃, ỹ):

t̃est(x̃, ỹ) ≈
− log(ν)

2RLφ̃
=

1 − R −
λ
2L

R(1 − f̃M )e2ỹs−1
(
e2x̃ + e2ỹ

) + 1. (30)

For a steady state, the whole front must advance at the same speed
so the establishment timemust be the same across the front. Since

the x̃ and ỹ dependent part in Eq. (30) must therefore be constant,
the reassortment front has the simple form

e2x̃ + e2ỹ = ef̃+w̃
+ ef̃−w̃

= 2eQ̃ , (31)

where Q̃ is the scaled nose fitness which occurs at x̃ = ỹ = Q̃/2.
The position of theX-wing start, (f̃s−ỹs, ỹs), cannowbedetermined
in terms of Q̃ by matching the reassortment region (found from
Eq. (31)) and the mutation wing (inferred from Eq. (22)) smoothly
at the wing start. Matching derivatives at the wing start ensures
that the mutation wing is ‘‘maximal’’, i.e. mutants from nowhere
else on the reassortment front could form a wing more advanced
than the maximal one.

The nose fitness can now be obtained by requiring the estab-
lishment time to be test = s/v to match the steady state speed v. In
rescaled units, this is t̃est =

ℓ
2RL =

1
Rq ≪ 1 and is thusmuch smaller

than the terms on the right hand side of Eq. (30) and can therefore
be neglected: this is simply the continuous time approximation for
the front dynamics valid for q ≫ 1.We can now substitute Eq. (18)
into Eq. (30) to obtain

1 −
λ

2L
=

1

Q̃ 2

(
1 − 2(1 − f̃s)e2ỹs+Q̃−1

)
(32)

which, since we have already implicitly determined ỹs and f̃s in
terms of Q̃ , is an autonomous equation for Q̃ that can be solved
numerically to give the shape of the fitness distribution. Note
that the dependence on the mating rate enters only through the
combination λ/L. The speed in un-rescaled units is then v ≈

Rva(U) ≈
1
Q̃ 2

(
2L
ℓ2
s2

)
, which is plotted in Fig. 1.

The dependences on λ/L of several important quantities for the
steady state solution are shown in Fig. D.14. While the nose fitness
Q̃ and the wing start fitness f̃s both decrease with λ/L because of
the increasing speed, the fitness drop along the reassortment front,
Q̃ − f̃s, remains small throughout the low mating regime. But the
width of the reassortment regime, measured by w̃s, increases with
the mating rate. The other important quantities characterize the
X wing lineage that supports the X wing start by reassortment, as
discussed more below. For increasing λ/L, the wing starts with a
higher asymmetry in the fitnesses (higher w̃s) and smaller subpop-
ulation sizes are needed for reassortment, so less time is needed for
mutation (τM ) and growth (τG).

The predicted speed increases linearly for small λ/L. But the
inferred v does not reach the expected sexual limit of v/va(U) = 2
for high mating rates. Instead the solution approaches a cusp-like
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maximum value of v/va(U) ∼= 1.56 at λ/L ∼= 0.84, which suggests
that the Ansatz breaks down at or before this point. The breakdown
occurs when the mutation wings in our Ansatz become unable to
support each other via reassortment. The start of the Y -wing has
fitnesses (x̃, ỹ) = (ỹs, x̃s) so it requires an X chromosome from
the other wing with fitness ỹs. From Eq. (27) we see that such a
chromosome begins at the X-wing start andmutates out for a time
τM = 4ỹs − 1. As the mating rate increases, the reassortment front
becomes broader and ỹs decreases, so less time is spent mutating.
The Ansatz break down iswhen the τM = 0 (ỹs = 1/4), i.e. when no
mutations are accumulated and the subpopulation that is crucial
for mating grows up directly from the wing start. This corresponds
to a mating rate of λ/L ∼= 0.81 (a mating rate lower than the
non-sensical cusp-likemaximum). For higher reassortment rates, a
new steady state Ansatz is necessary: this must include additional
reassortment events to support themutationwings as discussed in
the next section.

6.2. Fixation of mutations and genetic diversity

An important lesson from the steady state analysis is that cycles
of mutation, growth, and reassortment are needed to support the
advancing front. A particular cycle – the wing-supporting cycle –
is most important because it is the path towards fixation for new
mutations. Fig. 3(c) shows this cycle: a lineage begins at the wing
start, mutates, grows, and later feeds a newwing start for the same
chromosome by reassortment. This new wing start then supports
both the reassortment front and the next wing start. The λ/L
dependence of the important quantities for this cycle – including
the times for the important lineages to mutate and grow and the
associated fitnesses – are plotted in Fig. D.14. As the mating rate
increases, the total (scaled) period of the wing-supporting cycle
decreases roughly linearly from t̃period ∼= 2 to t̃period just below 1
when the low mating solution breaks down.

To understand the fixation process, it is useful to take a single
mutation view of the evolution. We first review the behavior for
asexual populations. The only mutations that have a chance of
fixing arise in the low frequency, but very fit, subpopulations at the
nose (Desai et al., 2013). During the time that the nose advances
by one mutational step, many mutations will establish and each
mutant subpopulation subsequently grows. In order to continue to
be competitive, a mutant lineagemust be lucky enough to produce
further mutations before its competitors. This process continues
through a number – typically of order log(logN) (Desai et al.,
2013) – cycles of single-mutation, establishment, and growth until
the luckiest single lineage fixes in the nose. Soon after, the mutant
lineage fixes in the whole population once the nose subpopulation
has risen to dominate. It is this process that leads to fixations
and generates the genetic diversity (Desai et al., 2013; Neher and
Hallatschek, 2013).

The mutation fixing process in the two chromosome model is
a generalization – albeit a subtle and complicated one – of that
in asexual populations. Consider a chromosome with a mutation
of interest that goes through the wing-supporting cycle. The chro-
mosomewill accumulate – up to order q – beneficialmutations and
increase in copy number during growth. A few copieswill establish
at a later wing start due to reassortment. From there, these can
accumulate additional beneficial mutations and continue through
the wing-supporting cycle. New mutations that arise along the
reassortment front or too far out in the wings are unable to fix
because they occur on chromosomes that will not contribute to
later reassortment. A mutation must first fix within the wing-
supporting cycle in order to ultimately fix in the whole population.
Amutant lineagemust be luckier than competing lineages in estab-
lishing sooner at each of the many steps of the wing-supporting
cycle. After a number of lucky rounds, a lucky mutation will have

risen to be all but a tiny fraction of the population in the wing-
supporting cycle and will soon fix.

In large populations, the important dynamics that maintain the
mutation wings involve only low frequency subpopulations. Thus
in experiments, the crucial dynamics underlying the evolution
would not be seen unless the population were sequenced very
deeply. We note, however, that in contrast to the asexual case,
for very low reassortment rates some of the important dynamics
takes place in large subpopulations: in this regime the sizes of the
subpopulations that dominate reassortment to thewing-starts can
be moderately large (albeit formally still exponentially small in λ).

6.3. Fitness distribution

The shape of the front determines the fitness distribution of
the whole population. In the sexual limit (r → s) the fitness
distribution is gaussian in both variables (indeed, it canbe seen that
the product of two steadilymoving gaussians is formally a solution
to the evolution equation, Eq. (1) whenmutations and fluctuations
are ignored). But at low mating rates the distribution is far from
gaussian especially in the low frequency regions important for the
dynamics, e.g. the wing-supporting cycle in Fig. 3. The shape of the
full distribution depends on the front as

log[n(w̃, z̃)s] ≈
L

Q̃ 2

[
f̃ (w̃)2 − z̃2

]
. (33)

The distribution near its peak is controlled by the shape of the
reassortment front near the nose, found in Eq. (31):

f̃ (w̃)2 = Q̃ 2
− Q̃ w̃2

+ O(w̃4). (34)

So the large frequency subpopulations near the mean are close to
gaussian with an aspect ratio σw/σz = 1/

√
Q̃ > 1. Non-gaussian

corrections arise from the O(w̃4) term and are noticeable when
w̃∗

∼ L−1/4, or w∗/σw ∼ L1/4. So for large L, the distribution
appears gaussian for many standard deviations, but the important
dynamics happen in the mutation wings where the distribution is
far from gaussian.

The above asymptotic analysis yields an approximation to the
steady state distribution, which becomes essentially symmetric
near its peak as the mating rate decreases. But the asexual anal-
ysis of Section 5 yields an anisotropic shape. This discrepancy is
associated with subtle exchanges of limits of large ℓ and small λ.
These are discussed briefly in Appendix Cwhich addresses how the
reassortment steady state approaches the correct asexual speed for
finite ℓ.

6.4. Intermediate mating steady state

For λ/L ≳ 0.81 –whichwe call ‘‘intermediate’’ mating although
mating is still rare (r ≪ s) – a new Ansatz for the form of the
steady state solution is needed because secondary reassortment
events become important. In the low mating regime, larger λ

means smaller subpopulations are needed for establishment by
reassortment so smaller mutation wings – starting with smaller
fitness, f̃s, and further from the nose (larger w̃s) – can support
the nose’s advance at faster speeds. For λ/L ≳ 0.81, however,
the small X wing fails to produce subpopulations large enough to
supply the X chromosomes needed for the Y -wing start. Instead,
the Y wing is supported by reassortment from subpopulations that
grew up from the reassortment front. The front for intermediate
mating then becomes divided into three regions: the nose and
wing regions described by equations in Section 6.1, and new ‘‘re-
mating’’ regions between the nose and wings that establish due
to reassortment and also contribute to reassortment. Unlike for
low mating, a chromosome can undergo two reassortment events
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(without accumulating new mutations in between) before losing
too much fitness to reassort and establish at the front.

The secondary reassortment events make the dynamics more
complicated but do not change the basic picture developed in the
low mating case: a detailed discussion of intermediate mating is
relegated to Appendix B. One difficulty in the analysis is that the
shape of the re-mating regions must be solved self-consistently
since the Y re-mating region is a product of reassortment from
the Y mutation wing and the X re-mating region (and likewise
the X re-mating region depends on the Y re-mating region). In
the appendix, we find the speed of the intermediate mating Ansatz
without explicitly solving for the shape of the whole front. The
results are plotted in Fig. 1.

The intermediate mating Ansatz breaks down at λ/L ∼= 0.99
when the twomutation wings cannot reassort to form the nose re-
gion. An additional multi-step process is needed for higher mating
rates, and more andmore complicated processes are likely needed
as the sexual limit is approached, i.e. λ → L or r → s.

7. Oscillations

Simulations of the two chromosome model reveal that oscil-
lations are an important feature of the dynamics, especially for
large populations. Park and Krug (2013) noted the presence of
oscillations but did not study them beyond describing the dy-
namics of the fitness distribution as a ‘‘breathing traveling wave’’.
As shown in Fig. 4, the oscillations involve a cycle of diversity
buildup through mutation followed by purging of much of the
diversity by reassortment and subsequent selection. We will show
that the dynamics of the oscillations are related to the dynamics
within the steady state solutions discussed above. The oscillation
dynamics differ for low and intermediate mating rates, but here
we focus solely on the low mating oscillations, which capture the
important features of the dynamics, and discuss the intermediate
case in Appendix B. The oscillations are clearly observable for the
stochastic dynamics and become more regular for q ≡ 2L/ℓ ≫ 1
large, see Fig. 4. Thus the deterministic simulations (described in
Section 4) are very useful for characterizing and understanding the
oscillations.

The oscillation dynamics for the deterministic and stochastic
simulations can be seen in the patterns of establishment shown
in Fig. 4. Each fitness class of the current population distribution
is colored according to whether its establishment was dominated
by reassortment or by mutation. At any point in the cycle and
at each position along the front, either reassortment or mutation
strongly dominates as occurred for the different sections of the
front in the steady state Ansatz. The oscillation cycle can thus be
cleanly divided into two phases: a reassortment driven phase of
establishments at the nose that will eventually advance the whole
population, and a mutation driven phase that both advances the
nose and creates the diversity for reassortment to later act on.

The oscillation dynamics over one period resembles the cycles
of mutation, growth, and reassortment described in the steady
state analysis. During the reassortment phase, reassortment ad-
vances the central part of the front. The front advances faster
than the mean, so the nose (the fittest part of the front) becomes
more and more fit (relative to the mean) during this phase. These
fitter subpopulations from the nose grow especially fast until
eventually one takes over the bulk of the population, causing the
mean fitness to jump sharply. Almost immediately after the mean
jumps, the population has too few chromosomeswith high relative
fitness that could possibly reassort to the front, thereby quickly
ending the reassortment phase. But the front can still advance by
mutation.

During the subsequentmutation phase, the central region of the
front advances more slowly, as shown in the righthand column

Fig. 4. Oscillation cycles illustrating the fitness distribution during the mutation
phase (left column) and the reassortment phase (middle column) that occur in each
cycle. Top row: deterministic approximation to the dynamics; lower rows: stochas-
tic dynamics. All the non-zero subpopulations are shownwith their color indicating
the fraction that was established by reassortment (bluer) or mutation (redder). The
oscillation dynamics are shown at low mating rates: λ/L ≈ 0.5. The righthand
column shows the speed of the nose and mean, dashed lines corresponding to the
times of the snapshots shown. The nose speed increases during the reassortment
phase and, through exponential growth of the prior nose populations, the effects
of this are sharpened into a jump in the mean fitness roughly a time ℓ/s later.
The stochastic simulations have N = 1012 , s = 10−2 , 2U = 10−4 , r = 10−7

(q ≈ 9, ℓ ∼= 5.3) and N = 108 , s = 0.03, 2U = 10−6 , r = 1.8 × 10−5 (q ≈ 2.7,
ℓ ≈ 11). These agree qualitatively and semi-quantitively with the deterministic
simulations, which are valid in the continuous limit that obtains when q ≡ 2L/ℓ –
which determines the width of the fitness distribution – is large.

of Fig. 4. But more important for the future are lineages in the
wings that accumulatemutations asymmetrically – some predom-
inantly on one chromosome, some predominantly on the other
– extending both the wings. The growth of these wing subpopu-
lations eventually creates enough high fitness chromosomes that
reassortment can establish new subpopulations at the front: this
starts the reassortment phase again and the speed of the nose
increases. In summary, over each period, reassortment rapidly
advances the nose which causes the mean to jump forward and
stops reassortment to the front. Then mutation and growth in the
wings produce the higher fitness chromosomes that are again able
to reassort to the front and advance the nose.

Looking in more detail at the nature of the oscillations, it is
apparent from the figures that the variations in the speed of the
mean are much larger than those in the nose speed: indeed, a
sudden increase in the speed of the nose becomes sharpened into
a jump in the mean fitness because of the exponential growth of
competing subpopulations.We illustrate these dynamics through a
simple toy example. Assume that the nose and themean have been
traveling at speed v1 for some time and at t = 0 the nose speed
increases to v2. (This scenario is a surprisingly good approximation
for the low mating oscillations, as seen in Fig. 4.) During the
mutation phase, the nose andmean settle into traveling at roughly
the asexual speed until the reassortment alters the nose speed.
The mean is unaffected by the change in nose speed until the new
subpopulations reach a size comparable to N . New subpopulations
establishing at time te > 0 start with a larger relative fitness,
f (te) = Q + (v2 − v1)te. Here Q is the original nose fitness, which
should satisfy Q 2

= 2v1L from Eq. (18) if the nose and mean have
traveled at v1 for longer than τnm = Q/v1 which we will assume.
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Fig. 5. Quantitative properties of the oscillations: period (top) and jump size of the
mean fitness (bottom) in the deterministic and stochastic (black dots) simulations.
For the stochastic simulations the period was extracted from the power spectral
density for five simulation runs of 300ℓ/s time-steps. For comparison, the period
of the wing supporting cycle of the steady-state is shown (purple line). The de-
terministic simulations show that the period diverges at low λ/L as the dynamics
approach the asexual limit. The period can become several times greater than the
asexual nose-to-mean time, ℓ/s, because the distribution must relax nearly to the
asexual steady state before the next reassortment phase begins. At λ/L ∼= 0.8 there
is a period-halving bifurcation corresponding to the transition to the intermediate
mating regime of the steady state.

A subpopulation will reach a size ∼ N at a time tN (te) when

log(ns) = f (te) (tN − te) −
v1

2
(tN − te)2 ≈ log(Ns) = L. (35)

When the first subpopulation reaches a size N , the mean will jump
to the (absolute) fitness of that subpopulation. This subpopulation
established at the time t∗e that yields the earliest time t∗N , and hence
satisfies dtN/dte = 0. The jump in mean fitness is simply the
relative fitness of this subpopulation immediately before the jump:

∆⟨Z⟩ = f (t∗e ) − v1(t∗N − t∗e ) = (Q + v2t∗e ) − v1t∗N . (36)

The extremal condition equates the jump size to ∆⟨Z⟩ = (v2 −

v1)
(
t∗N − t∗e

)
. The detailed solution can be expressed in terms of

the speed ratio β = v2/v1:

∆⟨Z⟩ = Q
β − 1

√
2β − 1

. (37)

Thuswithβ−1not small, the jump size is some substantial fraction
of Q as seen in Fig. 5. It is interesting to note that the largest jump
sizes – roughly 0.5Q – correspond to v2 ≈ 2v1 which would be
expected if thewingsmutated out at the same speed v1 as the nose
advances by mutations.

The dependence on λ/L of the important oscillation character-
istics – the period and the magnitude of the jump of the mean
fitness – are plotted in Fig. 5. The oscillation period from the
deterministic simulations is seen to be similar to the period of the

Fig. 6. Diagram of the oscillations at low mating. The blue convex regions rep-
resent subpopulations that established by reassortment. The oscillation dynamics
resemble the steady state cycles in Fig. 3 that support the wing start: a lineage
mutates (red arrow) predominantly on a single chromosome before reassorting
(blue arrow). The oscillations appear as a single dominant cycle, as opposed to the
many overlapping cycles in the steady state.

asynchronous wing-supporting cycles of the steady state for large
ℓ Furthermore, there is a period-halving bifurcation nearλ/L ≈ 0.8
due to a change in the oscillation dynamics. This bifurcation occurs
close to the transition from low to intermediate mating for the
steady state solutions. Together these suggest a strong connection
between the oscillatory and steady state dynamics. This can be
understood in terms of the lineages that are most important for
reassortment. In the oscillatory dynamics, the mutations wings
trace back to a small segment of the front – not necessarily near
the nose – at the end of the previous reassortment phase, shown
schematically in Fig. 6. This segment of the front is analogous to the
steady state wing start that produces the full mutation wing and
the dynamics that support the key parts of the front are the same
as the wing-supporting cycle. The main difference is that speed of
the mean, v(t), which influences growth and establishment rates,
is not constant and instead depends on the past nose fitness. In
the steady state solution, many wing-supporting cycles take place
in parallel but out of phase with each other, each depending on
when their wing start establishes. For the oscillations, the uniform
distribution of phases of the cycles breaks down and the cycles lock
together, most likely due to instability from the delayed feedback
between the speedup of the nose and jump in the mean. Although
we have not attempted a full linear stability analysis of the steady
state, deterministic simulations of a simplified caricature shows
that its steady state is indeed unstable to oscillations. This carica-
ture has establishment by reassortment only right at the nose but
that is enough to incorporate the delayed feedback structure.

At smallλ/L, the period depends on ℓ but appears to converge to
a limit for large ℓ that is close to the period of the wing-supporting
cycle in the steady state. However the jump size depends strongly
on ℓ. This suggests that the ℓ dependence of the speed for low
mating in Fig. 1 (discussedmore in appendix Appendix C) is largely
due to the different jump sizes.

7.1. Oscillations for ℓ → ∞

A quantitative description of the deterministic oscillations for
general ℓ and λ is difficult because of the complicated feedback
structure of the dynamics. The mean fitness depends on the nose
fitness at previous times and the nose fitness depends on the time
for the wing lineages to mutate, grow clonally, and reassort which
all depend on the history of the mean fitness. The mutation rate
for the wings also depends on the local shape of the front because
of the difference between two-parent and one-parent mutation
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Fig. 7. The oscillation dynamics for ℓ → ∞ and λ → 0 have a simple geometry. During the mutation phase, left, a flat front mutates out from the last reassortment
point – indicated by the blue dot – forming an expanding triangular region bounded by the dashed green lines. The front is flat because the difference in establishment times
between one parent subpopulation mutating and two parent subpopulations is negligible in the ℓ → ∞ limit. A set of subpopulations each reach a size log(ns) = L needed
to reassort, center, when their fitness equals the mean fitness: these form a high population ridge indicated by the black line. The X-most and Y -most edges – indicated by
small black dots – then advance the nose via reassortment. Despite the simple geometry, the feedback between the nose and the mean leads to a nontrivial trajectory for
the nose and mean fitnesses (right hand figure). The plots are from deterministic simulations of the ℓ → ∞ and λ → 0 dynamics described in the text.

(described in Section 5) which is controlled by ℓ. However, the
essential features of the oscillations can be captured by a much
easier to understand limit: ℓ → ∞ and λ/L → 0 in the continuum
limit of large q. For large ℓ, the difference between two-parent and
one-parent mutation rates is negligible and the two-chromosome
and one-chromosome speeds are the same: va(2U) = va(U) =

(2L/ℓ2)s2. For λ/L = 0 a subpopulation contributes to reassort-
ment simply when its fitness equals the mean fitness and its size
is roughly N . As we will show, the oscillations result in a sizable
speedup even though λ/L → 0—a surprising result.

Let us consider what happens for r ∼ 1/N—i.e. only O(1)
matings per generation in the whole population. An initially com-
pact fitness distribution evolves under asexual dynamics with a
speed that approaches the asexual speed. The middle part of the
asexual front (which for large finite ℓ has the form f̃ ≈ Q̃ −

w̃2

2ℓ
as derived in Appendix A), becomes, for ℓ = ∞, flat with well-
defined ends. This front later gives rise to a ridge at themean fitness
of width WR, along which the subpopulations have the same size:
each of orderN . At some point the ridge becomeswide enough that
reassortment can lead to establishment at the nose—the center of
the flat front. For r ∼ 1/N , only subpopulations located on the
ridge (i.e.with z̃ = 0) can feed the nose, thuswith a nose at x̃ = ỹ =

Q̃/2, the subpopulations feeding it must be at (z̃, w̃) = (0, ±Q̃ ):
these will feed the nose at a rate of order one. The reassortment
will then advance the front faster than the asexual speed until the
mean jumps, which quickly ends the reassortment phase.

Because of the flat front and ridge, the geometry of the dynamics
is much simplified. The full oscillation dynamics reduce to a one-
dimensional description: knowledge of the nose fitness F (t) for all
previous times t ′ < t is enough to determine the future dynamics.
It is convenient to start from the time, T0, atwhich themean jumps:
call the nose fitness at that time, F0. The first plot in Fig. 7 shows
how mutation from this last point of reassortment – denoted by
a blue dot – results in an expanding triangular region with a flat
front. Subpopulations growing from the flat front established at the
same time and therefore have the same population size. They form
a ridge when they reach maximum size – each O(N) – and their
fitness equals the mean fitness ⟨Z(t)⟩.

The highest fitness point to which reassortment can occur is
when the reassorters are at the opposite ends of the ridge. The
X-most and Y -most edges have ∆XR(t) = ∆YR(t) =

1
2WR(t) =

⟨Z(t)⟩ − F0 where the last equality follows from the geometry
of the triangular front that gave rise to the ridge populations.
Reassortment results in establishment of a subpopulation with
fitness FR(t) = F0 + ∆XR + ∆YR = 2 ⟨Z(t)⟩ − F0 that will
advance the front if this is greater than the current front fitness.

Let the time at which this reassortment starts be TR. During the
subsequent reassortment phase, the nose fitness is FR(t) which
advances at twice the speed of the mean, dFR

dt = 2 d⟨Z⟩

dt . Although
the nose advances due to reassortment, other new subpopulations
– even those immediately away from the nose – establish due
to mutation. This is because lineages descending from previous
nose subpopulations are especially fit and can advance the front by
mutation quicker than reassortment except right at the new nose.
Thus the reassortment region in Fig. 7 is limited to the thin blue
line shown.

The delayed advance of the mean can generally be determined
from the nose fitness F (t) by considering the time for nose subpop-
ulations to reach sizeN (as in our illustrative analysis of jump sizes
in Eq. (36)) A subpopulation that established at time τ has a size at
time t of

log[n(t, τ )]
2L

= F̃ (τ̃ )(t̃ − τ̃ ) −

∫ t̃

τ̃

⟨
Z̃(t̃ ′)

⟩
dt̃ ′. (38)

The rescaled mean fitness is then

Z(t) = F (τt ) where τt = argmax
τ

[log n(t, τ )] (39)

or simply the fitness of the subpopulation with largest size.
During the mutation phase starting at F (T0) = F0, the speed of

the nose is dF̃/dt̃ = F̃ −

⟨
Z̃
⟩
. When combined with the previous

results for FR(T ) = 2⟨Z(T )⟩ − F0, the nose fitness is

F̃ (t̃) = max

⎧⎪⎨⎪⎩F̃0 +

∫ t̃

T̃0

F̃ (t̃ ′) −

⟨
Z̃(t̃ ′)

⟩
dt̃ ′

F̃R
(
t̃
)

⎫⎪⎬⎪⎭ . (40)

The reassortment phase begins when the max switches to FR
at time TR. The faster nose speed during reassortment will later
result in a jump in the mean fitness at time TJ . This happens when
the τt jumps discontinuously from a value τt < TR to a time
τt > TR which means that a subpopulation established during the
reassortment phase has taken over as the largest subpopulation.
At time TJ reassortment stops and a new mutation phase begins:
between T0 and TJ the front has thus completed a full cycle. If
this cycle reaches a periodic steady state with jumps at regular
intervals, the system has stable oscillations: this is indeed what
we find in direct simulations of this one-dimensional non-linear
delay-dynamical system.

The trajectories of the nose and mean fitness in the infinite ℓ

limit analyzed above are shown in Fig. 7. Surprisingly, the oscilla-
tions result in a speed of v ∼= 1.3 va(2U) implying that the infinite
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ℓ speed jumps discontinuously at λ/L = 0! This is a consequence
of the reassortment phase lasting for a substantial fraction of the
period of the oscillations. Thus the interplay betweenmutation and
reassortment even for mating rates as low as r = 1/N can yield
≈ 30% of the total possible benefit of mating. Note that, formally,
as long as NU is very large, even in the large ℓ limit, r ∼ 1/N
corresponds to r/U ∼ 1/(NU) ≪ 1 and thus reassortment rate
much less than beneficial mutation rate.

Since we found that dFR
dt = 2 d⟨Z⟩

dt in the reassortment phase, we
can use our previous calculations in Eq. (37) for the dependence of
the size of the mean jump on β , the ratio of the nose speed before
and after reassortment starts, to estimate the jump size. With β ≈

(2va)/va, this gives ∆ ⟨Z⟩ /Q = 1/
√
3 ≈ 0.58, roughly what is

observed. Although the infinite ℓ limit might seem pathological,
the jump sizes in Fig. 5 saturate to a similar value for large ℓ

because of the same underlying dynamics. The X-most point that
can produce reassorters into the nose advances in the X direction
at roughly the mean speed, and similarly for the Y -most point. So
the nose advances due to reassortment at roughly twice the mean
speed. A discussion of the general dependence of the speed and
jump size on ℓ can be found in Appendix C. The behavior depends
on how close the population at the end of the mutation phase is to
the asexual steady state versus the infinite ℓ limit: the latter having
large oscillations and being far from the steady state.

8. Fluctuations

The deterministic approximation gives a good qualitative and
semi-quantitative picture of the dynamics, but leaves out the fluc-
tuations that are visible in the stochastic plots of Fig. 4. While we
have not analyzed these in detail, we outline here some general
qualitative and quantitative features of the fluctuations.

In the asexual case, fluctuations in the speed of the nose give
rise to jumps in mean fitness. Small asexual nose fluctuations are
of order δQ ∼

s
ℓ
and are only correlated for a short time, roughly a

single establishment (Fisher, 2013). The fluctuations get amplified
by exponential growth and produce jumps in the mean with an
exponential distribution of sizes with mean of order

√
va, which

scales with Q as
√
Q . The nose-driven stochastic jumps of the

mean stabilize the system against large oscillations. The nose is
unstable on short times because an early establishment induces
an even earlier establishment next. This leads to an accelerating
nose speed that can only be corrected by feedback a time τnm
later. However, the larger resulting jump in the mean (due to the
earlier nose fluctuation) will dominate the future nose dynamics
and prevent the nose from running away (Fisher, 2013). In contrast
to the asexual case, for sexual dynamics the oscillations involve
large changes in nose speed that are sustained for a long time,
resulting in large jumps in the mean of order Q . Thus the asexual
jumps and oscillation jumps can be distinguished by their scaling
with Q .

Asexual mutational fluctuationsmodify the behavior of the two
chromosome asexual steady state of Section 5. The shape of the
two-dimensional front we derived does not strictly correspond to
a steady state because the stochastic dynamics allows the average
w coordinate to diffuse over time. A part of the front will fluctuate
ahead and descendants of this part grow faster and mutate out
to form a new front, shifted relative to the previous one. Our
steady state then roughly represents the ‘‘typical’’ shape of the
distribution when this lateral diffusion is suppressed or when
large fluctuations have not occurred in the recent past. (Note that
even in the one chromosome asexual model, the amplified effects
of the nose fluctuations make interpretation of the steady state
distribution as an ‘‘average’’ already subtle: it loosely represents
a ‘‘median’’ shape in the frame of the mean fitness.)

Fig. 8. (a) Fluctuations in the nose fitness δF with reassortment (red) with λ/L =

0.5 and without reassortment (blue). A deterministic simulation (yellow) shows
the period of oscillation, which can also be seen in the stochastic simulations. (b)
Diffusion constants for the nose fitness and themean transverse fitness ⟨W ⟩ = ⟨X−

Y ⟩ plotted on a log scale. The results are normalized by the theoretical prediction
for the asexual case, Dasex = 2π2(s/ℓ2)3/3 with ℓ2 ≡ log(s/2U). The other limits
indicated, Dw = vas and Dsex = 2Dasex(ℓ2/ℓ)3 , are explained in the text. For the
nose, diffusion is greatest for reassortment in-between the asexual and sexual limits
when the jumps in mean fitness due to oscillations are greatest. Parameter values
for both plots:N = 1012 , s = 10−2 , 2U = 10−4 (q ≈ 9, ℓ ∼= 5.3). Diffusion constants
were calculated from 10 simulation runs of length 500ℓ/s.

Reassortment adds another source of stochasticity and a dif-
ferent feedback structure. Nose fluctuations now depend on the
stochasticity of two separate lineages undergoing a cycle of muta-
tion, growth, and reassortment. For the oscillations, the start time
of the reassortment phase is stochastic and this will later have a
large effect on the time and magnitude of the mean fitness jump.
Establishments due to reassortment aremore stochastic than those
due to mutation. For reassortment the first established lineage is
likely to dominate, but for mutation many independent secondary
lineages will also contribute substantially and their combined ef-
fect is to decrease the stochasticity Desai et al. (2013) and Fisher
(2013). Thus it is not surprising that the added stochasticity from
reassortment results in greater diffusion of themean and nose than
in the asexual case, as found in Fig. 8.

Fig. 8 shows that diffusion is greatest for mating rates when
the dynamics are neither asexual or fully sexual. In the asexual
limit, the diffusion constant is predicted to beDasex = 2π2(s/ℓ2)3/3
with ℓ2 ≡ log(s/2U) (Fisher, 2013). The fully sexual limit is simply
related to the asexual limit as the two chromosomes become com-
pletely unlinked and each evolve asexually (with ℓ instead of ℓ2) so



32 M.T. Pearce and D.S. Fisher / Theoretical Population Biology 129 (2019) 18–40

the diffusion of the nose is twice the diffusion of a single chromo-
some, Dsex = 2Dasex(ℓ2/ℓ)3, where the (ℓ2/ℓ) factors convert Dasex
to the single chromosome result. The sexual limit of the transverse
diffusion of w in this limit is also Dsex since the sum and difference
of two unlinked fitnesses have the same diffusion. Park and Krug
(2013) derived the asexual limit of the transverse diffusion to be
simply Dw = vas using the fact that mutations fix at a rate s/va and
occur randomly on one chromosome or the other. They showed
that this initially high diffusion decays rapidly with reassortment.
Fig. 8 shows that this decay is surprisingly exponential over the
full range of λ values: we have not investigated the source of this
behavior.

Near the transition between low and intermediate mating rates
(at λ/L ≈ 0.8), in the deterministic approximation there is a
small window of bi-stability between the low mating oscillation
style and the intermediate one. Fluctuations can lead to transitions
between the two different oscillation modes. The transitioning
fluctuations become rarer for larger q so a longer simulation time
is needed to average over the two oscillation modes. In the deter-
ministic simulations (roughly the q → ∞ limit), the bi-stability
manifests as hysteresis when the mating rate is slowly varied:
the current oscillation mode depends on the past mating rate
and whether the mating rate has increased or decreased to the
current value. In Fig. 8 the bi-stability does not result in greater
diffusion around λ/L ≈ 0.8 because the parameter values used
are stochastic enough to smooth over effects due to the transitions
between modes. This suggests that bi-stability is unlikely to be
important for realistic population sizes.

9. Discussion

When sex is very rare, mating has negligible effects on already
established subpopulations which simply increase in size due to
clonal growth. But even with additive effects of mutations, mating
is crucial for the creation of novel, very fit genetic combinations
that will drive the future evolution. Offspring fitness after mating
depends on the genetic relatedness of the parents, so in the rare sex
regime it is crucial to track the details of the genetic diversity in the
population. In large populations of size N , the important aspects
of this diversity involve subpopulations with very anomalous past
mutational and mating histories. The crucial properties of the di-
versity and how it is determined in an evolving population cannot
be captured by a few statistical properties. The simplifying feature
of the two chromosome model with reassortment is that the im-
portant relatedness and dynamics are fully captured by tracking
only a two dimensional fitness distribution. For this model, we
have shown explicitly how the properties of rare subpopulations
with anomalous history control the dynamics. And these dynamics
are complex, involving long cycles of mutation, clonal growth, and
mating to produce the unusually high fitness individuals whose
descendants will dominate the future evolution. We find that the
speed of evolution depends logarithmically on themating rate, r , so
that sizable speedups can occur for very small r , and that the ratio
of log(rN) to logN is the important combination of parameters.
While the detailed dynamics of evolution of large populations
with very low rates of mating or lateral gene transfer will surely
be different than the two chromosome model, we expect that
such logarithmic dependence on the recombination rate as well
as the dominance of the dynamics by subpopulations with very
anomalous histories will be rather general. These features, as well
as how general the cyclical dynamics might be, we discuss below.

9.1. Summary of qualitative picture of two-chromosome model

For raremating in the two chromosomemodel, producing fitter
offspring than mutation can produce requires a large population

of anomalously high fitness chromosomes. Large subpopulations
are produced by clonal growth from populations that established
at the front—the high fitness edge of the two-dimensional fitness
distribution. Our steady state analysis shows that the high fitness
chromosomes that can advance the front via reassortment arise
in the ‘‘wings’’ of the front which are produced by anomalous lin-
eages that mutate predominantly on a single chromosome. These
anomalous subpopulations then grow clonally to sizes sufficiently
large for significant mating. The predominant matings involve
parents with one very fit chromosome and one average fitness
chromosome. By analyzing how the wings are produced by a cycle
of mutations, growth, and mating, we find the steady state speed
of evolution. The ‘‘wing cycle’’ dynamics driving the evolution in-
volves only low frequency subpopulations. This is a generalization
of the mutational dynamics at the nose of asexual populations
which controls the future evolution (as well as dominating the
fluctuations and diversity statistics) (Fisher, 2011; Desai et al.,
2013). A key difference, in addition to the two-dimensionality of
the fitness distribution, is that the wing cycle is much longer than
the times between mutational steps: it takes of order the time for
subpopulations to reach a size ∼ N .

An unexpected feature of the two chromosome dynamics is
sustained oscillations (first observed in the simulations of Park
and Krug (2013)), which resemble the wing cycle of mutation on
a single chromosome, clonal growth, and reassortment. We find
that the oscillations cause the evolution of the whole population
to be separated into distinct mutation-driven and reassortment-
driven phases. Although the scalings of both periods with log(Nr)
are quantitatively similar, the oscillations speed up the evolu-
tion because they result in large jumps in the mean fitness by
a substantial fraction of the difference, Q , between the mean
and maximum fitness of the population. Counterintuitively, rare
reassortment results in periods of reduced diversity: after reas-
sortment creates a set of fitter subpopulations, selection purges
less fit subpopulations more rapidly. And this stronger selection
later results in a jump in the mean fitness. Since a small subset
of lineages contribute to reassortment each cycle, the oscillations
act as a bottleneck and are thus important for understanding the
diversity which we have not analyzed. The stochasticity of the
reassortments gives rise to stochasticity in the advance of themean
fitness which is much larger than that for asexual populations, as
seen in Fig. 8.

In the rare sex regime, the speed of evolution increases over
a broad range of mating rates from the inverse population size,
1/N , up to the selective strength of mutations, s. Dependence
on the mating rate comes through the parameter combination
log(Nr)/log(Ns), which varies from zero to one over this range.
Since the dynamics of course depend on the total population mat-
ing rate, Nr , this ratio of logs is only significant because it also
accounts for the overall N dependence of the asexual to sexual
transition. For very large populations, log(Ns) sets the overall fit-
ness scale such that the mutation and growth dynamics can be
rescaled to have no N dependence. This was shown explicitly for
the steady state solution but holds in general, including for the os-
cillations. The exponential growth of subpopulations implies that
the natural rescaling of subpopulation size is α ≡ log(ns)/log(Ns)
which is typically of order one in the interior of the population
distribution and ranges from zero for a single individual to one
for the largest subpopulation with size ∼ N . Reassortment from
individuals in different parts of the fitness distribution will es-
tablish a new subpopulation n(x, y) roughly when the influx rate
due to reassortment, r n(x)n(y)/N , is of order one—with n(x) as
the total population with X-chromosome fitness, x. The condition
for establishment by reassortment is then simply log(Ns)(αx +

αy) = log(Ns)
(
2 −

log(Nr)
log(Ns)

)
showing that log(rN)/log(Ns) is the

natural combination that determines the quantitative effects of
reassortment.
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9.2. Fixations and diversity

Even though mating is continually happening, the oscillation
dynamics make it appear as though the population were undergo-
ing periodic mating—except that the period is determined by the
other evolutionary processes instead of being fixed externally. The
period of oscillation sets a natural fixation timescale because the
population in the next cycle descends from only a small number
of subpopulations that successfully mated to the front. This has
important implications for beneficial and neutral diversity statis-
tics and the structure of the genealogies as many small mutations
accumulated in the mutation phase can fix at once. But in order
for a mutation to fix, it must arise in the right part of the front and
then its lineagemust be anomalously lucky in accumulating further
mutations, then lucky in reassorting to the front, and then lucky
in continuing through several such cycles, in order to outcompete
other lineages that arose around the same time.

Our analysis of the deterministic steady state approximation to
the dynamics gives qualitative and some quantitative hints at how
mutant lineages arise, fluctuate, and some lucky ones eventually
fix. However the interplay between the oscillations and fluctu-
ations make it difficult to analyze the coalescent and diversity
statistics that this process gives rise to. Analyzing these for the
two chromosome model should be a fruitful direction for future
work.We expect that the coalescent processwill not be in the same
universal class as either the conventional neutral Kingman coa-
lescent or the Bolthausen–Sznitman coalescent predicted for large
continually evolving asexual populations (Neher and Hallatschek,
2013;Desai et al., 2013), although,wedo expect that, like the latter,
the phylogenies will be characterized by multiple mergers.

9.3. Quantitative results: beyond asymptopia

Our primary results are valid in asymptotic regime inwhich the
logarithmic parameter L = log(Ns) is large. Further simplifications
occur when ℓ = log(s/U) is also relatively large, although still
much smaller than L. In practice, logarithmic parameters are never
really large and corrections are important. Qualitatively similar
behavior will arise as long as the population is in the multiple mu-
tations regime with a large diversity of fitnesses in the population
and the strong-selection weak-mutation regime so that growing
subpopulations are only affected by fluctuations or mutations for a
short time after they establish. To be quantitatively good, requires
larger, but not unrealistically large, populations. Simulations in
Fig. 1 show that the predicted dependence of the speed on λ/L
is quantitatively good with realistic parameter values: e.g. N =

1012, s = 10−2, 2U = 10−4 corresponding to L ∼= 23, ℓ ∼= 5.3
and thus q ≈ 9.

The logarithmic scaling of λ means that much of the benefit
of sex can be obtained from very low mating rates. With these
parameters, r ∼ 10−7 would already yield a quarter of the max-
imum possible gain in speed (due to rapid reassortment but no
recombination), while r ∼ 2U = 10−4 would yield more than
half. More importantly the oscillatory dynamics, as shown in Fig. 4,
are already very similar for these parameters to the deterministic
asymptotic limit. And the period of oscillation in Fig. 5 agrees
quantitatively.

Note that although 1012 is a large population by standards of
most laboratory evolution experiments, it is certainly not for all,
e.g. the tabletop sizeMEGAplate has 10 L ofmedia and is capable of
reaching a total of 1012 bacteria for typical cell densities of 108/mL.
(Baym et al., 2016). And on scales of even a single human, it is less
than the population sizes of the abundant gut bacterial species and
the number of virions produced during the course of some viral
infections (Anderson et al., 2004).

9.4. Natural populations

Our model is not directly applicable to any real microbial pop-
ulations, but it is most natural for the evolution of segmented
RNA viruses with genomes divided into a number of segments
that can reassort. To date, there are eleven families of segmented
RNA viruses with the number of segments ranging from two to
twelve (McDonald et al., 2016). For example, the bacteriophage φ6
has three segments and has been developed into an experimental
system for both asexual and sexual evolution (Chao, 1990; Turner
and Chao, 1998). Influenza viruses have six to eight segments. Nev-
ertheless, we anticipate that many of the same features will apply.
In a single host, or in a bacterial population, a viral population
can be relatively well mixed without prominent spatial structure
and co-infection rates, which are needed for reassortment, can
vary widely. Thus the basic assumptions of the class of models we
consider are reasonable.

The assumption that reassortment occurs but recombination
within chromosomes does not – or at much lower rates – makes
suchmodels potentially applicable to chromids, or secondary chro-
mosomes, found in an increasing number of species of bacteria.
Chromids are hypothesized to derive from plasmids that have
acquired essential genes from the primary chromosome (Harrison
et al., 2010). They may retain the plasmid’s ability to transfer via
conjugation. For example, Pseudomonas syringae pv. lachrymans
has a recently acquired chromid that is self-transmissible via con-
jugation despite its large size of 1Mb (Romanchuk et al., 2014). The
possibilities of such large transfers of genetic material could alter
the evolutionary dynamics of the species even if it occurs at very
low rates and involves only better, rather than new, functions. For
example, during the recent ecological differentiation of two popu-
lations of Vibrio cyclitrophicus, one of its two chromosomes swept
within one population independently of the other chromosome,
suggesting that reassortment played an important role (Shapiro et
al., 2012).

9.5. Generalizations and extensions

How many of the features of our simple model obtain more
generally? The scaling of the speedwithλ/L? The sustained oscilla-
tions betweenmutation dominated and recombination dominated
phases? Generalizations of the model can start to answer these
questions and should be analyzable by a combination of methods
used here and those developed by other. We outline a few of these
and then discuss briefly the complications associated with richer –
and more realistic – generalizations.

We have studied only a simplifiedmodel inwhich all mutations
are considered to have the same selective advantage and there are
no deleterious mutations. For large asexual populations, distribu-
tions of fitness effects have been studied and the primary results
are that as long as themutation rate spectrum,µ(s)ds tomutations
with fitness effects s, falls off faster than exponentially, there is a
predominant s (and a narrow range around this) that controls the
evolution, with the rest being either too rare to matter, or effec-
tively neutral (Good et al., 2012; Fisher, 2013). Inclusion of these
effects into the two-chromosomemodel should be straightforward
and result in a similar replacement of s and U by effective values
that are determined primarily by µ(s).

Although usually phrased as an approximation of additive fit-
ness effects of the mutations, the asexual model is far more gen-
eral: it applies for a general fitness ‘‘landscape’’ (with arbitrary
epistasis) as long as the statistical distribution of available muta-
tions does not dependon the current genome.With recombination,
however, combinations of interactingmutations are broken up and
brought together in complex ways thus additivity is needed for
the approximations used in almost all analyses of rapid evolution
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with multiple mutations to be valid. (A counter example, albeit
without new mutations, is Neher and Shraiman (2009).) In our
model, however, all that is needed is additivity of the fitnesses of
the two chromosomes and the requirement that the distribution
ofmutation effect sizes for both chromosomes remains unchanged
during the evolution.

A natural generalization of the two-chromosome model is to
multiple chromosomes that can reassort in someway, for example
by exchange of a single one, or by grouping random combinations
from two (ormore) ‘‘parents’’. With K chromosomes, the evolution
speed will increase from va(KU) to Kva(U) (with U the beneficial
mutation rate per chromosome) as r is increased from of order
1/N to of order s. Again, we expect the scaling parameter λ/L
to primarily control the crossover. An important question – both
here and more generally – is whether this K -chromosome model
spontaneously oscillates. If it does, there should also be some ℓ

dependence even in the asymptotic large-logs limit. To begin to
address this, we can consider the simpler limit of ℓ → ∞ and
λ/L → 0 – i.e. just barely enough reassortment to matter –
discussed in Section 7.1. For two chromosomes, the fittest offspring
are from parental lineages that, since their last reassortment, mu-
tated only on the X or only on the Y chromosome. For reassortment
of K chromosomes between two parents, the fittest offspring are
similarly from parental lineages that accumulated mutations on
complementary sets of chromosomes. This implies that the max-
imum offspring fitness would increase at twice the speed of the
mean for any K . Surprisingly, the dynamics of the resulting infinite
ℓ oscillations are independent of K for λ/L = 0 and have speed
v ≈ 1.3va. Understanding how the K > 2 oscillation dynamics
change with ℓ and λ is left to future work. As an illustration of the
behavior, simulation results for K = 3 are shown in Fig. D.15: these
show that the dynamics are similar to the K = 2 case for both low
and intermediate mating.

An interesting question for theK chromosomemodel is how the
dynamics change when approaching the sexual limit for which the
speed approaches Kva(U). Already in the two chromosome case,
we found a qualitative change in the dynamicswhen chromosomes
can undergo multiple reassortments before accumulating more
mutations. A regime in which such multi-reassortment processes
dominate the dynamics was considered by Neher et al. (2010).
They studied the sexual dynamics of models essentially equivalent
to K → ∞ reassortment models but with the total mutation rate
µ = KU fixed as the large K limit is taken so that new mutations
always occur on different ‘‘chromosomes’’. They were only able to
analyze the dynamics for r > s

√
logN finding that the speed goes

as v ∼ r2 log(Nµ) up to other logarithmic factors that depend
on the particular reassortment processes. In contrast to the two-
chromosome model for r ≪ s, mutations that arise in the bulk of
the fitness distribution contribute substantially: multiple reassort-
ments enable them to combine onto better genomic backgrounds
and eventually to the nose. This enables many mutations to segre-
gate simultaneously (although almost all are still wasted, as v ∼

log(Nµ) ≪ Nµ). The dynamics of each new mutation proceeds
in the distribution of fitness backgrounds of the other segregating
mutations and the new mutant lineages only feedback to affect
the earlier mutations when their frequency has risen enough in
the population that the distribution of the new mutation over the
fitness backgrounds has become essentially deterministic. But as
r decreases, the fluctuations of the nose of the fitness distribution
become large enough that this approximate independence of each
mutation breaks down. Accumulation of multiple mutations on
the same genome before reassortment then becomes important.
Once this occurs, the details of the distribution of relatedness
becomes essential. It is not known how the large K models behave
for r ∼ s or r ≪ s, but we expect that the crossover of the
speed to asexual should again be only logarithmically dependent

on r . Understanding the underlying complex dynamics, which will
involve subpopulations that accumulate mutations and mate in
anomalously rare ways, is a real challenge for future research.

The dynamics of facultative sexual populations with very low
rates of mating but a large number of crossovers when they do
mate – completely destroying linkage – was studied by Rouzine
and Coffin (2005, 2007, 2010). Although they consider only puri-
fying selection on preexisting deleterious variation with no new
mutations, there is still a range of times in which the dynamics is
well approximated by a steadily moving fitness wave. Their anal-
ysis exhibits some general features similar to ours: a dependence
on logarithmic parameters equivalent to our log(Nr)/log(Ns) in the
crossover regime, and a cycle of recombination and growth that
advances the nose, simpler but loosely analogous to the wing-
supporting cycle in our steady state solution. But they treat the
complex correlations induced by common ancestry in a relatively
simple manner (Rouzine and Coffin, 2010) which is only a crude
approximation.

The most interesting direction is moving away from the non-
recombining chromosome models towards more realistic recom-
bination processes. One example is facultatively sexual organisms
that occasionally mate and when they do so, the chromosomes
recombine with a few crossovers, in addition to reassorting. As
each of the long segments that remain linked will have evolved
asexually for some timebefore recombining, this has some features
that are crudely similar to the K -chromosome purely-reassorting
model. But the crossovers occur at different positions in different
matings. Thus the many possible segments of the chromosomes
in the many possible individuals in the population that could be
recombined together need to be kept track of. Whether this can be
done in some approximate way in terms of many effective non-
recombining chromosomes – loosely analogous to the treatment
of asexual segments of chromosome at moderate recombination
rates by Weissman and Hallatschek (2014), Neher et al. (2013)
and Weissman and Barton (2012) – is unclear. In any case, this
certainly represents an important and challenging direction for
future research.

Another challenging direction is applicable to bacteria, most of
which primarily exchange small segments of chromosomal DNA.
Of course, new functions can be acquired as single genes or whole
operons. But even homologous recombination of ‘‘uninteresting’’
segments can contribute much more to the fitness than those they
replace because of accumulation of beneficial mutations: this is
the natural generalization of the evolutionary processes we have
analyzed. Again, it is plausible that the dynamics could be analyzed
in terms of segments that are effectively like short reassorting
chromosomes—loosely analogous to the K -chromosomemodel for
some effective K but with exchange of only one chromosome at a
time.

For all of these extensions, the most interesting observable
features may well be the statistics of diversity induced by the
dynamics. As for rapidly evolving asexual populations (Neher and
Hallatschek, 2013; Desai et al., 2013), these will reflect the crucial
but invisible dynamics of the very low frequency subpopulations
that drive the dynamics, i.e. the ‘‘nose that wags the dog’’ (Fisher,
2011).
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Appendix A. Two chromosome asexual

Under the assumptions discussed in Section 5, there will be
a steady state front that moves with a constant speed v. In the
continuous fitness approximation, the absolute fitness of the front
will take the form F (w, t) = vt + f (w) with w ≡ X − Y . A new
subpopulation at the front will be fed by two subpopulations that
were previously at the front. These two subpopulations will have
the same absolute fitness F = vτ1 + f (w1) = vτ2 + f (w2), where
the τ ’s are their respective establishment times. The difference in
w values isw2−w1 = 2s becausew2 = (X1+s)−(Y1−s). Therefore

τ2 − τ1 =
f (w1) − f (w2)

v
≈ −f ′(w1)

2s
v

(A.1)

with f ′(w) ≡
df
dw . The newly established subpopulation has fitness

F+s = vτest+f (wi),wherewi = w1+s = w2−s is the intermediate
w value. Thus its establishment time must be

τest = τ1 +
(
1 − f ′(w1)

) s
v
. (A.2)

Using Eqs. (A.1), (A.2) and the establishment time from the feeding
process found in Eq. (15) gives a differential equation for the steady
state asexual front

exp
[
ff ′

s
v

]
+ exp

[
−ff ′

s
v

]
= exp

[
ℓ − f

s
v

]
. (A.3)

Rescaling fitness variables f and w according to Eq. (9) shows that
ℓ controls the overall shape:

exp
[
f̃ f̃ ′ℓ

]
+ exp

[
−f̃ f̃ ′ℓ

]
= exp

[
ℓ(1 − f̃ )

]
. (A.4)

Numerical solutions to this equation are shown Fig. 2.
There are two regions of the front. The region near the nose

(which we choose to be at w = 0) experiences roughly equal
mutational feeding by the two parent subpopulations, i.e. τ1 and τ2
are nearly equal. The outer regions called the wings have feeding
dominated by a single subpopulation, so either τ1 or τ2 is much
earlier. The transition between the two regions sets the overall
width of the fitness distribution which varies with the mutation
parameter ℓ = log(s/U).

The nose region with two-sided feeding has roughly the same
width for different values of ℓ, but the fitness drop from the nose
goes as O(1/ℓ). To see this, expand Eq. (A.4) to lowest order in
δ f̃ ≡ f̃ − f̃ (0):

ℓ2
(
f̃ (0)δ f̃ ′

)2
≈ −2ℓ δ f̃ (A.5)

⇒ δ f̃ ≈ −
w̃2

2ℓ
. (A.6)

This solution breaks down when w̃ = O(1) and |δ f̃ | = O(1/ℓ).
The width of the wing depends on its starting fitness. The

X wing (w̃ > 0) starts approximately at the end of the nose region,
with f̃0 = 1 − a/ℓ and w̃0 = b for some order one constants a,
b with which we can roughly match the nose and wing regions.
When ℓ(1 − f̃ ) ≫ 1 either ef̃ f̃

′ℓ or e−f̃ f̃ ′ℓ in Eq. (A.4) must be much
larger than the other. Therefore

± f̃ ′
≈

1

f̃
− 1 (A.7)

where the sign depends on which mutation wing we are consid-
ering. The solution for the X (w > 0) wing starting with (f̃0, w̃0)
is

w̃ = w̃0 + f̃ − f̃0 + log

[
1 − f̃

1 − f̃0

]
. (A.8)

Fig. A.9. Comparison of the stochastic simulation results for the aspect ratio
averaged over time for two different values of L ≡ log(Ns) and a range of ℓ ≡

log(s/U) values. For large ℓ the simulations are in good agreement with the asexual
steady state calculation.

The rightmost edge of the distribution is at (f̃ , w̃) = (0, w̃max), so
plugging in for (f̃0, w̃0) we find

w̃max = log
[

ℓ

a

]
+ b +

a
ℓ

− 1 (A.9)

so w̃max, the half-width of the distribution, approaches log(ℓ) +

c for large ℓ. In terms of the original parameters this is
w̃max ∼ log(log(s/U)) which grows very slowly with the muta-
tion timescale 1/U . Fig. A.9 confirms this scaling in the stochastic
simulations by considering the ‘‘aspect ratio’’, wmax/fmax, where
fmax = qs[1−O(1/ℓ)]. This ratio is the same as that for the rescaled
quantities: i.e. equal to w̃max.

It would appear that this analysis depends crucially on the
continuum approximation for fitnesses which for fixed large qwill
break down for rescaled fitness differences of order 1/q. Yet the
fitness thickness of the nose regimewas inferred to be only of order
1/ℓ suggesting breakdown when ℓ > q. But the results shown in
Fig. A.9 appear to indicate that the results are valid even far into
this regime. Althoughwehavenot analyzed this in detail, it appears
that the crucial property is that the establishment times for a given
fitness vary slowly with w, even if the fitness steps from Z to Z + s
are themselves very jerky as they are when ℓ ≫ q.

Appendix B. Intermediate mating

B.1. Steady state

For mating rates λ/L ≳ 0.81, we are forced into an Ansatz for
the steady state with the front divided into three regions: the nose
region, the mutation wings, and ‘‘re-mating’’ regions between the
nose and wings, as illustrated in Fig. B.10. As in the low mating
steady state, the nose region is the product of reassortment from
bothwings and therefore has the same shape (e2x̃+e2ỹ = 2eQ̃ ). Due
to the highermating rates and corresponding faster speed, the nose
region is supported by mutation wings that start further from the
nose (larger w̃s) with lower initial fitness f̃s than the low mating
case. The lower fitness wings can support a nose region of limited
width. The gaps between the nose region and the wings must then
contain subpopulations that establish due to reassortment (since
they are not in the wings) and later contribute to reassortment
after clonal growth, hence the name re-mating. The X re-mating
region is the product of reassortment between the X wing and
the Y re-mating region. In Fig. B.10 we can follow the course of
a particular X chromosome that begins at the X mutation wing
start: it accumulates mutations and then grows in copy number.
Some copies reassort and establish in the X side re-mating region.
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Fig. B.10. Schematic of the steady state dynamics for intermediate mating rates.
There are three regions of the front: the mutation wings (red), the nose region
(blue), and the re-mating regions (orange). The subpopulations in the nose region
establish due to reassortment from the twomutation wings. Subpopulations in, e.g,
the X-side re-mating region are established by reassortment of a chromosome from
the Y re-mating region and a chromosome from the X mutationwing. The remating
subpopulations both establish by reassortment and contribute to reassortment.
The diagram shows the series of reassortments that ultimately support the wing
start. Consider an X chromosome at the wing start. It will accumulate mutations
(horizontal red arrow) and reach a fitness of X2 (bottom right). It grows clonally
for a time and then successfully reassorts (vertical blue arrow) to the X re-mating
region. It grows again and then reassorts (vertical orange arrow) to the Y wing start
at (X2, Y2).

They again grow in copy number and some reassort and establish
in the other Y re-mating region. These chromosomes have thus
undergone two reassortment events. They will not reassort again
because their X fitness is now too low to establish at the front.

As in the low mating regime, the long term dynamics are con-
trolled by an essential wing-supporting cycle that allow a chro-
mosome to persist indefinitely by accumulating mutations and
reassorting back to the wing start again and again (see Fig. 3). For
the Y -wing, this cycle supplies the Y chromosome. A new com-
plication is that the X chromosome for the Y wing start does not
simply come from the other mutation wing. Fig. B.10 traces back
some of the reassortment events needed to eventually support the
wing start. The X chromosome for the Y -wing start comes from a
point in the opposite (X) re-mating region. This point is itself also
supported by a point in its opposite (Y) re-mating region, and so
on. There is an infinite sequence of points supporting each other.
Backwards in time, the sequencemoves inward from thewing start
at the edge of the re-mating region and converges to a fixed point
in its interior. So the dynamics further and further back in time
depend on a smaller and smaller region around the fixed point.
This steady state could only be approached from initial conditions
by dynamical transients continually building up the region around
the fixed point.

It is possible to determine the speed of the intermediatemating
Ansatz without explicitly solving for the whole front f (w). Given
the fitness and slope, (f (w), df /dw), for a point in the re-mating
region we can solve for the points that support it by reassortment.
So from the wing start at (f̃s, w̃s), we can find the sequence of
points backwards in time. For the correct set of parameters (the
speed v and the wing start at fixed mating rate λ/L) the sequence
will converge smoothly to a fixed point. For an incorrect set of
parameters, the sequence will diverge or not matchup smoothly.
By adjusting the parameters we can thereby determine how v
depends on λ/L.

First we describe how reassortment, in general, constrains the
shape of the front f̃ (w̃) by relating distant points. Reassortment is

controlled by the total number of individuals with a given fitness
of each chromosome, n(x) =

∑
yn(x, y) (and visa versa). Because

of exponential growth, different subpopulations n(x, y) differ by
orders of magnitude, so (to the needed logarithmic accuracy) the
sum is dominated by its largest term: n(x) ∼ maxyn(x, y). As
a subpopulation initially at the front grows, its fitness decreases
from f̃ (w̃) to z̃ in a time t̃ = f̃ − z̃ so its size is

n(z̃, w̃)s ∼ exp
[

vℓ2

s2

(
f̃ (w̃)t̃ − t̃2/2

)]
∼ exp

[
RL

(
f̃ (w̃)2 − z̃2

)]
(B.1)

with R ≡
vℓ2

2Ls2
. Let m be the fitness of the maximum over y for a

given x: ∂n
∂y = 0 gives m̃ = −f̃ (w̃)f̃ ′(w̃) so that

n(x)s ∼ n(m̃, w̃)s ∼ exp
[
RLf̃ 2(1 − f̃

′2)
]
. (B.2)

The subpopulation at (m̃(w̃), w̃) is the dominant supplier for
X chromosomes with relative fitness x̃ = (w̃ − f̃ f̃ ′)/2.

Reassortment connects the subpopulation (x̃, ỹ) establishing at
the front and the twoparent subpopulations, (m̃x, w̃x) and (m̃y, w̃y),
which supply the X and Y chromosomes to (x̃, ỹ). Of course the
parent subpopulations had previously established at the front – at
(f̃x, w̃x) and (f̃y, w̃y)—before growing. The reassortment constraint,
explained in Section 5.1, is that the influx of reassorters ν =
r
N n(x)n(y) satisfies log ν = 0, which becomes

0 =
λ

L
− 2 + R

[
f̃ 2x

(
1 − f̃

′2
x

)
+ f̃ 2y

(
1 − f̃

′2
y

)]
, (B.3)

after using Eq. (B.2). We also need x̃ = (w̃x − f̃x f̃ ′
x )/2 and ỹ =

(f̃y f̃ ′
y − w̃y)/2 to properly connect the corresponding points.
Next, we apply the general reassortment equation, Eq. (B.3), to

the intermediate mating Ansatz. The boundary conditions for the
re-mating region can found in terms of the wing start parameters.
One edge of the X re-mating region is at the X wing start, (f̃s, w̃s),
and has a slope of f̃ ′

= (f̃s − 1)/f̃s, from Eq. (A.7). The other
edge is the endpoint of the nose region, which is the furthest
point that the Y wing can support via reassortment. Therefore the
nose region endpoint at (x̃n, ỹn) is supplied Y chromosomes from a
subpopulation growing directly from the Y wing start at (f̃s, −w̃s).
So 2ỹn = m̃ − (−w̃s) = 1 − f̃s + w̃s, and x̃n and the slope can be
inferred from the nose region shape, e2x̃ + e2ỹ = 2eQ̃ .

The contribution to Eq. (B.3) from the mutation wing can be
found simply. From Eq. (27), the X wing has fitness f̃x = 1 −

β exp(2x̃)withβ ≡ 2(1−f̃s) exp(f̃s−w̃s−1) as a useful combination
of parameters. Since f̃ ′

= 1 − 1/f̃ ′, the wing contribution is

f̃ 2x (1 − f̃
′2
x ) = 2f̃x − 1 = 1 − βe2x̃. (B.4)

By plugging the wing contribution into Eq. (B.3), we effectively
account for one of the three points and obtain a general relation
between two points, both in the re-mating region.

The parent subpopulation in the Y re-mating region with
(f̃1, w̃1) supports the establishment of the point (f̃2, w̃2) in the X re-
mating region. The child subpopulation receives an X chromosome
with fitness 2x̃ = f̃2 + w̃2 from the mutation wing. Eq. (B.3)
becomes

R
[
f̃ 21

(
1 − f̃ ′2

1

)
+ 1 − βef̃2+w̃2

]
= 2 −

λ

L
(B.5)

with the additional constraint that the Y chromosomes from
(f̃1, w̃1) have the correct fitness:

2ỹ = f̃2 − w̃2 = f̃1 f̃ ′

1 − w̃1. (B.6)
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Fig. B.11. A lineage starting in the X re-mating region (at point 1) grows for a time
(green arrow) and reassorts (orange arrow) to the Y re-mating region (at point 2)
and then grows and reassorts again to point 3, shown to be the wing start. Since
the re-mating regions have the same shape up to a reflection across x = y, we can
reinterpret this reassortment process as a map from one re-mating region to itself,
as shown in the right diagramwith the corresponding points labeled. Point 2′ is the
reflection of point 2. The map expands outward so there is an unstable fixed point
(black dot) somewhere in the interior of the re-mating region. The dashed black
curve on the left denotes the line of subpopulations with maximum size among
subpopulations with the same X or Y chromosome fitness.

The slope of the front at the child subpopulation can be found by
differentiating Eqs. (B.5) and (B.6) to obtain

f̃ ′

2 =
f̃1 f̃ ′

1 + βef̃2+w̃2

f̃1 f̃ ′

1 − βef̃2+w̃2
. (B.7)

Together these three equations determine the front at (f̃2, f̃ ′

2, w̃2) in
the X re-mating region as a function of (f̃1, f̃ ′

1, w̃1) in the Y region.
Since we assume that the Ansatz is symmetric, we can modify

Eqs. (B.5)–(B.7) to involve two points in the X re-mating region
using the substitution: f̃1 → f̃1, f̃ ′

1 → −f̃ ′

1 , and w̃1 → −w̃1. The
modified equations are a map from one point in the re-mating re-
gion to the another. It can be shown that this reassortmentmaphas
a fixed point in the interior of the region and application of themap
expands points outward from the fixed point. Fig. B.11 illustrates
how reassortment in the re-mating region can be reinterpreted as
an expanding map.

To solve for the steady state, we must use the inverse of the
reassortment map to move inwards from the edges to the fixed
point. For the correct set of (f̃s, w̃s, λ/L) values, the inversemap tra-
jectory reaches the fixed point smoothly, but for incorrect values
the trajectories diverge or intersect at a kink. So the correct values
can be found via the shooting method used to solve boundary
value problems: simply vary the parameter values until a solution
is found. As for low mating rates, the nose fitness can be solved
for in terms of λ/L using Eq. (32), which determines the speed
via v/va(U) = R = 1/Q̃ 2. For the steady state solution, the re-
mating region expands and the nose region shrinks as the mating
rate increases. For the Ansatz to be valid we must check that the
nose region exists. This amounts to checkingwhether w̃N = x̃n−ỹn
is greater than zero. This condition fails for λ/L ≥ 0.99 suggesting
that new Ansatzes are needed for mating rates approaching r ≲ s
that involve additional reassortment events.

B.2. Oscillations

Comparison of the intermediate oscillations in Fig. B.12 and the
lowmating oscillations in Fig. 4 show notable differences in the es-
tablishment history of the current population: At lowmating rates
subpopulations established during a single reassortment phase are
present, but at intermediate rates the current population contains
subpopulations from two different reassortment phases coexist-
ing. This difference is due to a change in the dynamics of the oscilla-
tions. Fig. 5 shows how the period in the deterministic simulations

Fig. B.12. Oscillation cycles illustrating the fitness distribution during themutation
phase (left column) and the reassortment phase (middle column) which occur
during each cycle; the top row is for deterministic dynamics. All the non-zero
subpopulations are shownwith their color indicating the fraction of new individuals
due to reassortment (bluer) ormutation (redder) when establishing. The oscillation
dynamics are shown for intermediate mating rates with λ/L ≈ 0.8. In this regime,
the current population includes subpopulations established in two reassortment
phases, instead of only one phase for the low mating oscillation shown in Fig. B.12.
(This is clearly seen even though the intermediate rate used is on the border of the
two regimes.) The righthand column shows the speed of the nose andmean, dashed
lines corresponding to the times of the snapshots shown. The nose speed increases
during the reassortment phase and, through exponential growth of the prior nose
populations, the effects of this are sharpened into a jump in the mean fitness
roughly a time ℓ/s later. At intermediate mating rates, another reassortment phase
occurs within the timespan required for this exponential growth. The stochastic
simulations have N = 1012 , s = 10−2 , 2U = 10−4 , r = 10−4 (q ≈ 9, ℓ ∼= 5.3)
and N = 108 , s = 0.03, 2U = 10−6 , r ≈ 2 × 10−3 (q ≈ 2.7, ℓ ≈ 11). These agree
qualitatively and semi-quantitively with the deterministic simulations which are
valid in the continuous (large q ≡ 2L/ℓ) limit.

depends on the mating rate. As the mating rate increases, there is
a discontinuous period-halving bifurcation at λ/L ≈ 0.8, which
essentially coincideswith the transition point between the lowand
intermediate mating-rate steady states. When the period halves,
two reassortment segments can ‘‘fit’’ within the current population
instead of just one. (The simplest scenario is that decreasing λ from
the intermediate mating rate regime leads to a sub-critical – and
hence discontinuous – period doubling bifurcation, while increas-
ing it from the low mating rate regime leads to the disappearance
of the cycle at a saddle–node bifurcation. This makes the transition
between the two regimes hysteretic as is, indeed, observed in the
deterministic simulations.)

As for the low mating oscillations, small regions of the front
at the end of the reassortment phase produce the mutation
wings important for reassortment and are analogous to the wing
starts for the intermediate steady state. The set of reassortment
events that support these small regions resemble the intermediate
wing-supporting cycle in Fig. B.10. Again the intermediate mating
oscillation appears as if one cycle from the steady state has
strengthened to dominate the others. The correspondence be-
tween cycles from the steady state and the oscillations is quali-
tative but not necessarily quantitative since the oscillation cycles
must satisfy all the delayed feedbacks. The difference between low
and intermediate mating oscillations is an additional feedback due
to the secondary reassortments. Consider the marginal case with
λ/L at the period halving transition point. Initial transients appear
as low mating oscillations with a long reassortment phase. The
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crucial difference is that subpopulations established at the begin-
ning of the reassortment phase also contribute to reassortment by
the end of the phase. This is the start of an extra reassortment
phase and creates an additional feedback: the shape at the end
of the (long) reassortment phase depends on the beginning of the
reassortment phase. (For low mating oscillations the shape at the
end depends only on the previous reassortment phase). The addi-
tional feedback eventually breaks the long reassortment phase into
two separate phases. The jumping of the mean is now ‘‘interlaced’’
between cycles: one reassortment phase ends due to the mean
jumping caused by the previous reassortment phase, as can be seen
Fig. B.12. The period halving point roughly coincides with the low-
to-intermediate mating transition because both happen when the
mating rate is large enough that a subpopulation established by
reassortment can later contribute to reassortment.

At the upper end of the intermediate mating regime where
r → s (i.e. λ/L → 1) the size of themean jumps decays to zero and
the reassortment regions become larger and begin to overlap. This
behavior smoothly approaches the obligate sexual steady state,
which always has establishment by reassortment and does not
exhibit oscillations in the deterministic limit. For intermediate
mating rates, the nose always has some influx of individuals due
to reassortment – as seen in Fig. B.12 – although there are still
clear reassortment and mutation phases. In the obligate sexual
limit the two chromosomes become completely unlinked, so the
distribution is a product of the asexual fitness distributions of each
chromosome. The oscillation period, shown in Fig. 5, becomes close
to the nose-to-mean time, τnm, of the sexual limit. Since the speed
is twice as fast as the asexual limit, the time for the mean to
advance one nose-length is half as long, i.e. τnm ≈ 0.5ℓ/s. Thus for
λ → L, the oscillation period approaches the time for variations in
the speed of the nose to cause change in the speed of the mean.
Note that this is not the nose-to-mean time for the distribution
of one of the almost-independent chromosomes, which would be
twice as long. Not surprisingly, the coupling between the chromo-
some distributions is still important for the oscillations.

Appendix C. Crossovers and deterministic–stochastic compar-
isons

C.1. Crossover to asexual limit

The analysis of the reassortment steady state in Eq. (34) shows
that the growth of populations from the center of the front yields a
fitness distribution near the mean that is approximately gaussian
with an aspect ratio, σw/σz = 1/

√
Q̃asex, that approaches unity in

the asexual limit for large ℓ. But the asexual steady state is far from
symmetric. Using the results fromAppendix A, a similar calculation
finds an aspect ratio σw/σz ≈

√
ℓ. This implies that reassortment

is a singular perturbation in the asymptotic limit, meaning that the
shape of the front changes rapidly for a small increase in λ/L. The
curvature of the front at the nose changes quickly over a narrow
range of mating rates such that reassortment is unable to establish
populations at the front for small λ/L.

The crossover from asexual is complicated by the ℓ dependence
of the asexual steady state which has a speed of va(2U) = 2L/(ℓ −

log 2)2. The steady state dynamics are asexual until reassortment
first results in establishment at the nose. We can derive how this
critical reassortment rate depends on ℓ. A subpopulation with
fitnesses (z̃, w̃) has a size

log(ns) ≈
L

Q̃ 2

(
f̃ (w̃)2 − z̃2

)
(C.1)

with f̃ (w̃) = Q̃−w̃2/2ℓ for the asexual front, as derived in Eq. (A.6).
The subpopulations feeding the nose are located at (z̃, w̃) =

(0, ±Q̃ ) up toO(1/ℓ) corrections. From the requirement for estab-
lishment (rnxny/N ∼ 1) we find that reassortment first matters in
the deterministic approximation when λ/L = 2/ℓ.

The reassortment steady state solution derived in Section 6.1
represents the ℓ → ∞ limit. This solution has the correspondingly
correct asexual speed va(U) = 2L/ℓ2 and first deviates from
asexual at λ = 0. Corrections for finite ℓ must therefore produce a
solution with the correct asexual speed, va(2U), up to λ/L = 2/ℓ.
For finite (but large) ℓ, the mutation wing is described by the full
differential equation for the asexual front, eq. (A.4). As explained in
Appendix A, finite ℓ corrections are only relevant for fitnesses f̃ >

1 − 1/ℓ. Since the wing start fitness f̃s must be less than the nose
fitness Q̃ , we can estimate that the corrections become significant
only when 1 − Q̃ = O( 1

ℓ
) which as for the two-chromosome

asexual corrections also occurs for v
va(U) −1 = O( 1

ℓ
). For speeds be-

low this threshold, corrections help the solution asymptote to the
correct asexual limit for finite ℓ. For speeds above this threshold,
finite ℓ effects are negligible and the solution matches the infinite
ℓ steady state derived in Section 6.1.

C.2. Crossover of oscillation dynamics for finite ℓ

The speed curves in Fig. 1 show considerable dependence on ℓ
in the low mating regime. The changes of the speed are predomi-
nantly due to changes in the jump size of the mean fitness, as seen
in the plots of the period and jump size in Fig. 5. The size of the
mean jump is determined by the nose speed at the start of the
reassortment phase, which depends on when reassortment inter-
rupts the mutation phase. In the absence of mating the population
would eventually approach the asexual steady state. The oscillation
dynamics for general ℓ and λ interpolate between two extremes,
when either the population is close or far to the asexual steady
state when reassortment starts.

The infinite ℓ limit described in Section 7.1 is always far from the
steady state (indeed no steady state formally exists in this limit).
The front is an expanding flat line that advances at speed roughly
va. The line of subpopulations with size, nc , sufficient to reassort
to the nose trails behind the front, also advancing at roughly speed
va, like the ridge in Fig. 7. The X-most point of the nc line moves
purely in the X direction at speed vx = va, and similarly for the
Y -most point. During the reassortment phase, this implies that the
nose speed is vn = vx + vy = 2va. According to Eq. (37), the nose–
mean ratio β = vn/va ≈ 2 results in a jump in mean fitness of
size ∆⟨Z⟩ = Q/

√
3 = 0.58Q . This regime applies for large ℓ (so

that the approach to steady state takes a long time) with moderate
λ/L > O(1/ℓ) (so that themutation phase is not too long). In Fig. 5,
the large ℓ jump sizes plateau to 0.58Q up to O(1/ℓ) corrections.

In the opposite regime – for fixed ℓ as the speed is just rising
from the asexual speed – the population is close to steady state
when reassortment starts. This happens for λ/L ≈ 2/ℓ when
reassortment is just enough to matter for the asexual steady state,
as derived in the previous appendix section. In the steady state,
the whole population advances at va in the X = Y direction so the
X-most point with αc moves at only vx = va/2 in the X direction.
The reassortment nose speed is therefore vn = vx + vy = va,
implying (from Eq. (37)) a vanishing jump size: this is a marginal
case. Small values of ℓ are more similar to the steady state because
the 1/ℓ effects induce curvature of the front earlier in themutation
phase. So for small ℓ the fitness distribution and the speed remain
in the crossover regime between the steady state and the infinite
ℓ limits for a greater range of λ/L values in Fig. 5.

For intermediate mating rates, the speed curves in Fig. 1 are
ℓ independent. This likely happens because the lineages impor-
tant for reassortment descend from points that start the mutation
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Fig. D.13. Speed comparison between deterministic (blue) and stochastic simula-
tions (teal) for a range of ℓ ≡ log(s/U). Smaller ℓ values appear lower in the plot. As
discussed in Section 5.1, the first speedup due to reassortment is at λ/L = 2/ℓ for
the deterministic model. Reassortment affects the stochastic dynamics for smaller
λ/L due to fluctuations in the width of the asexual distribution. The red curves,
which are stochastic simulations with fixed ℓ but different q, overlap greatly and
show very little dependence on q except when stochastic effects are important for
λ/L < 2/ℓ.

Fig. D.14. The dependence on reassortment rate of low-mating steady-state quan-
tities, rescaled according to Eq. (9). The diagram on the left illustrates the quantities
plotted. These include the nose fitness Q̃ , the fitnesses for the wing start: fitness f̃s ,
transverse fitness w̃s , and X chromosome fitness x̃s . For the wing-supporting cycle,
the fitnesses after mutation, f̃M , and after growth, z̃G , together with the times for
mutation, τM , and growth, τG , are also plotted.

process in the single parent regime. Then ℓ can be scaled away as
in the reassortment steady state analysis.

Appendix D. Additional figures

See Figs. D.13–D.15.

Fig. D.15. The nose and mean fitness trajectories for the three chromosome
(K = 3) model. The nose trajectory is colored by whether establishment is due
to a greater influx of reassorters (bluer) or mutants (redder). Sexual reproduction
is implemented using the ‘‘communal’’ model of Neher et al. (2010) in which
each chromosome is sampled separately from the population, so the reassorted
population is ν(x1, x2, x3) = Nr n(x1)

N
n(x2)
N

n(x2)
N . The oscillation dynamics at low

(λ/L = 0.5) and intermediate (λ/L = 0.8) mating rates are similar to the two
chromosome case shown in Figs. 4 and B.12. The realistic parameter values used
are similar to the two chromosome plots: N = 108 , s = 0.03, 3U = 10−6 and
N = 1012 , s = 0.01, 3U = 10−4 .
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