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Figure S5.1. Base case (same as Figure 1). (a) 2050 annually-averaged end-use demand across 149 countries 
in the four scenarios: BAU, BAU-CC-BAU, BAU-CC-WWS, and 100% WWS. (b) Number of 2050 energy-
related air pollution mortalities/y across 149 countries in each of the four cases. (c) 2050 energy-related CO2e 
emissions in each case. (d) 2050 annual social energy cost (USD 2020) across 149 countries in each case. 
See caption to Figure 1 for assumptions and sources of data. 
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Figure S5.2. Sensitivity of results in Figure 1 to a CC energy penalty of 15% (581 kWh/tonne-CO2-
removed) instead of 25% (969 kWh/tonne-CO2-removed).  

 
 
 
 
Figure S5.3. Sensitivity of results in Figure 1 to a CC energy penalty of 35% (1,356 kWh/tonne-CO2-
removed) instead of 25% (969 kWh/tonne-CO2-removed).  
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Figure S5.4. Sensitivity of results in Figure 1 to a DAC energy penalty of 25.8% (1,000 kWh/tonne-CO2-
removed) instead of 77.4% (3,000 kWh/tonne-CO2-removed).  

 
 
 
 
Figure S5.5. Sensitivity of results in Figure 1 to a DAC energy penalty of 129% (5,000 kWh/tonne-CO2-
removed) instead of 77.4% (3,000 kWh/tonne-CO2-removed).  
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Figure S5.6. Sensitivity of results in Figure 1 to a CC and DAC capture efficiency of 90% instead of 80%. 

 
 
 
 
Figure S5.7. Sensitivity of results in Figure 1 to a CC and DAC capture efficiency of 70% instead of 80%. 
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Figure S5.8. Sensitivity of results in Figure 1 to CC and DAC costs of $50 and $100/tonne-CO2-removed, 
respectively instead of $100 and $150/tonne-CO2-removed, respectively. 

 
 
 
 
Figure S5.9. Sensitivity of results in Figure 1 to the combination of a CC energy penalty of 15% (581 
kWh/tonne-CO2-removed) instead of 25% (969 kWh/tonne-CO2-removed); a DAC energy penalty of 
25.8% (1,000 kWh/tonne-CO2-removed) instead of 77.4% (3,000 kWh/tonne-CO2-removed), a CC and 
DAC capture efficiency of 90% instead of 80%; a CC cost of $50 instead of $100/tonne-CO2-removed; and 
a DAC cost of $100 instead of $150/tonne-CO2-removed. 
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Figure S5.10. Sensitivity of results in Figure 1 to removing all uncaptured CO2 emissions with DAC and 
also offsetting all CO2e emissions by removing more CO2 with DAC, in both the BAU-CC-BAU and BAU-
CC-WWS scenarios. 
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