

Lighthiser v. Trump

Mark Jacobson

Mark Jacobson, Ph.D.

Palo Alto, CA

- Professor of Civil and Environmental Engineering, Stanford University
- Senior Fellow, Precourt Institute for Energy
- Senior Fellow, Stanford Woods Institute for the Environment

WWS System

Generation



Onshore/offshore wind

Solar photovoltaics

Storage

Hydropower reservoirs

Batteries

Equipment

Electric heat pumps

Electric induction cooktops

Grid

AC/HVAC/HVDC lines

Grid interconnection among WWS generators

Lighthiser v. Trump

Mark Jacobson

Exhibit 8 p.3

A Path to Sustainable Energy by 2030

Scientific American (2009)

A PATH TO SUSTAINABLE ENERGY BY 2030

Wind, water and solar technologies can provide 100 percent of the world's energy, eliminating all fossil fuels. HERE'S HOW

By Mark Z. Jacobson and Mark A. Delucchi

In December leaders from around the world will meet in Copenhagen to try to agree on cutting back greenhouse gas emissions for decades to come. The most effective step to implement that goal would be a massive shift away from fossil fuels to clean, renewable energy sources. If leaders can have confidence that such a transformation is possible, they might commit to an historic agreement. We think they can.

A year ago former vice president Al Gore threw down a gauntlet: to repower America with 100 percent carbon-free electricity within 10 years. As the two of us started to evaluate the feasibility of such a change, we took on an even larger challenge: to determine how 100 percent of the world's energy, for *all* purposes, could be supplied by wind, water and solar resources, by as early as 2030. Our plan is presented here.

Scientists have been building to this moment for at least a decade, analyzing various pieces of the challenge. Most recently, a 2009 Stanford University study ranked energy systems according to their impacts on global warming, pollution, water supply, land use, wildlife and other concerns. The very best options were wind, solar, geothermal, tidal and hydroelectric power—all of which are driven by wind, water or sunlight (referred to as WWS). Nuclear power, coal with carbon capture, and ethanol were all poorer options, as were oil and natural gas. The study also found that battery-electric vehicles and hydrogen fuel-cell vehicles recharged by WWS options would largely eliminate pollution from the transportation sector.

Our plan calls for millions of wind turbines, water machines and solar installations. The numbers are large, but the scale is not an insurmountable hurdle; society has achieved massive

JOHN MILNER/ALAMY PHOTOS (LEFT SIDE); BILL DODD/ALAMY PHOTOS (RIGHT)

58 SCIENTIFIC AMERICAN

November 2009

Lighthiser v. Trump
 Mark Jacobson
<https://web.stanford.edu/group/efmh/jacobson/Articles/I/sad1109Jaco5p.indd.pdf>
 Exhibit 8 p.4

Renewable Energy 184 (2022) 430–442

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/rene

Elsevier

Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage

Mark Z. Jacobson^a, Anna-Katharina von Krauland, Stephen J. Coughlin, Frances C. Palmer, Miles M. Smith

^a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305-4020, USA

ARTICLE INFO

Article history:
Received 21 October 2021
Received in revised form
8 November 2021
Accepted 16 November 2021
Available online 1 December 2021

Keywords:
100% renewables
Decarbonization
Grid stability
Transmission
Extreme weather
Storage

ABSTRACT

This study analyzes 2050–2051 grid stability in the 50 U.S. states and District of Columbia after their sector (electricity, transportation, buildings, industry) energy is transitioned to 100% clean, renewable Wind-Water-Solar (WWS) electricity and heat plus storage and demand response (thus to zero air pollution and zero carbon). Grid stability is analyzed in five regions; six isolated states (Texas, California, Florida, New York, Alaska, Hawaii); Texas interconnected with the Midwest, and the contiguous U.S. No blackouts are projected. The study shows that transitioning to 100% WWS by 2050–2051 requires 4–8 h storage are needed. Concatenating 4 h batteries provides long-duration storage. Whereas transitioning more than doubles electricity use, it reduces total end-use energy demand by ~5% versus business-as-usual (BAU), contributing to the 63 (43–79%) and 86 (77–90%) lower annual private and social (private + health + climate) energy costs, respectively, than BAU. Costs per unit energy in California, New York, and Texas are 11%, 21%, and 27% lower, respectively, and in Florida are 1.5% higher, when these states are interconnected regionally rather than isolated. Transition may create ~4.7 million more permanent jobs than lost and requires only ~0.23% and 0.5% of new U.S. land for footprint and spacing, respectively, less than the 1.3% occupied by the fossil industry today.

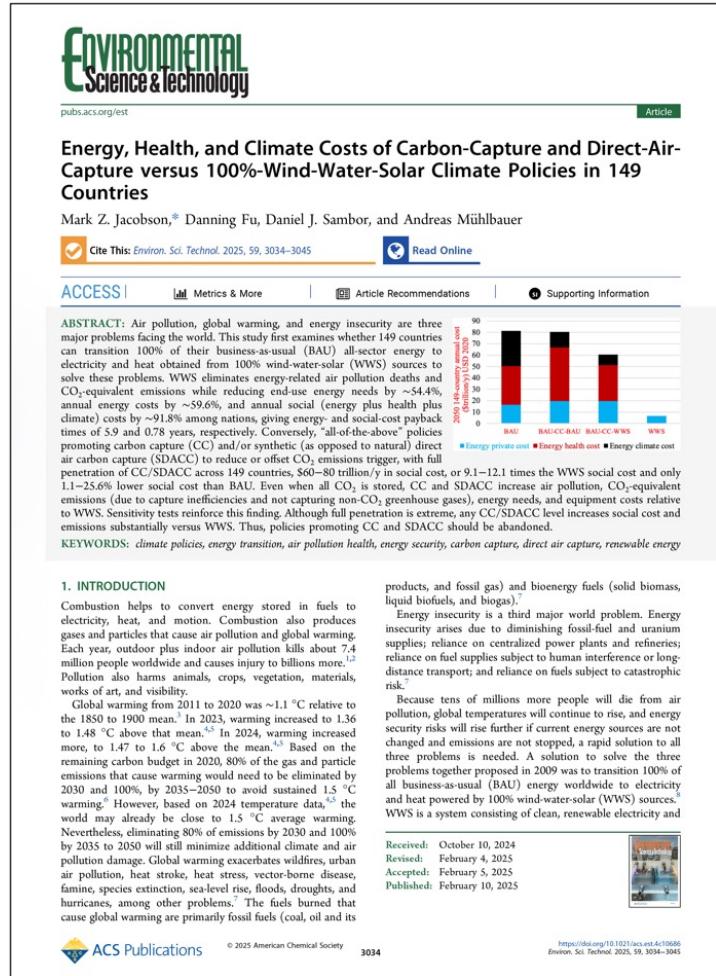
© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The United States is currently undergoing a slow but consistent transition to clean, renewable energy. We define clean, renewable energy as energy that is both clean (emits zero health- and climate-affecting air pollutants when consumed) and renewable (has a source that continuously replaces the consumed energy). We call energy sources that meet these criteria Wind-Water-Solar (WWS) sources. WWS electricity-generating technologies include onshore and offshore wind turbines (Wind); tidal turbines, wave devices, geothermal electric power plants, and hydroelectric power plants (Water); and rooftop/utility solar photovoltaics (PV) and concentrated solar power (CSP) plants (Solar) (Table 1). WWS heating-generating technologies include solar thermal and geothermal heat plants. WWS electricity must be transported by alternating current (AC), high-voltage AC (HVAC), and high-voltage direct

current (HVDC) transmission lines and AC distribution lines (Table 1). WWS energy must also be stored in either electricity, heat, cold, or hydrogen storage media (Table 1). Finally, a transition to WWS requires equipment for transportation, industry, and buildings that runs on electricity. Such equipment includes electric and hydrogen fuel cell vehicles, heat pumps, induction cooktops, and furnaces, space furnaces, lawn mowers, leaf blowers, chainsaws, and more (Table 1).

For this study, we consider only WWS energy since we believe that WWS technologies result in greater simultaneous reductions in air pollution, climate damage, and energy insecurity than do non-WWS technologies. We do not include fossil energy, bioenergy, non-hydrogen synthetic fuels, blue hydrogen, carbon capture, direct air capture, or nuclear energy, since each may result in a greater risk of air pollution, climate damage, and/or energy insecurity. The only hydrogen considered is green hydrogen (from WWS electricity). If we can solve all three problems at reasonable cost with WWS alone, we will not need miracle or controversial technologies to help.

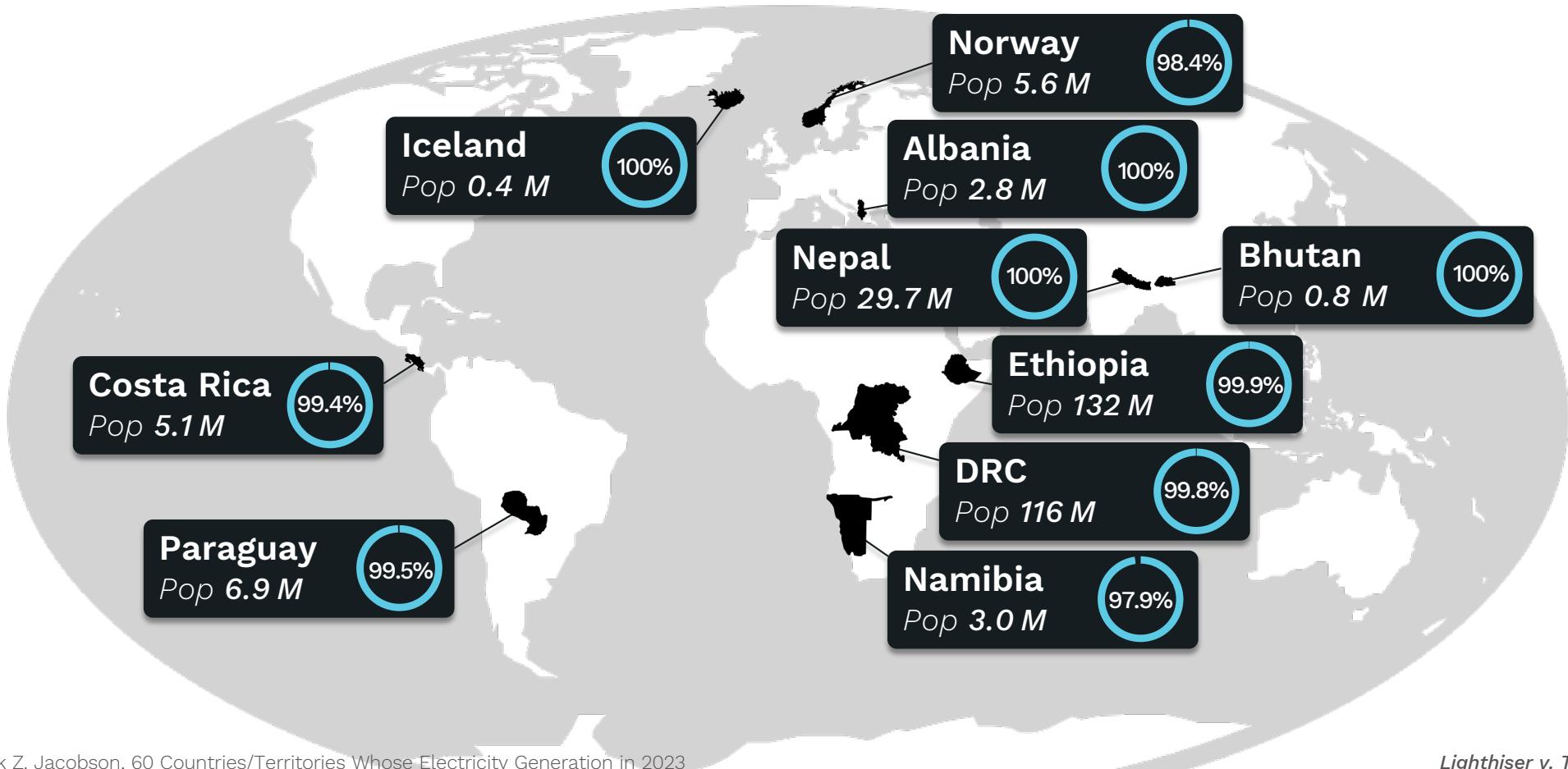

* Corresponding author.
E-mail address: jacobson@stanford.edu (M.Z. Jacobson).

<https://doi.org/10.1016/j.renene.2021.11.067>
0960-1481/© 2021 Elsevier Ltd. All rights reserved.

Zero Air Pollution and Zero Carbon from all Energy at Low Cost and Without Blackouts in Variable Weather Throughout the U.S. with 100% Wind-Water-Solar and Storage

Renewable Energy (2022)

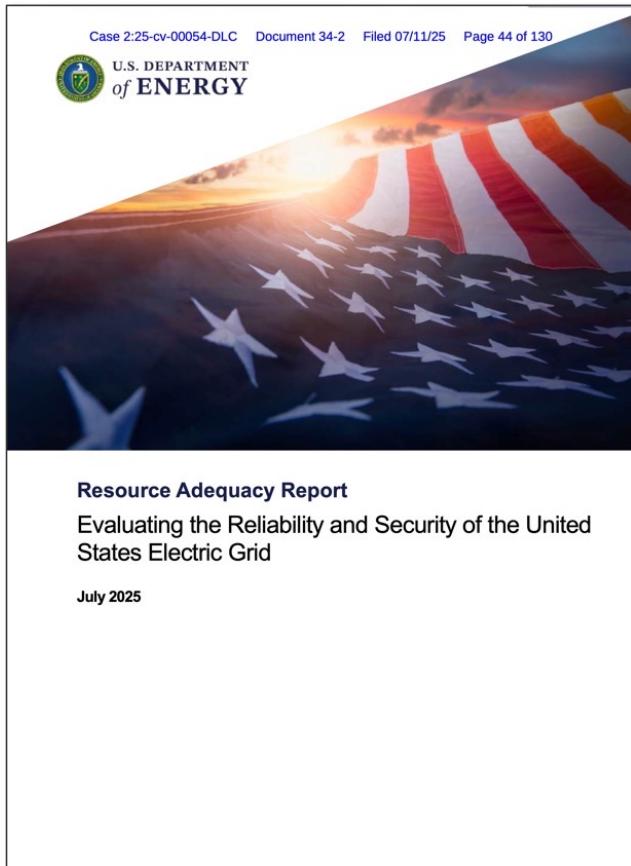
Lighthiser v. Trump
Mark Jacobson
ADD Ex. *
Exhibit 8 p.5



Energy, Health, and Climate Costs of Carbon-Capture and Direct-Air-Capture versus 100%-Wind-Water-Solar Climate Policies in 149 Countries

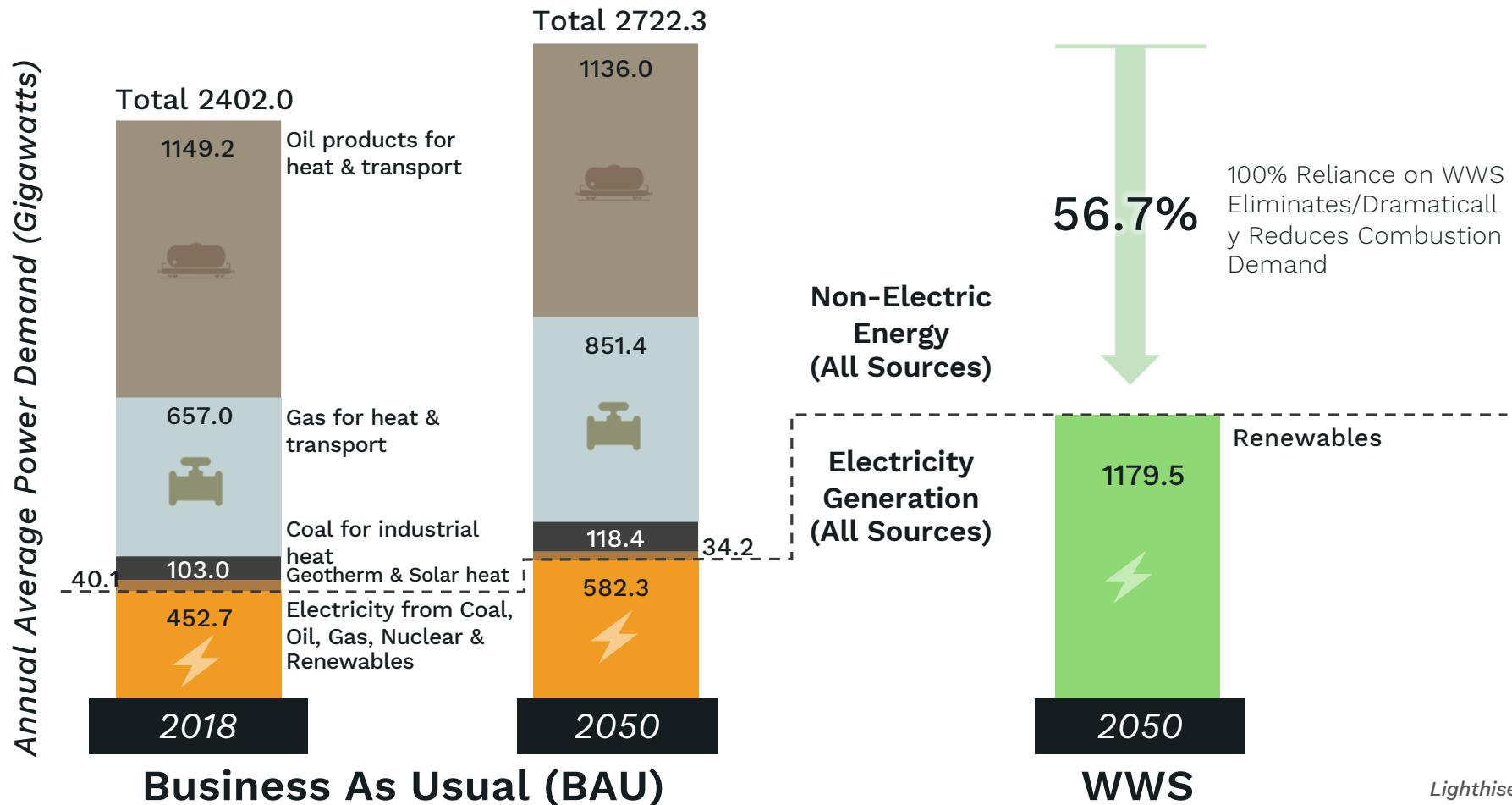
Environmental Science & Technology (2025)

Lighthiser v. Trump
Mark Jacobson
<https://web.stanford.edu/group/efmh/jacobson/Articles/I/149Country/149-Countries.pdf>
Exhibit 8 p.6


Countries Relying Over 97% on WWS, 2023

Mark Z. Jacobson, 60 Countries/Territories Whose Electricity Generation in 2023 was 50-100% Wind-Water-Solar (WWS) (Including 12 With 98.4-100% WWS Generation) and 11 U.S. States That Produced the Equivalent of 51.3-120.3% of the Electricity They Consumed With WWS From Q3-2024 to Q2-2025 (Aug. 26, 2025)

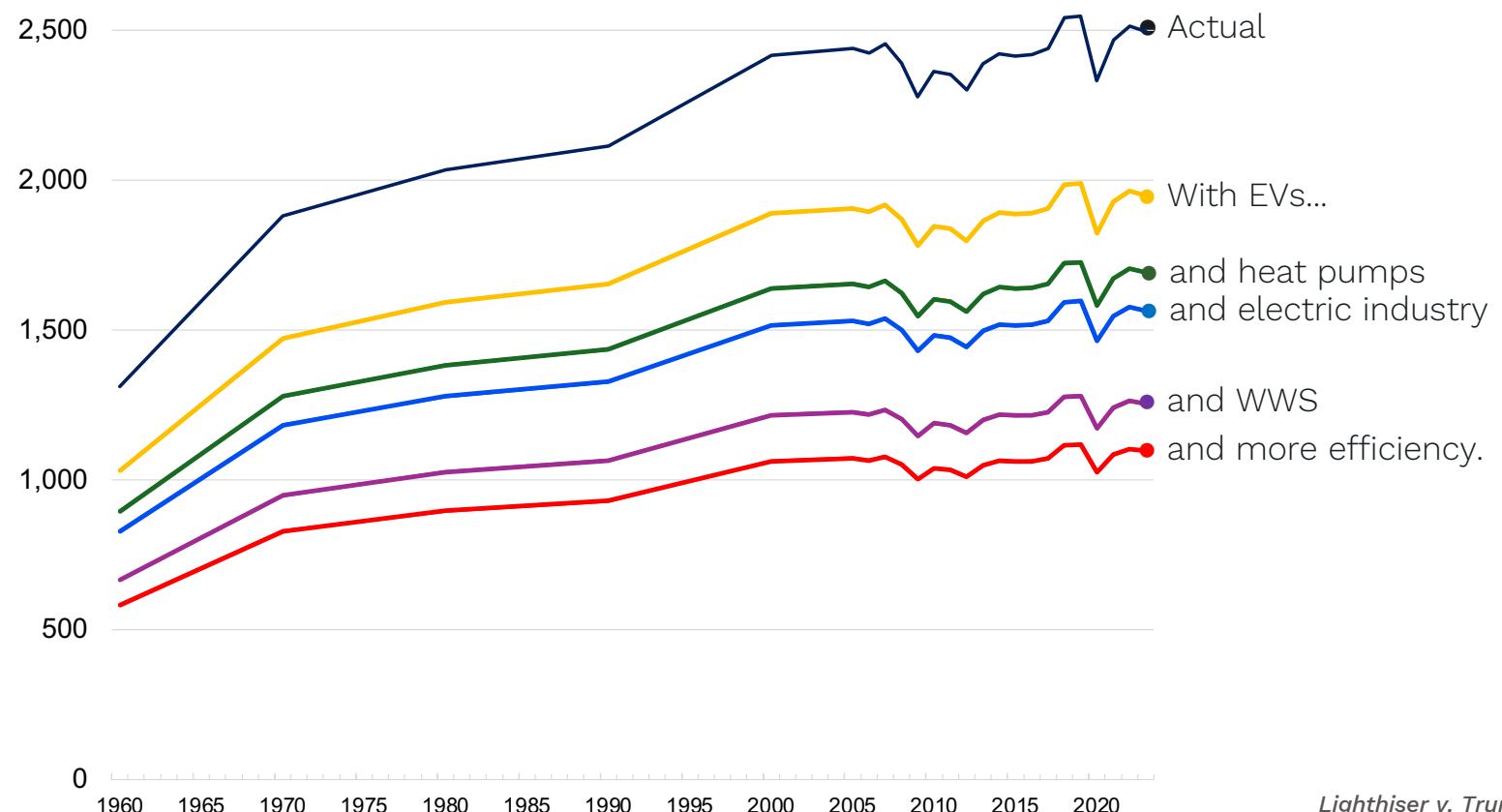
Lighthiser v. Trump
Mark Jacobson
<https://web.stanford.edu/group/efmh/jacobson/WWSBook/Countries100Pct.pdf>
Exhibit 8 p.7


U.S. DOE Resource Adequacy Report, July 2025

Evaluating the Reliability and Security of the United States Electric Grid:

- Wrong that Renewables Cause Blackouts
- Flawed Methodology

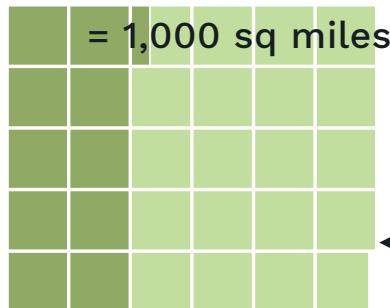
Average U.S. Power Demand, 2018 and 2050


Lighthiser v. Trump
 Mark Jacobson
<https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-WWS-USATotal.pdf>
 Exhibit 8 p.9

Five Reasons 100% WWS Reduces Demand by 56.7%

1. Electric transportation is more efficient than internal-combustion-engine transportation. (22.5% Reduction)
2. Heat pumps for air and water heating & air conditioning are more efficient than combustion heaters. (10.3% Reduction)
3. Electric heating is more efficient than combustion heating for industry. (5.1% Reduction)
4. WWS eliminates energy needed to mine, transport, and refine fossil fuels and uranium. (12.4% Reduction)
5. WWS increases end-use energy-efficiency improvements beyond those in a business-as-usual case. (6.3% Reduction)

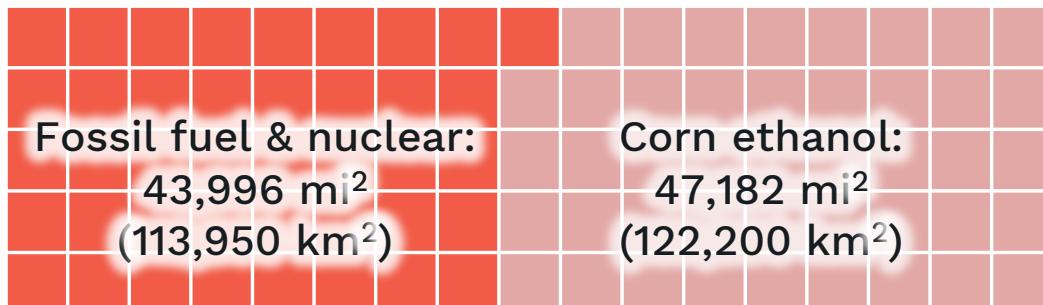
U.S. Power Supply/Demand with Electrification


U.S. all-sector
annual-
average end-
use power
supply and
demand (GW)
from 1960
through 2023

Source of base data Table CT3 https://www.eia.gov/state/seds/sep_use/notes/use_print.pdf
Source of reductions <https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-USStatesPaper.pdf>

Lighthiser v. Trump
Mark Jacobson
Exhibit 8 p.11

U.S. Land Area for Wind Water & Solar vs Oil & Gas


= 1,000 sq miles

Total for WWS 2050:
29,891 mi² (77,418 km²)

0.85% of U.S. Land

← Spacing Area: 19,558 mi² (50,655 km²)
(Between wind turbines)

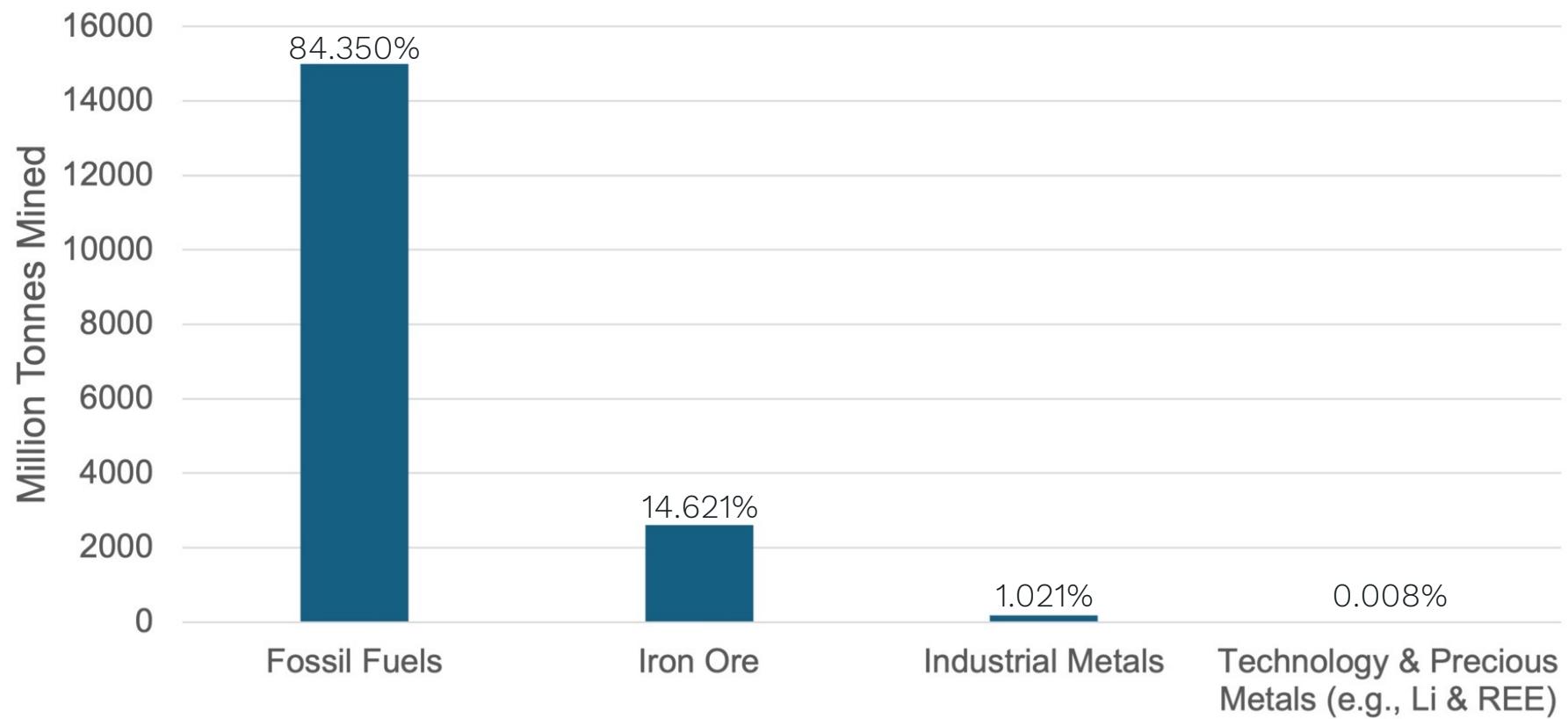
↑ New Footprint for Solar: 10,333 mi² (26,763 km²) (0.29% of U.S. Land)

Fossil fuels & ethanol:
91,178 mi² (236,150 km²)

2.4% of U.S. Land

- 1.24% of U.S. Land for Ethanol
- 1.16% of U.S. Land for Fossil Fuels

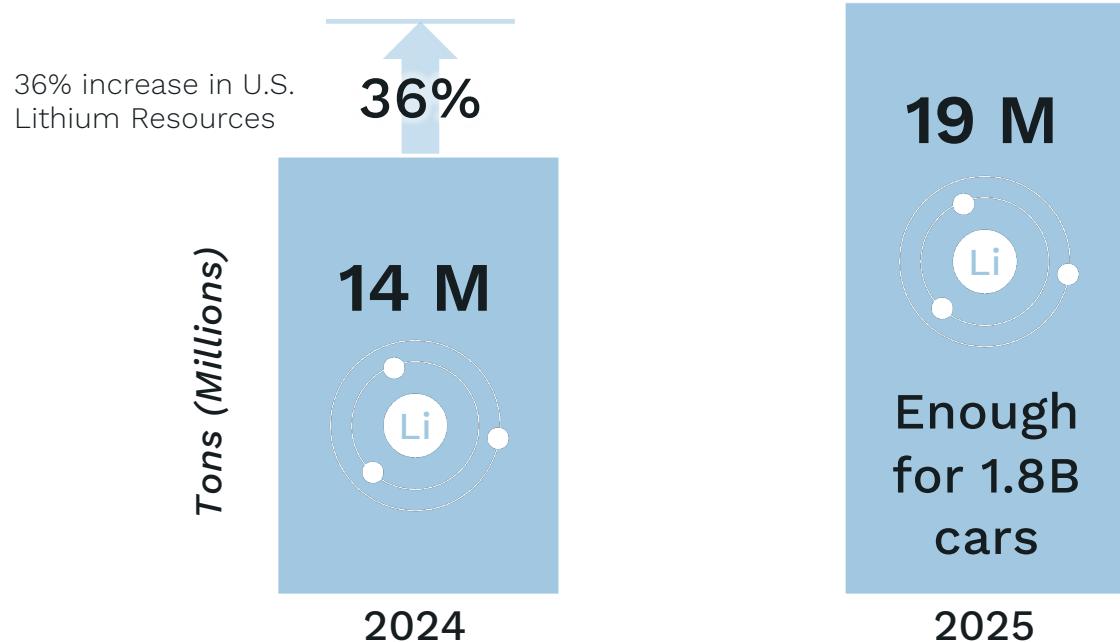
Lighthiser v. Trump


Mark Jacobson

Source of data - <https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-WWS-USATotal.pdf>;

<https://web.stanford.edu/group/efmh/jacobson/Articles/I/LandFossil.pdf>

Exhibit 8 p.12


Purposes of Mining for 2021-2023

Lighthiser v. Trump
Mark Jacobson
<https://www.visualcapitalist.com/all-the-metals-we-mined-in-2021-visualized>
Exhibit 8 p.13

USGS, *Lithium Resources*

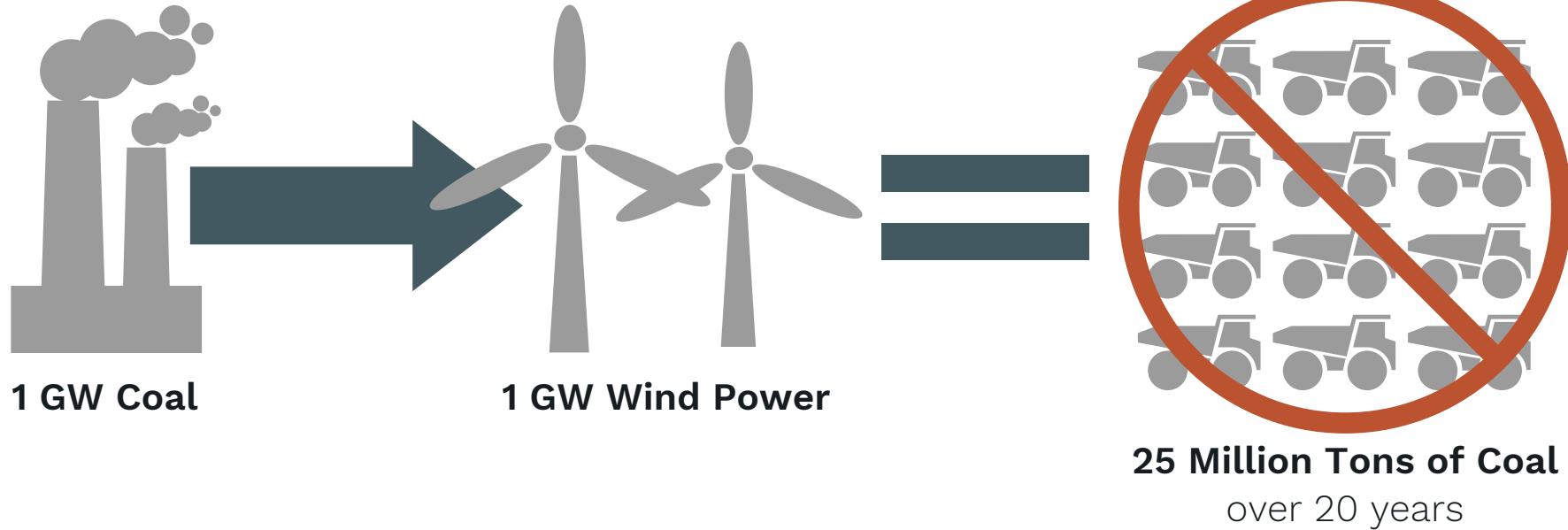
Increase in U.S. Lithium Resources (2024-2025)

In 2025, the USGS estimated the U.S. had 19 million tons of lithium as known resource.

This was an increase of 36% from their 2024 estimate of 14 million tons.

Lighthiser v. Trump

Mark Jacobson


<https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-lithium.pdf>;

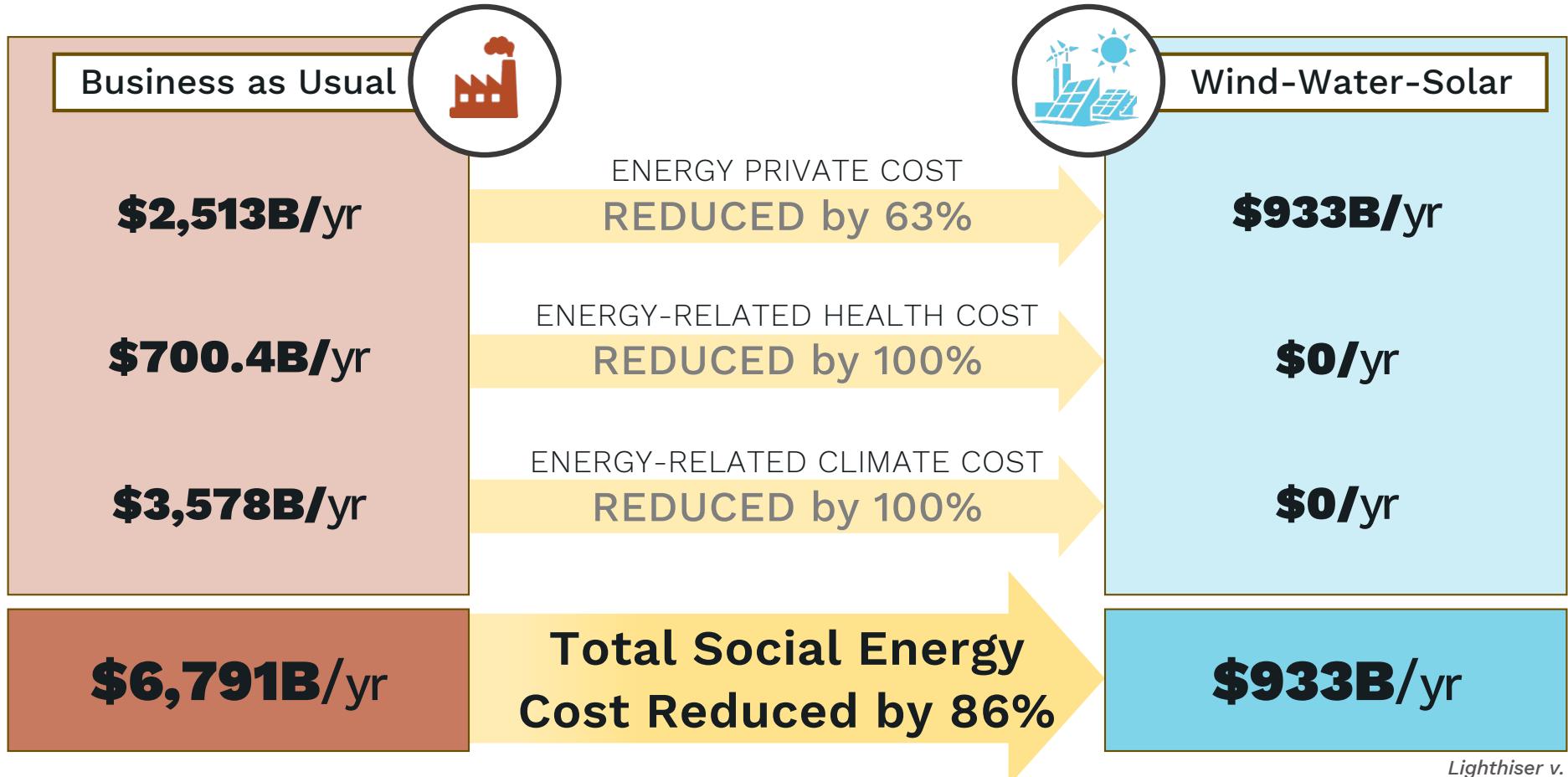
<https://pubs.usgs.gov/periodicals/mcs2025/mcs2025-lithium.pdf>

Exhibit 8 p.14

Coal Mining Replaced by Transitioning to WWS

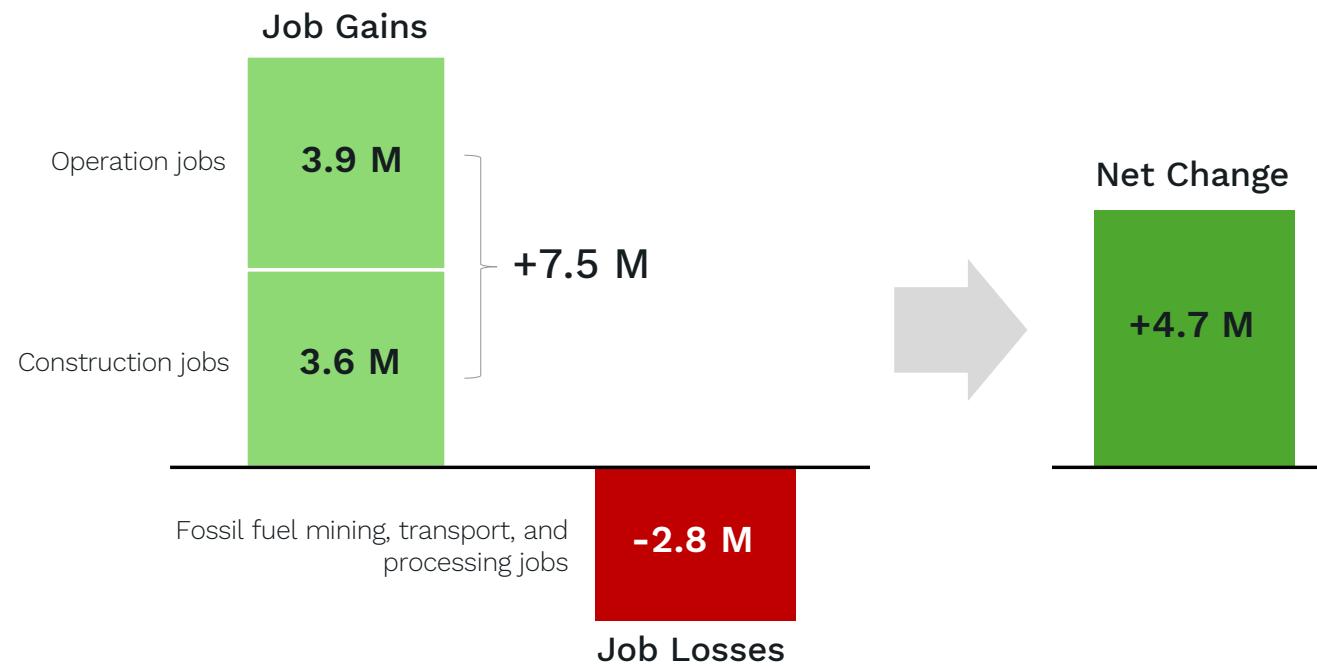
Replacing 1 GW of Coal with 1 GW of Wind saves 25M tons of coal over 20 years

Jim Krane & Robert Idel, *More Transitions, Less Risk: How Renewable Energy Reduces Risks from Mining, Trade and Political Dependence*, 82 Energy Rsch. & Soc. Sci. 102311 (2021).


Lighthiser v. Trump
Mark Jacobson
<https://www.sciencedirect.com/science/article/abs/pii/S2214629621004035>
Exhibit 8 p.15

Transition from Abandoned Wells to Wind

Lighthiser v. Trump
Mark Jacobson
Image credit: <https://nationalaglawcenter.org/cleanup-of-abandoned-oilfield-locations-who-is-responsible/>
Exhibit 8 p.16


WWS Reduces Annual U.S. Energy Costs Significantly

Lighthiser v. Trump
Mark Jacobson
<https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-WWS-USATotal.pdf>
Exhibit 8 p.17

<https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-WWS-USATotal.pdf>
Exhibit 8 p.17

Net U.S. Job Gains Under 100% WWS by 2050

Mark Z. Jacobson et al., *Zero Air Pollution and Zero Carbon from All Energy at Low Cost and Without Blackouts in Variable Weather Throughout the U.S. with 100% Wind-Water-Solar and Storage*, 184 *Renewable Energy* 430 (2022).

Lighthiser v. Trump
Mark Jacobson
<https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-USStatesPaper.pdf>
Exhibit 8 p.18

Executive Order 14156

The energy and critical minerals ("energy") identification, leasing, development, production, transportation, refining, and generation capacity of the United States are all far too inadequate to meet our Nation's needs.

Fossil Fuel Energy Insecurity

1. Fossil fuels are a limited and non-renewable resource.
2. Risk of severe power disruption due to the use of large, centralized plants rather than distributed energy (e.g., wind and solar).
3. Environmental and health degradation due to fossil fuel mining and waste.

Renewable Energy & Energy Security

JDMS
Journal of Defense Modeling and Simulation: Applications, Methodology, Technology
Volume 15, Number 1, March 2013
DOI: 10.1177/1540758512481091
journals.sagepub.com/home/dms

Applications

Renewable energy and energy storage to offset diesel generators at expeditionary contingency bases

Scott M Katalenich and Mark Z Jacobson

Abstract
Expeditionary contingency bases (non-permanent, rapidly built, and often remote outposts) for military and non-military applications represent a unique opportunity for renewable energy. Conventional applications rely upon diesel generators to provide electricity. However, the potential exists for renewable energy, improved efficiency, and energy storage to largely offset the diesel consumed by generators. This paper introduces a new methodology for planners to incorporate meteorological data for any location worldwide into a planning tool in order to minimize air pollution and carbon emissions while simultaneously improving the energy security and energy resilience of combat bases. Benefits of the model include being able to determine the optimal location for renewable energy sources at expeditionary, humanitarian assistance, disaster relief, scientific research, or remote community development. Modeling results demonstrate that contingency bases using energy efficient buildings with batteries, rooftop solar photovoltaics, and vertical axis wind turbines can decrease annual generator diesel consumption by upward of 75% in all major climate zones worldwide, while simultaneously reducing air pollution, carbon emissions, and the risk of combat casualties from resupply missions.

Keywords
Expeditionary/base planning, renewable energy and storage, energy efficiency

1. Introduction
The US Department of Defense (DOD) is the single largest consumer of fuel worldwide.¹⁻² In 2011 alone, the US military spent a reported \$20 billion on air conditioning in Iraq and Afghanistan.³ Much of this cost was merely for transporting energy.

To power an air conditioner at a remote outpost in landlocked Afghanistan, a gallon of fuel has to be shipped into Kandahar, Pakistan, then driven 800 miles over 18 days to Afghanistan on roads that are sometimes little more than "improved goat trails ... and you've got risks associated with moving the fuel almost every mile of the way."⁴

In fact, for every gallon of fuel used in Afghanistan, seven gallons are needed to move it there.⁵ Moreover, 18% of all US Army casualties in Iraq and Afghanistan were related to resupply operations, and between 2003 and 2007 alone, attacks on logistics convoys resulted in over 3000 wounded or killed in action.^{6,7} In addition,

the logistics required to assure energy security at military contingency bases (often called forward operating bases, or "FOBs") is no small measure. In the first months of 2008, over 241,000 troops and over 200,000 contractors were deployed to the US Central Command theater of operations, and, at various times, over 500 FOBs existed in Iraq and Afghanistan.⁸ Approximately one-third of all fuel used in fuel is used at generators at FOBs, so there exists an opportunity to reduce the inefficiency of current energy consumption.⁹ As one general implied: "unless we're from the tethers of fuel."¹⁰

Department of Civil and Environmental Engineering, Stanford University, USA

Corresponding author:
Scott M Katalenich, Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA.
Email: katalenich@stanford.edu

Energy 254 (2022) 134355
Contents lists available at ScienceDirect
Energy
journal homepage: www.elsevier.com/locate/energy

Toward battery electric and hydrogen fuel cell military vehicles for land, air, and sea

Scott M. Katalenich^a, Mark Z. Jacobson^a

^aStanford University, Department of Civil & Environmental Engineering, Atmosphere/Energy Program, Stanford, CA, USA

ARTICLE INFO
Article history:
Received 11 October 2021
Received in revised form
30 April 2022
Accepted 21 May 2022
Available online 24 June 2022

Keywords:
Military vehicles
Battery electric
Hydrogen fuel cell
Clean renewable energy

ABSTRACT
A long-term solution to the climate and air pollution crises facing the world today includes transitioning almost all energy and obtaining that electricity from clean, renewable sources. Whereas electric alternatives exist for nearly all energy sectors, they do not exist for long-distance, heavy passenger aircraft, freight locomotives, or ships. Of particular note, solutions do not currently exist for military combat vehicles. This study evaluates the potential for transitioning military combat vehicles to electric power, which previously claimed such cannot be transitioning. This study evaluates whether such land, air, and sea vehicles can be replaced with battery electric and/or hydrogen fuel cell equivalents while maintaining vehicle performance and safety. This study also evaluates the potential for transitioning military combat vehicles that have previously been evaluated. Here we show that armored tanks, freight trains, boats, ocean-going vessels, helicopters, prop planes, and jumbo jets have potential to transition using identified technological advancements and policy actions. This study also identifies the potential for transitioning military combat vehicles to hydrogen fuel cell equivalents. This study also identifies the potential of the impact to sustainability by showing that transitioning energy for United States Army vehicles could have the equivalent environmental improvement of taking nearly 700,000 passenger cars off the road today.

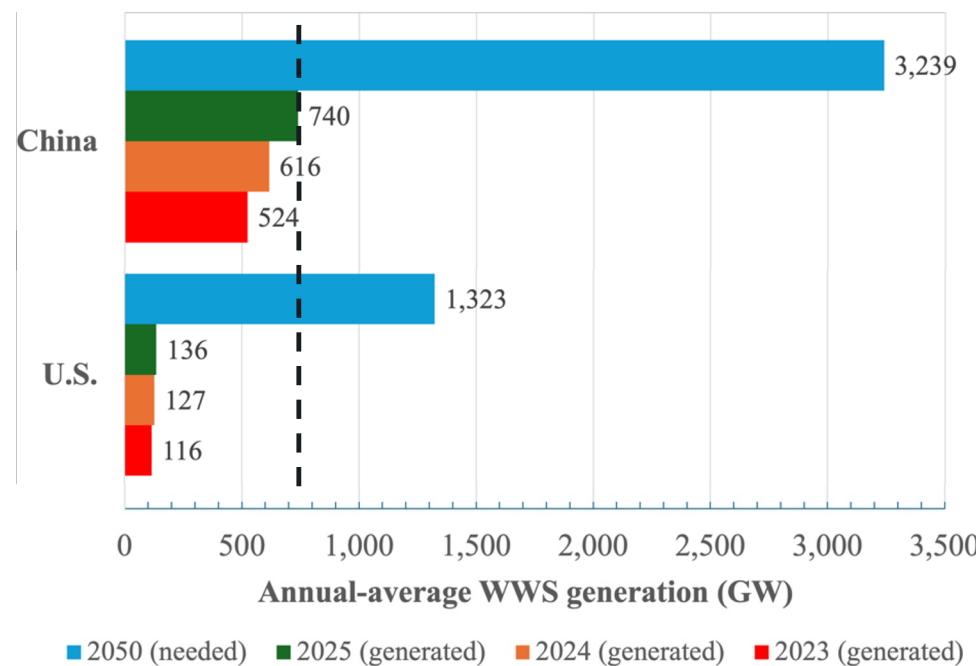
Published by Elsevier Ltd.

1. Introduction
Military vehicles operating on land, in the air, and at sea represent some of the most challenging vehicle types to transition to run on clean, renewable energy. However, transitioning to zero emissions for these vehicles is critical to meeting climate and air pollution reduction goals. The potential for transitioning military combat vehicles to electric power is of particular interest. Other studies have enlarged the parameter space by comparing overall system efficiency of FJ for landing, internal combustion engine (ICE) systems, and BEH₂ vehicles for the same mission.¹⁻¹⁰ This paper goes further and applies a design approach that optimizes efficiency of military vehicle systems.¹¹

This study identifies and evaluates four major vehicle characteristics to assess the feasibility of transitioning: mass, volume, range, and either power-to-weight ratio (PWR) or thrust-to-weight (TWR). The four major vehicle characteristics are several technological: electric motor PWR, battery pack specific energy and energy density, hydrogen storage system specific energy and energy density, and HFC stack specific power and power density.

* Corresponding author.
E-mail: katalenich@stanford.edu (S.M. Katalenich), jacobson@stanford.edu (M.Z. Jacobson).

<https://doi.org/10.1016/j.energy.2022.134355>
0360-5442/Published by Elsevier Ltd.


Lighthiser v. Trump

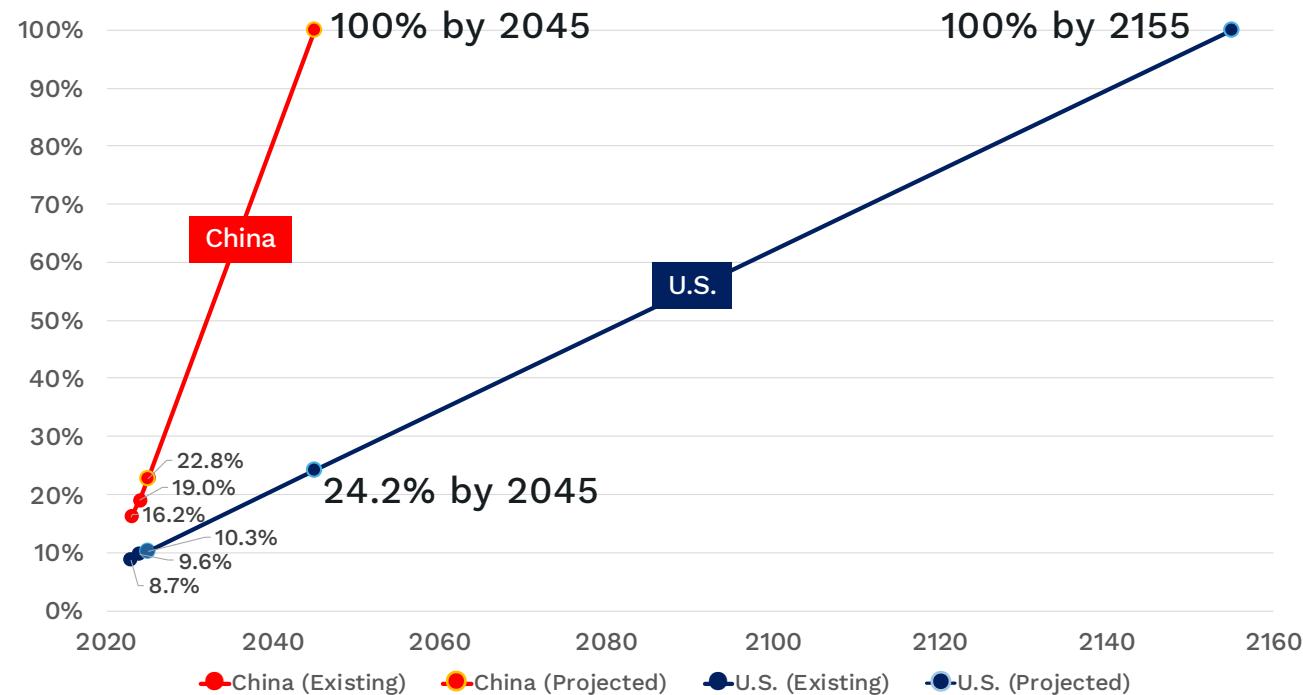
Mark Jacobson

<https://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-REforFOBs.pdf>;
<https://web.stanford.edu/group/efmh/jacobson/Articles/Others/22-BEH2Vehicles.pdf>

Exhibit 8.p.21

WWS Power Generation Needed to Meet 100% of All-Sector End-Use Demand in 2050 v. WWS Generation in 2023, 2024, 2025

If all energy sectors are electrified and electricity is provided with WWS ...


China trajectory for 100% WWS is by: 2045

U.S. trajectory for 100% WWS is by: 2155

The 2050 estimates are from Jacobson et al. (ES&T 59, 3034-3045, 2025), which start with 2022 IEA data. The 2023, 2024, and 2025 estimates are based on actual nameplate capacities and estimated capacity factors from Jacobson et al. (2025).

China is Projected to Reach 100% WWS 110 Years Before the U.S.

Percent of
energy needs
met by WWS

The 2050 estimates are from Jacobson et al. (ES&T 59, 3034-3045, 2025), which start with 2022 IEA data. The 2023, 2024, and 2025 estimates are based on actual nameplate capacities and estimated capacity factors from Jacobson et al. (2025).

Lighthiser v. Trump
Mark Jacobson
Exhibit 8 p.23

U.S. Premature Deaths from Fossil Fuel Pollution

SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES

The health burden and racial-ethnic disparities of air pollution from the major oil and gas lifecycle stages in the United States

Karn Vohra¹*, Eloise A. Maraite¹, Ploy Achakulwisut², Susan Anenberg³, Colin Harkins^{4,5}

Check for updates

Copyright © 2025 The Authors. Some rights reserved; exclusive license American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Abstract The United States has one of the world's largest oil and gas (O&G) industries, yet the health impacts and inequities from pollutants produced along the O&G lifecycle remain poorly characterized. Here, we model the contribution of major lifecycle stages (upstream, midstream, downstream, and end-use) to air pollution to estimate the absolute and racial-ethnic disparities in health burdens and health inequities from O&G in the US in 2017. The lifecycle annual burdens of 91,000 premature deaths attributable to fine particles ($PM_{2.5}$), nitrogen dioxide (NO_2), and ozone, 10,350 $PM_{2.5}$ -attributable preterm births, 216,000 incidences of NO_2 -attributable childhood-onset asthma, and 1610 lifetime cancers attributable to hazardous air pollutants (HAPs). Racial-ethnic minorities experience the greatest disparities in exposure and health burdens across almost all lifecycle stages. The greatest absolute disparities occur for Black and Asian populations from $PM_{2.5}$ and ozone, and the Asian population from NO_2 and HAPs. Relative inequities are most extreme from downstream activities, especially in Louisiana and Texas.

INTRODUCTION The United States (US) is the world's largest oil and natural gas (O&G) producer (1). The O&G industry accounts for 8% of the energy supply (2). Since around 2008, the extraction of O&G exploration and production is increasing exponentially. O&G-derived products have been spurred by a combination of technological progress enabling the widespread production of unconventional O&G, cheaper O&G products, and decline in demand for coal (3, 4). Yet, there is growing recognition of the need to phase out O&G to meet the Paris Agreement's temperature goal (5–7), as well as increasing concerns among the public, researchers, and policymakers over the local health impacts of air, water, and waste pollution from O&G activities, particularly the disproportionate burdens on marginalized communities (8, 9).

The O&G lifecycle includes four major stages: "upstream" exploration and extraction; "midstream" storage and transmission; "downstream" alterations to the extracted material through processes like oil refining, gas processing, and synthesis of petrochemical products; and "end-use" activities that include additional storage and transmission to reach consumers and ultimate consumption of O&G products for energy and non-energy purposes. All these stages produce air pollutants that either have harmful public health or undergo conversion in the atmosphere to form additional air pollutants and pollutants (12). Activities such as well drilling and completion, hydraulic fracturing, venting and flaring, oil refining, gas processing, and O&G combustion in the transportation and power sectors are all direct or precursor sources of fine particulate matter ($PM_{2.5}$), nitrogen dioxide (NO_2), and ozone (O_3) (13–19). The O&G sector is the largest industrial source of volatile organic compounds (VOCs) in the US (20). O&G production also generates hazardous air pollutants (21).

¹Department of Geography, University College London, London, UK. ²Stockholm Environment Institute, Seattle, WA, USA. ³Milken Institute School of Public Health, George Washington University, Washington, DC, USA. ⁴Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA. ⁵NOAA Chemical Sciences Laboratory, Boulder, CO, USA.

*Corresponding author. Email: e.maraite@ucl.ac.uk

†These authors contributed equally to this work.

Published online August 29, 2025. DOI: 10.1126/sciadv.2241224

Downloaded from https://www.science.org on August 29, 2025

1 of 14

We estimate [oil & gas] lifecycle annual burdens of 91,000 premature deaths attributable to fine particles ($PM_{2.5}$), nitrogen dioxide (NO_2), and ozone

Lighthiser v. Trump
Mark Jacobson
<https://www.science.org/doi/10.1126/sciadv.2241224>
Exhibit 8 p.24