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ABSTRACT | Renewable electric power sources like wind and

solar have been shown from a resource perspective to have

significant potential to reduce the carbon dioxide emissions

associated with the electric power sector. However, the inter-

mittency of these resources is often cited as a barrier to their

large scale integration into the grid. In this review, we provide a

framework for understanding the body of literature that has

been devoted to the behavior and reliability of intermittent

renewables and discuss recent grid integration analyses within

this framework. The modeling approaches required for system

characterization are found to depend on the energy pene-

tration of the intermittent technology and recent simulations

reveal substantially different behavior in low- and high-

penetration regimes. We describe an analytical approach that

addresses both penetration regimes and can be used to incor-

porate the results of grid integration studies into decarboniza-

tion strategy analyses.

KEYWORDS | Energy resources; grid integration; intermittency;

renewable energy

I . INTRODUCTION

The purpose of this paper is to provide an overview of the

analytical techniques that have been used to determine the

ability of intermittent renewables like wind and solar

power to supply electricity demand and to highlight

emerging areas of research that may improve our under-

standing of systems with high penetrations of wind and
solar. We describe a framework for classifying grid integ-

ration analyses that have been conducted over different

energy penetrations of intermittent renewables, discuss

the modeling considerations that are important for each

class of analyses, and present a new analytical method for

including the effects of intermittency in developing more

realistic decarbonization strategies.

The potential of renewable energy sources to supply a
large fraction of electric power demand has been a growing

area of research over the last decade, fueled by political

climates that increasingly value energy independence,

sustainability, and low-carbon and low-air pollution tech-

nologies. The necessity of reducing greenhouse gas emis-

sions via the decarbonization of the electricity sector has

been demonstrated by the International Panel on Climate

Change (IPCC) [1] and has been discussed from an eco-
nomic perspective in the Stern Report [2]. In this context,

resource assessments have noted the potential of renew-

able technologies like wind and solar power to make
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significant contributions to decarbonization. McKinsey &
Company reported in a study of the carbon abatement

potential for several sectors in the United States that wind

and solar power could avoid 170 megatons of CO2 per

year by 2030 [3]. Pacala and Socolow notably included

2000 GW each of wind turbines and photovoltaic systems

as potential strategies toward stabilizing global greenhouse

gas emissions [4]. And in 2001, Jacobson and Masters

suggested that the United States could meet its proposed
Kyoto Protocol targets by replacing 60% of coal generation

with 321–354 GW of wind turbines [5]. Despite the pro-

mise of wind and solar power to reduce carbon dioxide

emissions, the ability of these intermittent renewable re-

sources to contribute to supplying a fluctuating electricity

demand remains an open area of research.

More recently, technical feasibility studies have been

devoted to the issue of intermittency in integrating large
capacities of wind and solar on to both the Western and

Eastern Interconnects in the United States. The Western

Wind and Solar Integration Study (WWSIS) described the

impacts of intermittency on system operation over the

WestConnect area for a portfolio of wind, solar photo-

voltaic, and concentrating solar power with energy

penetrations between 11% and 35% [6]. The report finds

that a 35% energy penetration of wind and solar in the
WestConnect is feasible, but will require new operational

strategies to better utilize existing technologies. The East-

ern Wind Integration and Transmission Study (EWITS)

performed a similar analysis for the Eastern Interconnect

and found that scenarios with penetrations of wind energy

up to 30% were feasible if long-distance and high-capacity

transmission infrastructure was constructed to improve

balancing area cooperation [7]. These reports suggest that
relatively short-term renewable portfolio standards can be

met with wind and solar power with incremental adjust-

ments to plant operating strategies, transmission and dis-

tribution infrastructure, regulatory environments, and

electricity markets. These conclusions are supported by

the experience in Europe, where some nations have

already achieved moderately high penetrations of inter-

mittent renewables. Denmark, which benefits from the
flexibility afforded by electricity imports and exports with

its European neighbors, produced 18.3% of its domestic

electricity supply from wind turbines in 2009 [8].

Despite this progress, there remains an intellectual rift

in the literature between the technical feasibility studies

that address the limitations of the current electric power

system and the resource assessment studies that approach

the complete decarbonization of the electricity sector via
energy balance analyses. While WWSIS and EWITS indi-

cate that incremental upgrades to the system will enable

energy penetrations up to 35%, realizing a completely

decarbonized electric power sector will likely require more

revolutionary changes to infrastructure, regulations,

markets, and perhaps most notably in the context of the

Bsmart grid,[ communications and controls. The two

classes of studies therefore require different assumptions
and methodologies and will undoubtedly provide different

insights into system behavior. Because the approaches that

have been employed in moderate penetration regimes may

not be extendable to systems with very high penetrations,

care must be taken to place these methodologies into the

proper context and to formulate methodologies that can be

applied to systems with very high penetrations of inter-

mittent renewables [9].
In the following sections, we discuss the specific mod-

eling considerations that are needed for very high pene-

tration scenarios, focusing on resource variability, resource

forecast uncertainty, and resource aggregation effects. We

also present a new analytical approach that incorporates

the results of both low and high penetration analyses.

Finally, we will discuss potential applications of these

analyses toward constructing electric power sector dec-
arbonization strategies that incorporate technologies like

demand response and energy storage in addition to large-

scale renewables.

II . INTERMITTENCY

The difficulty in analyzing electric power systems with

renewables like wind and solar lies in accurately charac-
terizing resource intermittency and the ability of the sys-

tem to accommodate this intermittency. Intermittency in

an electric power system is comprised of both variability

and uncertainty in the load or the availability of power.

Conventional electricity systems exhibit both variability

and uncertainty in the supply and the demand: thermal

plants introduce variability through unforced outages and

uncertainty through forced outages; hydroelectric plants
introduce variability due to seasonal changes in precipita-

tion levels, snow melt, and human use; and the load fluc-

tuates with human activity, which is both variable and

uncertain. The distinction between conventional systems

and intermittent renewables is predominantly in the fre-

quency and magnitude of the variability and in the degree

of uncertainty. Fluctuations in the system load are fairly

slow due to statistical smoothing and are quite accurately
predicted on day-ahead and hour-ahead bases by system

operators. Wind and solar power, in contrast, are charac-

terized by more rapid and less predictable fluctuations

over time scales from minutes to hours.

The mitigation of intermittency must address both

variability and uncertainty. A variable, but predictable re-

source can be managed with careful day-ahead scheduling,

while uncertainty introduces the need for additional
reserves that supply the load in the case of unpredictable

reductions in generation or increases in load. This same

framework can be applied to systems with high penetra-

tions of renewable generation. Milligan explained that

with a perfectly accurate wind generation forecast, its

variability can be accounted for with day-ahead sched-

uled units with relatively slow start-up and ramping
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capabilities. The need for additional reserves with low
startup costs and high ramp rate limits arises due to the

uncertainty in wind generation forecasts [10]. This is

illustrated in Fig. 1. Demand response has been proposed

as a strategy for reducing these reserve requirements [6],

but to date, grid integration studies have largely treated the

load as exogenous. An endogenous load, while improving

flexibility and efficiency, also introduces added complexity

to the system and presents new modeling challenges.
At small scales, when the variability and uncertainty in

their power output is within the load-following capability

of the existing system, wind and solar power may be

treated as load modifiers [12], [13]. However, as the pene-

tration increases, the power fluctuations begin to neces-

sitate additional load balancing and regulation capabilities.

The threshold at which the system flexibility must be
improved to accommodate wind power intermittency has

been estimated by some to fall between 10% and 20% of

the total energy generated, while others argue that slight

cost increases accompany any positive increase in inter-

mittent penetration [14]. Gross et al. have conducted a

thorough literature review of the effects of wind intermit-

tency in the British electricity system and have found that

while costs are expected to increase due to the balancing
and reliability issues introduced by intermittent genera-

tion, there is no evidence that reliability of supply will be

hurt by wind penetrations up to (and in some studies

exceeding) 20% [15].

One advantage of wind and solar facilities is that they

tend to be smaller and more distributed than the central-

ized plants that dominate the present United States elec-

tricity sector. Provided the renewable energy plants are
robust against network disturbances with appropriate fault

ride-through capability, any internal technical failure of a

small wind farm has a much smaller impact than a sudden

forced outage of a 1 GW nuclear plant, for example. At the

time scales relevant to these types of forced outages, the

primary concern at high penetrations of renewables is not

their variability, but their ability to provide an injection of

power in the initial seconds after a forced outage in order
to maintain system frequency and tie line flows [16], [17].

Currently, wind and solar systems do not provide fre-

quency support, though this is an active area of research

[18], [19], and a facility to provide it is required in some

Grid Codes.

A. Intermittency Metrics
The development of metrics has aided in both inter-

preting system behavior and communicating information

to system planners and policymakers. Here we discuss two

often-used metrics: the capacity value and cost of inter-

mittency. The capacity value (or capacity credit) of an

intermittent generator is the ratio of the capacity of

conventional dispatchable plant that can be retired to the

capacity of the intermittent generation that is installed in

its place to meet the load without compromising reliabil-
ity. A capacity value can be determined by simulating the

system with a given capacity of the intermittent technology

of interest while reducing the dispatchable plant capacity

until a further reduction would compromise the reliability

of the system [20].

The capacity value of wind power has been calculated

for a range of systems, using both statistical methods and

grid integration models. Values range from 5% to 35% and
tend to decrease as the penetration increases [15], [20],

[21]. The decrease is attributed to reduced variability and

uncertainty associated with aggregation of the resource

over larger areas (see Section IV). One disadvantage of

approaching the grid integration of intermittent generators

with this capacity value paradigm is that it relies on as-

sumptions about the preexisting system. The capacity

Fig. 1. Comparison of possible scheduled generation with the

corresponding real-time dispatch. The variability of intermittent

generation can be mitigated largely with day-ahead scheduling.

Additional reserves are dispatched in real-time to mitigate day-ahead

forecast errors. Figure adapted from [11].
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value is therefore better suited for studying incremental
increases in penetration than for designing very high

penetration portfolios, which typically utilize greenfield

models that remove initial conditions on the composition

of the system.

Intermittent renewables can also be characterized by

the costs associated with their integration onto the grid.

This intermittency cost includes any additional costs asso-

ciated with real-time balancing of the load and maintaining
any additional reserve margin that becomes necessary due

to the renewable generators; it does not include the capital

cost of the renewable plant or the cost of additional trans-

mission to the plant. The cost of intermittency can be

calculated using grid integration models by calculating the

cost of electricity with the renewable technology and sub-

tracting the expected cost of electricity were that plant to

operate as a dispatchable generator [14]. In Britain, the
cost of intermittency for wind power typically falls be-

tween 10% and 25% of the direct cost of wind generation,

assuming geographically disperse wind farms and penetra-

tions below 20% [15].

While much of the literature on intermittent renew-

ables has been devoted to quantifying the capacity value

and cost of intermittency for a given renewable resource,

there is little agreement on the precise values of these
metrics. This is because both the capacity value and the

cost of intermittency are functions of the resource quality,

the system load characteristics, the composition of the

conventional generator fleet, the strategies employed by

and the controls available to the system operator, the

electricity market structure, and finally the energy pene-

tration of the technology of interest. The proper use of

these metrics is therefore not to make general claims about
the ability of intermittent technologies to supply electric

loads, but to compare the behavior and reliability of inter-

mittent renewables across different systems, and to iden-

tify the types of systems that best incorporate intermittent

generation. The more rigorous characterization of these

metrics as functions of the energy penetration for a given

technology and electricity system remains an open oppor-
tunity for research in this field (see Section V).

III . TYPES OF ANALYSES

Several models have been developed to quantify the po-

tential of intermittent renewables to displace conventional
generation. In this review, the term Bgrid integration

model[ generally refers to a model that treats both the

power output from renewables and the electricity demand

over time scales of minutes to hours. In addition to time

series generation and load data, these models may include

transmission constraints, thermal plant operating con-

straints, reserve requirements, and/or electricity and an-

cillary service markets. Time steps may range from seconds
to hours and simulation periods can be days to years,

depending on the purpose of the study. Connolly et al.
reviewed 37 grid integration models and found that the

tools varied widely in objectives and applicability [22].

In the present review, analytical methodologies are

classified as zeroth, first, or second order, where zeroth-

order analyses provide information about the mean

resource quality, first-order analyses address resource
variability, and second-order analyses also treat the un-

certainties associated with resource variability. Table 1

summarizes the differences between these analyses, which

are discussed in more detail in this section. Generally, as

the size of the project or the system-wide penetration of

renewables increases, the level of information required by

the analysis also increases.

A. Zeroth-Order Analyses
Zeroth-order analyses use long-term average measures

of resource quality to quantify the resource potential. These

analyses can provide simple resource assessments over very

large areas, making them especially useful in creating re-

source atlases or for characterizing the energy density of a

region with regard to a specific technology. For wind re-

source assessments, zeroth-order information typically

Table 1 A Framework for Classifying Grid Integration Analyses of Intermittent Renewables. Analyses Are Classified According to the Level of Information

Included in the Analysis, Ranging From Mean Annual Resource Data to Time Series Resource Data With Forecasts and Forecast Uncertainties
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includes the mean annual wind speed at hub height, the

corresponding wind class (see Table 2), or the mean an-

nual wind power density. Assuming that the wind speeds

follow a Rayleigh distribution, the mean annual wind

power density, �P, can be approximated from the mean

annual wind speed, �v, and the air density, �, using (1) [23]

�P ¼ 3

�
��v3: (1)

More practically, the quality of the wind resource can be

reported in terms of a wind farm’s capacity factor, the ratio

of the average annual power output from the farm to the

rated capacity of the farm. This can be calculated from the

power curve of a specific turbine and the wind speed dis-
tribution at the site or it can be approximated using (2),

which was empirically derived from wind speed data and

multiple wind turbine power curves by Masters [23]

Capacity Factor � 0:087 � �v½m/s� � Prated½kW�
D½m�ð Þ2 (2)

where Prated is the rated power and D is the rotor diameter

of the chosen turbine. Archer and Jacobson produced a

global wind resource atlas from a combination of sounding

and surface measurements and quantified the global wind
power potential by applying (2) to this atlas [24]. They

found that the average potential global wind power

output at an 80-m hub height over land at high-wind speed

(> 6.9 m/s) locations was approximately 72 TW, over five

times the approximate annual global energy use in the year

of the study. This number has been corroborated from a

numerical modeling study by Lu et al. [25]. In a similar

analysis, Dvorak et al. found that development of offshore
wind in California could provide approximately 200% of

the 2006 electricity demand of the state [26].

Zeroth-order solar resource assessments typically rely

on the annual average insolation, a measure of the irra-

diance integrated over a specified period of time, often

expressed as kWh/m2-day. The insolation can also be

conceived of as the equivalent hours per day that a site

receives 1-sun (or 1 kW/m2) of insolation [23]. The annual
energy output, E, from a photovoltaic system can therefore

be approximated by

E¼Pac ½kW� � I ½h/day of 1�sun� � 365 ½days/yr� (3)

where Pac is the rated power of the photovoltaic system

(after inverter and mismatch losses) and I is the annual

mean insolation. Turner used zeroth-order information to

approximate that 10 000 km2 of 10%-efficient photovoltaic

panels could provide enough energy to meet the annual
power demand of the entire United States [27].

While these measures each provide a picture of the

energy generation capability of a given site or region, they

do not address the variability or uncertainty of the re-

source. In practical applications, these types of analyses

are well-suited to developers of small-scale renewable

generation facilities that do not have a significant impact

on the intermittency of the system into which they are
being integrated. In these applications, a zeroth-order

analysis that determines the site that maximizes the aver-

age annual energy generation is sufficient to maximize the

profits of the wind or solar developer. As the size of the

wind or solar farm increases, additional information re-

garding the temporal variability and uncertainty in the

resource may be required in order to better quantify the

value of the renewable resource.

B. First-Order Analyses
First-order analyses use additional information to help

quantify the resource variabilityVtypically site-specific
time series resource data. This level of data is required in

order to compare time-synchronized load and resource

availability and to conduct load balancing simulations.

First-order information has been used to characterize wind

speed distributions [28], study the correlations between

power output and power demand, and to approximate the

emissions associated with load balancing intermittent re-

newables [29]. These deterministic analyses do not include
any information regarding the uncertainty associated with

intermittent generation, so they are unable to quantify

system reliability.

Nevertheless, deterministic studies have provided use-

ful insights. Maddaloni used a first order power balance

analysis of electric power systems the size of Vancouver

Island and with generator portfolios similar to those of

Table 2 Wind Classes Used for Wind Farm Siting and Regional Resource

Assessments [23], [24]. Sites That Are Greater Than or Equal to Class 3 Are

Typically Deemed Economically Feasible for Wind Farm Development
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Canada, the United States, and the Northwest Power Pool
[30]. These simulations demonstrated that power systems

that rely more heavily on hydroelectric power, which can

be cheaply and quickly ramped up and down to accom-

modate intermittent generation, have lower operational

cost increases associated with increasing wind power

penetration. Planning systems with large penetrations of

intermittent generators will therefore depend on the char-

acteristics of the electric power system into which they are
being integrated.

C. Second-Order Analyses
Additional insights are gained by treating wind and

solar forecasts and their associated uncertainties. Large-

scale grid integration of wind and solar power will inevit-

ably require the use of short-term forecasting tools for both

day-ahead unit commitment and hour-by-hour grid oper-
ation. Giebel sets the threshold at which these forecasting

tools become necessary at 5%–10% penetration for wind

power [31]. Second order analyses, which include infor-

mation regarding the uncertainty in the availability of

intermittent resources, have shown that forecast accuracy

can have a significant impact on the design and operation

of systems with large-scale intermittent generators.

Watson used numerical weather prediction models and
the National Grid Model (a power scheduling model for

the England and Wales National Grid) to show that wind

speed forecasts could be used to achieve both system-

wide cost and fuel savings for wind power penetrations

above 15% in the 47 GW-peak demand system [32].

Barthelmie et al. characterized potential forecasting meth-

ods using observed systematic bias and random errors from

actual forecasting methods and found that the value added
to wind power from forecasting depends strongly on

the accuracy and cost of the forecast, but that forecast-

ing was generally beneficial for wind farms larger than

100 MW [33].

A consideration of load and meteorological forecasts as

well as their associated uncertainties is necessary for grid

integration models that seek to comment on grid relia-

bility. Second order analyses are therefore of interest to
any utility or independent system operator that seeks to

reliably meet demand with a high penetration of inter-

mittent generators. From a system modeling perspective,

second order analyses are also required into order to pro-

duce accurate approximations of the capacity value and the

cost of intermittency. These analyses are typically carried

out using a grid integration model that accounts for the

stochasticity of intermittent resources via Monte Carlo
simulation and/or stochastic optimization.

The WILMAR model formulates the grid operation

problem with high wind power penetrations as a stochastic

linear program [34], [35]. The model solves the least-cost

dispatch problem while considering the various power and

ancillary service markets in the Nordic countries. Wind

power forecast errors are accounted for by producing a

number of potential wind power forecasts using a Monte
Carlo simulation. The WILMAR model has been used to

show that wind power reduces the operational costs asso-

ciated with electricity generation (neglecting capital costs)

in the region containing Germany, Denmark, Finland,

Norway, and Sweden. The simulations also showed the

marginal revenues earned by wind farms are expected to

decrease with increasing penetrations due largely to an

increase in the penalties associated with forecast errors.
Makarov et al. have built a similar Monte Carlo simulation

to represent fluctuations in load and wind power output

while also modeling the scheduling, real-time dispatch,

and regulation processes experienced by the California

ISO (CAISO) in order to determine the regulation and load

capability required to manage 6700 MW of wind on the

CAISO system (with a peak demand of 50 GW) [36]. Their

work showed that while regulation and load following
ramp rates increased to handle the variability and uncer-

tainty in wind power output, the increases were still within

the ramping limits of the existing system.

The continued use of Monte Carlo methods to inves-

tigate the effects of large-scale intermittent generation on

system operation will require improved statistical treat-

ments of forecast uncertainties and methods for scenario

production. Because of the importance of system reliability,
system planning is constrained largely by extreme events.

Accurate simulation of these events will require improved

characterization of forecast error distribution tails. Fur-

thermore, resource forecast errors are comprised of both

errors in magnitude (e.g., the wind speed associated with

an incoming weather front) and errors in phase (the timing

of the front’s arrival), but phase errors are typically not

treated explicitly in scenario production for Monte Carlo
grid integration analyses. This presents an opportunity for

the application of new autoregressive, Markov, and/or arti-

ficial neural network models to more accurately represent

the magnitude and phase of forecast errors [37]–[40].

These methods can be used to produce more realistic wind

power realizations for intermittency analyses and for anal-

yzing the benefit of new stochastic unit commitment

methods [41], [42]. New statistical methods may also
improve short-term forecasting in real systems.

IV. AGGREGATION EFFECTS

For systems with large penetrations of intermittent renew-

ables, the temporal variability and uncertainty described in

the previous section will also depend on the correlations

between power output at different sites and from different
resources. Several studies have shown that aggregation of

multiple intermittent generators can reduce the variability

and the uncertainty of a portfolio, either from statistical

smoothing of a single technology employed over large

geographical areas or from combining technologies that

utilize different (and often uncorrelated) renewable

resources.
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A. Geographical Aggregation
Correlation is a measure of how two data sets linearly

co-vary and can be used to understand wind farm power

output [43]. Aggregating the power output of negatively or

low correlated renewable generators reduces intermit-

tency. As the distance between two renewable generators

increases, the correlation in power output between them

generally decreases. This correlation is a function of the

resource, distance, terrain, and time scale. These correla-
tions between distant generators serve as metrics for the

geographic aggregation effect and have been extensively

studied for wind power. Kahn studied the correlations

between wind speeds at six sites throughout California and

found that in general, the correlation coefficients decrease

with increasing distance between sites [44]. At short dis-

tances within wind farms, several authors have found low

correlations between wind turbines at time scales less than
1 min, but high correlations beyond 1 min [45]. The low

correlations at short distances and short time scales is

attributed to turbulence and terrain effects. This effect can

be modeled to aggregate the power output of wind turbines

in a wind farm using a multi-turbine power curve for sys-

tem studies [46], [47].

The correlation of power output between distant wind

farms and the benefits of aggregation have been investi-
gated in Europe [48]–[51], Japan [52], and the US [28],

[53]–[55]. Hourly correlations between wind farms de-

crease rapidly at 100 km and generally remain low, but

slightly positive, for distances up to 1000 km. This has

been shown by Wan in the United States [53] and Sinden

in the United Kingdom [51]. The low correlations are at-

tributed to the length and time scales of weather systems.

At distances greater than about 1500 km, wind farms can
be negatively correlated as 1500 km is roughly associated

with the scale of pressure systems [49]. Representative

correlations, distances, time scales and their impact on

grid integration were compiled from several of the pre-

viously noted studies and are shown in Table 3.

The effects of aggregating photovoltaic systems over

large areas has also been investigated over various tempo-

ral and geographical scales [56]–[59]. These analyses differ
from wind analyses because the solar resource fluctuates

due to two different phenomena: deterministic fluc-

tuations in the Bclear-sky[ insolation that depend on the

location of the sun in the sky; and stochastic fluctuations

that arise due to cloud cover. The deterministic fluctua-

tions are highly correlated between sites that have similar

latitudes and longitudes, so the benefits of geographic

aggregation arise predominantly from the stochastic
fluctuations in cloud cover. Mills used measured data at

multiple sites across the Southern Great Plains to show

that the subhourly variability of the solar resource only

slightly exceeds that of the wind resource over a similar

network [58].

The same types of grid integration models that use first

or second order information can also incorporate aggre-

gation effects by including multiple intermittent generator

sites. DeCarolis and Keith modeled a system that incor-

porated five geographically disperse wind farms across the
United States with both single-cycle and combined-cycle

gas turbines and compressed air energy storage facilities to

achieve load balancing over a five-ear period at hour in-

tervals [60]. The study found that increasing the number of

geographically dispersed wind farms in the system de-

creased the levelized cost of electricity, despite the added

transmission costs. Denholm and Margolis have presented

one of the few grid integration studies focused on large-
scale solar power [61]. They modeled power output from

9 sites throughout ERCOT with first order data and char-

acterized the limits of the pre-existing system in terms of

the minimum loading of the system: the total power that

must be generated by inflexible conventional plants at a

given time. Their analysis determined that the minimum

loading problem could typically be avoided when PV

installed capacities remained below 20% of the system
peak demand for systems like ERCOT (with a peak demand

of approximately 60 GW).

Geographical aggregation has also been found to

reduce forecast errors associated with portfolios of

intermittent generators. Focken et al. used historical

forecast data from wind farms in Germany to show that

the forecast error can be significantly reduced by

Table 3 Summary of the Statistical Observations and Effects for

Geographic Diversity of Wind Power. The Benefit of Geographic Diversity Is

Dependent on the Distance and Time Scale of Interest. Geographically

Diverse Wind Benefits the Electric Power System Depending on the

Relevant Time Scale. Correlations Vary Widely Between 100 km and

1000 km Depending on Terrain and Orientation of Sites Relative to the

Movement of Weather Systems
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considering ensembles of wind farms, rather than single
sites [62]. They found that the reduction in forecast error

depended more on the spatial extent of the ensemble than

the number of wind farms in the ensemble. Similar con-

clusions have been reached by Boone with data from wind

farms in Denmark [63] and Lorenz et al. in a study of

photovoltaic power output forecasts over large geograph-

ical areas [64].

The benefits of geographical aggregation can be real-
ized both by system operators and power producers. Sys-

tem operators will benefit from expanded transmission

infrastructure to connect distant resources and from im-

proved cooperation between balancing areas [6]. Similarly,

power producers can reduce the risk associated with their

portfolios by owning assets throughout large geographical

areas and operating those facilities as single entities, or

Bvirtual[ power plants. From a modeling perspective, the
effects of geographical aggregation must be accounted for

by both including multiple sites in intermittency analyses

and properly treating the correlations between these sites,

particularly in Monte Carlo simulations that rely on

statistically generated time-series resource data.

B. Combining Multiple Technologies
The aggregation of power from a diversity of renewable

resources also reduces intermittency even when the re-

sources are colocated. Renewable power generated by solar

radiation and atmospheric dynamics like solar, wind, and

wave power often have low cross correlations because of

the time scales of the underlying physics. Tidal power

operates on diurnal or semidiurnal cycles of the lunar day

depending on the location, which is uncorrelated over

yearly time scales to both electricity demand and the other
renewables. Similarly, small hydropower, river current,

and ocean current renewables have strong seasonal varia-

tions but rarely any significant diurnal correlation to solar

or wind power output. The effects of renewable resource

aggregation on facilitating their grid integration has been

extensively studied both with analyses of specific resources

and with system-wide generation portfolio optimization

models. Specific correlations between resources and
electric load have been studied for wind and solar [65]–

[69] and wind and wave [70], [71].

Energy system models have also been used to implicitly

investigate these synergies by analyzing portfolios of inter-

mittent generators. Lund has developed a deterministic

energy system model (EnergyPLAN) that combines hour-

by-hour power balance simulations with electricity market

simulations and an economic model capable of producing
socio-economic feasibility studies [72]–[75]. The model

has been used in a wide range of applications, including an

analysis of the potential of meeting 100% of the energy

demands of Denmark in the year 2050 with renewable

energy systems [74]. These total energy system models

(which also treat transportation, heating/cooling, and

other energy intensive nonelectrical sectors and processes)

can provide more comprehensive energy sector carbon
abatement analyses [76], [77].

Hart and Jacobson applied a stochastic approach to

analyzing the potential of various renewable portfolios to

contribute to supplying the CAISO demand and reducing

the carbon emissions associated with supplying this de-

mand [11]. The Monte Carlo simulations suggested that

despite very large reserve requirements to maintain system

reliability, a 99% (by energy) carbon-free generating port-
folio consisting of wind farms, concentrating solar thermal

plants, distributed photovoltaics, hydroelectric plants, and

baseload geothermal plants could reduce carbon dioxide

emissions by at least 80% when compared to the least cost

portfolio for the years 2005 and 2006.

V. NEW SYSTEM
CHARACTERIZATION METHODS

Application of these modeling methods to real electric

power systems can yield a significant amount of informa-
tion, including the metrics discussed in Section II. While

point values are typically reported for the capacity value

and cost of intermittency, analyses that treat these metrics

as functions of the penetration of intermittent renewables

will aid further understanding. The reserve capacity re-

quired to meet reliability standards can also be reported as

a function of renewable energy penetration in order to

better characterize the systems.
One additional method of characterizing the ability of

intermittent renewables to supply a fluctuating electric

power demand is to build a function describing the rela-

tionship between the installed capacity of the intermittent

portfolio and the annual energy generation from the port-

folio. This generation function will depend on the resource

availability and predictability, the energy conversion tech-

nology and its associated controls, and the system into
which it is being integrated. An example generation func-

tion for wind power has been produced using the model

described in [11] with data from the CAISO operating area

over 2005–2006 and is shown in Fig. 2.

A. Penetration Regimes
The generation curve in Fig. 2 can be broken into two

regimes: a Blinear regime,[ in which the generation scales

linearly with the installed capacity with a slope propor-

tional to the expected capacity factor of the technology;

and a Bcurtailment regime,[ in which the generation

function exhibits negative deviations from its low-capacity
trajectory as generation is shed in hours when it would

otherwise exceed demand. In the curtailment regime, as

capacity increases, the annual generation approaches a

maximum value, which depends on the nature of the

electric power system into which the technology is being

integrated (more specifically it depends on the system-

wide demand and the must-run generation on the system).
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In general, zeroth-order analyses assume a linear
generation function, with a slope proportional to the

capacity factor of the technology, while first and second-

order analyses reveal nonlinearities in the curtailment

regime of the generation curve. Generation curves

produced by first- and second-order models can be

approximated by the following equation for the genera-

tion, G, from a given renewable technology or portfolio as a

function of its installed capacity, C:

GðCÞ ¼ kC; C G Cq
G1ð1 � e��CÞ; C � Cq

�
(4)

where k is the equivalent number of hours per year that the

generator runs at maximum capacity, or 8760 hours times

the expected capacity factor; Cq is the curtailment point,

the minimum capacity at which curtailment is required in

order to exactly meet demand; G1 is the maximum gene-

ration that can be integrated into the system from the
generating technology of interest (neglecting renewable

capacity constraints); and � describes how rapidly the

generation approaches G1 in the curtailment regime. To a

first approximation, the generation function for an inter-

mittent technology in a specified electric power system can

be uniquely characterized by k, Cq, and G1. Note that the

curtailment regime is only relevant for technologies that

include curtailment controls. Rooftop photovoltaics, the

generation from which is currently not curtailed, are

expected to have linear generation curves that end at the
curtailment point.

Grid integration models can also be used to build car-

bon curves for intermittent renewables, where the system-

wide carbon intensity (in tCO2/MWh of system-wide

generation) is plotted as a function of the installed capacity

of the renewable technology. This is shown for wind power

in the 2005–2006 CAISO example in Fig. 3. The carbon

abatement potential of a given technology can be reported
using these curves, but care must be taken to note the

composition of the conventional generation fleet into

which the renewables are being integrated. The carbon

curve for wind power in a system dominated by hydro-

electric power will, for example, differ considerably from

the carbon curves associated with systems that rely heavily

on natural gas or coal generation.

B. Analytical Applications
One major goal of improving the characterization of

intermittency with grid integration models is to provide a

better means of treating intermittency in energy planning

tools that are capable of building decarbonization strat-

egies and analyzing the effects of specific policies on the

composition of the electricity sector. The difficulty in

including intermittency in long-term planning studies
lies in resolving the short-term phenomena that arise in

the grid integration studies discussed in this review with

planning tools that typically have time steps of years.

The generation and carbon curves shown in Section V

provide a means of incorporating the results of higher

resolution grid integration analyses into these longer

term analyses.

Fig. 2. Generation curve for wind power integration into the

2005–2006 CAISO operating area using the grid integration model in

[11] with a conventional fleet consisting of hydroelectric and natural

gas turbines and an updated dynamic reserve scheduling module.

The triangles represent simulation results and the line shows a

fit of the data to the function in Equation (4), with k ¼ 3360 h,

Cq ¼ 30:9 GW, and G1 ¼ 208000 GWh. Error bars are equal to 12%

of the generation from wind, which was the largest deviation of a

realization from the mean in the highest penetration simulation.

Each data point required approximately 10 h of computing time on a

2.2 GHz Intel Core 2 Duo processor with 2 GB of RAM.

Fig. 3. Carbon curve for wind power integration into the 2005–2006

CAISO operating area using the grid integration model in [11] with a

conventional fleet consisting of hydroelectric and natural gas turbines

and an updated dynamic reserve scheduling module. Error bars are

equal to the largest deviation of a realization from the mean.
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The concavity of the generation function in Fig. 2 lends
itself well to optimization-based planning models that

include constraints on the minimum energy penetration of

renewables. Generation functions may therefore be espe-

cially useful for characterizing potential paths towards

meeting statewide Renewable Portfolio Standards (RPS) or

a national Renewable Electricity Standard (RES). As a

simple example, if one wishes to find the least-cost trajec-

tory (based on projected electricity demand and cost func-
tions) toward meeting an RPS of 50% in year T with a

renewable technology or portfolio that can be described

by (4), then the RPS will be met when the following two

constraints are included in the planning optimization

problem, in addition to the usual renewable capacity

constraints:

�kCðTÞ � �0:50 � GTOTðTÞ (5)

G1 e��CðTÞ � 1
� �

� �0:50 � GTOTðTÞ (6)

where GTOTðTÞ is the projected total system-wide energy

generation over year T. In (5) and (6), the only

optimization variable is the installed renewable capacity,
CðTÞ. The parameters G1 and � likely change over time

with the changing electricity demand, but do not depend

on CðTÞ.
An improved understanding of how the parameters in

(4) depend on easily accessible information, like peak de-

mand, annual energy demand, and must-run capacity may

enable approximate constraints of the form in (5) and (6),

bypassing the time-intensive simulations required to pro-
duce the generation and carbon curves. Approximations of

these curves may also lead to new Brules of thumb[ in

planning renewable energy buildout scenarios and design-

ing policy initiatives that incentivize efficient renewable

portfolios.

The carbon curve shown in Fig. 3 also has the correct

convexity for cost minimization problems that include

carbon cost terms or that constrain the maximum allow-
able carbon emissions. The inclusion of these curves as

cost terms and/or constraint functions in energy planning

optimization problems may therefore improve our under-

standing of the effects of carbon taxes and cap-and-trade

policies toward meeting electricity sector decarbonization

targets.

In addition to policy implications, generation and car-

bon curves may also help to inform future technological
development. Grid integration models can be updated to

include new technological advances, including but not

limited to demand response, energy storage, efficiency

improvements, and capacity factor improvements for in-

termittent technologies. The generation and carbon curves

(as well as the intermittency costs, capacity values, and/or

reserve requirements) resulting from these simulations

will provide standard metrics with which to judge the uti-
lity of these new strategies towards improving overall

system efficiency, maintaining reliability, meeting an RPS,

or reducing carbon dioxide emissions.

VI. CONCLUSION

While zeroth- and first-order analyses, which focus on

mean resource quality and resource variability, respec-
tively, provide useful insights into the resource potential

and behavior of intermittent renewables, second-order

analyses, which also address the stochastic nature of

intermittent renewables, are needed in order to accurately

represent the effects of grid integration on system

operation and reliability. Depending on the application,

these effects have been characterized by the capacity value

or the cost of intermittency, metrics that depend strongly
on the generating technology, the system into which that

technology is being integrated, and the penetration of the

technology. Because of these dependencies, specific values

for these metrics that have been determined by low- to

moderate-penetration grid integration analyses cannot be

directly extended to very high penetration scenarios,

which may utilize updated conventional generator fleets

and new operational strategies.
The characterization of systems that can achieve very

high penetrations of renewables and include new technol-

ogies like demand response and energy storage therefore

relies on the development of new grid integration models.

As is discussed in this review, these models must include

time series meteorological and load data, statistical

treatments of meteorological and load forecast errors,

and an analysis of system reliability. Studies on the effects
of intermittency within electric power grids must also

account for the effects of aggregation over the geographical

area of interest on the time scales of interest, as failing to

include multiple sites within an operating area will tend to

overestimate the variability and underestimate the pre-

dictability of the aggregated resource.

For incorporation into long-term energy planning ana-

lyses that inform policy decisions, intermittent technolo-
gies and renewable portfolios can be characterized within

specific systems by their associated generation functions

and carbon curves. When combined with cost projections,

these curves can be used within larger energy models to

characterize potential trajectories toward a decarbonized

electric power sector and to help identify policy initiatives

that incentivize these trajectories. The results of these

studies will also inform efforts directed toward reducing
technological and institutional barriers to high penetration

grid integration of renewables, including transmission in-

frastructure planning, the development of new intercon-

nection regulations and protocols, and the development of

new communications and controls that simultaneously

support system reliability and increasing penetrations of

renewable energy technologies. h
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