Effects of Wind-Powered Hydrogen Fuel Cell Vehicles on Stratospheric Ozone and Global Climate

Mark Z. Jacobson
Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020, USA; Email: jacobson@stanford.edu; Tel: (650) 723-6836

Supplementary Material

S1. Introduction.
This document describes the model and emission scenarios used for this study. The emission scenarios include a baseline emission scenario and a wind-powered hydrogen-fuel cell vehicle emission scenario. The document also develops a method of converting pseudo-first-order rate coefficients of heterogeneous chemical reactions to second-order rate coefficients to ensure mass conservation. Finally, the document provides figures used in the main text and calculates the number of wind turbines and land use required for wind-powered hydrogen fuel cell vehicles and wind-powered battery electric vehicles.

S2. Model. The model used was GATOR-GCMOM, which solves dynamical, gas, aerosol, cloud, transport, radiation, and surface processes [Jacobson, 2001-2006]. The model has been tested against meteorological, chemical, and radiative field data without nesting on urban scales [Jacobson, 1997], with nesting from the global-through-urban scale [Jacobson, 2001b], with nesting from the global-through-regional scale [Jacobson et al., 2004, 2005; 2006, 2007], and on the global scale [Jacobson, 2001c, 2002b; 2004]. Simulations were run on a 4° S-N x 5° W-E global domain with 47 layers up to 0.22 hPa (≈60 km), including 6 from 0-1 km, 24 from 1-15 km, and 17 from 15-60 km.
Gas photochemistry was solved among 128 gases and 391 reactions [314 kinetic reactions (33 chlorine and 18 bromine), 20 heterogeneous reactions (9 on each aerosol particles and frozen hydrometeor particles and 2 on liquid hydrometeor surfaces), and 57 photolysis reactions (including 13 chlorine and 8 bromine) with SMVGEAR II [Jacobson, 1998]. Reactions and kinetic rate coefficients are given in the Reaction List at the end of this document.

Aerosol processes included size- and composition-resolved emissions, sulfuric acid binary and ternary homogeneous nucleation (solved together with sulfuric acid condensation), secondary organic gas condensation, aerosol-aerosol coagulation, cloud activation, aerosol-cloud coagulation, nonequilibrium dissolution of NH$_3$, HNO$_3$, HCl coupled with internal aerosol solution-phase and solution-solid equilibrium chemistry, and sedimentation [Jacobson, 2002a, 2003, 2005a].

Aerosols were treated over two discrete size distributions, each with 14 size bins (0.002 to 50 µm in diameter), and three hydrometeor distributions, each with 30 bins (Table S1). Particle number concentration and mole concentrations of several chemicals were predicted in each aerosol and hydrometeor size bin of each distribution. The aerosol distributions were an emitted fossil-fuel soot (EFFS) and an internally-mixed (IM) distribution. BC, POM, H$_2$SO$_4$(aq), HSO$_4^-$, and SO$_4^{2-}$ were emitted into each bin of the EFFS distribution. Other species [H$_2$O, SOM, NO$_3^-$, Cl$^-$, H$^+$, NH$_4^+$, NH$_4$NO$_3$(s), (NH$_4$)$_2$SO$_4$(s)] formed in the distribution by gas-to-particle conversion or crystallization. The IM distribution consisted of the chemicals in the EFFS distribution plus Na$^+$, soil dust, pollen, spores, and bacteria. All emissions aside from fossil-fuel soot, entered the IM distribution. Emitted sea spray included H$_2$O, Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$, Cl$^-$, NO$_3^-$, H$_2$SO$_4$(aq), HSO$_4^-$, and SO$_4^{2-}$. Biomass and biofuel burning included the same aerosol species plus BC and POM. In both cases, K$^+$, Mg$^{2+}$, and Ca$^{2+}$ were treated as equivalent Na$^+$. Other emissions included pollen/spores/bacteria (treated as one species) and soil dust.
The two aerosol distributions evolved into three discrete, size-resolved hydrometeor distributions: liquid, ice, and graupel, each of which contained the underlying aerosol components they formed on (Table S1). The thermodynamics and microphysics of the convective subgrid and stratus grid-scale cloud treatments is given in Jacobson [2003]. Briefly, cloud microphysical processes included condensation/evaporation, deposition, sublimation, liquid-liquid, liquid-ice, liquid-graupel, ice-ice, ice-graupel, graupel-graupel coagulation, liquid-aerosol, ice-aerosol, and graupel-aerosol coagulation, liquid drop breakup, contact freezing (resulting from liquid-aerosol coagulation at subfreezing temperatures), homogeneous/heterogeneous freezing, evaporative freezing, melting, lightning formation due to charge separation from size-resolved bounceoffs, and sedimentation. Precipitation drops contained the aerosol constituents it grew upon. Cloud-aerosol interactions have been evaluated in Jacobson [2003] and Jacobson et al. [2006, 2007].

To calculate condensation/evaporation and deposition/sublimation, the total number concentration of aerosol particles in each size bin of each aerosol distribution was divided into ice deposition nuclei (IDN), cloud condensation nuclei (CCN), and other, as described in Jacobson [2003]. The fractions were based on current aerosol composition in the bin. Nonequilibrium condensation and deposition equations were then solved simultaneously among the gas phase and CCN and IDN in all size bins of both aerosol distributions. Thus, when supercooled clouds formed, deposition competed with condensation for the limited amount of vapor available. Because aerosol particles were transported vertically with cloud water within all subgrid scale convective clouds, aerosol activation was consistent with that in a rising plume.

Activated CCN and IDN and the water grown on them were partitioned into separate liquid and ice hydrometeor size distributions. For example, each size bin of the liquid hydrometeor distribution contained some particles and their chemical components activated from the EFFS aerosol distribution and others from the IM distribution.
Unactivated CCN and IDN in each aerosol distribution stayed as interstitial aerosols. A third discretized hydrometeor distribution, graupel, was also tracked. The graupel distribution formed upon heterocoagulation of liquid water and ice hydrometeor distributions, contact freezing of aerosol particles with the liquid distribution, heterogeneous-homogeneous freezing of the liquid distribution, and evaporative freezing of the liquid distribution. Graupel also contained aerosol inclusions. Thus, within each size bin of each hydrometeor type, all aerosol components that the hydrometeor grew on (listed in Table S1) were tracked. Interstitial size-resolved aerosol particles within clouds also coagulated with hydrometeor particles of different size, and these aerosol chemicals were tracked within the hydrometeor particles as well.

Heterogeneous reactions in the stratosphere can occur on several types of particles, including sulfuric acid tetrahydrate (SAT), sulfuric acid hemihexahydrate (SAH), supercooled ternary solutions (STS), nitric acid trihydrate (NAT), nitric acid dihydrate (NAD), and water-ice, among others [e.g., Toon et al., 1986; Hanson and Mauersberger, 1988; Turco et al., 1989; Worsnop et al., 1993; Zhang et al., 1993; Tabazadeh and Turco, 1993; Drdla et al., 2002a,b,c; Jensen et al., 2002; Strawa et al., 2002; Sander et al., 2006]. In the troposphere, heterogeneous reactions also occur on liquid hydrometeor particles. In reality, pure forms of such particles are rare, as all contain at least trace amounts of other chemicals.

In the model, heterogeneous aerosol reactions occurred on the two aerosol distributions. Heterogeneous water-ice and NAT reactions occurred on both the ice and graupel hydrometeor distributions (where the determination of whether the ice and graupel distributions were covered with water ice or NAT is described shortly). Heterogeneous liquid reactions occurred on the liquid hydrometeor distribution.

Each size bin of each aerosol size distribution contained a different quantity of each chemical listed in Table S1, including nitrate, sulfate, and supercooled or warm liquid water, among others. Aerosol pH and liquid water content in each size bin of each
aerosol distribution in the stratosphere (and elsewhere) were determined from EQUISOLV II [Jacobson, 2005a], which treats solute activity coefficients of many chemicals at temperatures down to 190 K following the activity coefficient parameterization of Lin and Tabazadeh [2001]. Other processes affecting these aerosol particles included transport, binary (at low ammonia) and ternary homogeneous nucleation, coagulation, condensation (e.g., of sulfuric acid, organics), dissolution (e.g., of nitric acid, hydrochloric acid), and sedimentation. The composition of stratospheric aerosols varied with size and location. Some were primarily sulfate-water; others sulfate-ammonium-water, others nitrate-water, but all had trace amounts of all chemicals (e.g., down to machine precision).

Each size bin of each hydrometeor size distribution contained all the chemical components found in aerosol particles (Table S1). Chemicals entered hydrometeor particles primarily during nucleation scavenging and aerosol-hydrometeor coagulation. In addition, nitric acid grew by deposition onto the size-resolved ice and graupel hydrometeor distributions when (a) its partial pressure exceeded its saturation vapor pressure along ice/NAT boundaries and (b) the partial pressure of water was lower then its saturation vapor pressure along ice/NAT boundaries, as determined from equations in Table 1 of Hanson and Mauersberger [1988]. The solution scheme for nitric acid depositional growth was the Analytical Predictor of Condensation (APC) scheme, given in Jacobson [2002a]. If nitric acid deposited onto ice according to the conditions above, the surface was assumed to be converted to NAT.

Sulfur dioxide, hydrogen peroxide, and ozone also entered liquid cloud drops and oxidized irreversibly to S(VI) compounds (H$_2$SO$_4$(aq), HSO$_4^-$, and SO$_4^{2-}$). All other gases in the model also entered precipitation reversibly according to their Henry’s law partitioning and were either carried to lower levels where they evaporated or were removed when precipitation reached the ground [Jacobson, 2003].
Heterogeneous reactions occurred on all aerosol and hydrometeor size distributions. The reaction list (end of document) shows that three reactions, $\text{N}_2\text{O}_5 + \text{H}_2\text{O}$, ClONO$_2 + \text{H}_2\text{O}$, and BrONO$_2 + \text{H}_2\text{O}$ occurred on liquid hydrometeor particle surfaces. Nine reactions occurred on aerosol and ice surfaces and five occurred on NAT surfaces. The products of heterogeneous reactions were dissolved or adsorbed nitric acid or water, and halogen gases. Since aerosol particles and hydrometeor particles were size-resolved and sank based on their individual fall speeds, sedimentation allowed explicit treatment of stratospheric denitrification. Upon evaporation or sublimation of the hydrometeor particles, nitric acid and other inclusions within hydrometeor particles were released back to the air as aerosol particles. Nitric acid could then evaporate from aerosol particles if conditions were right. If hydrometeor particles fell to the ground, they and their inclusions were treated as precipitation.

Reaction probabilities on NAT, water ice, liquid, and aerosol particles were obtained from the references listed in the reaction list. Most reaction probabilities were temperature and partial-pressure dependent [e.g., Tabazadeh and Turco, 1993; Robinson et al., 1997; Shi et al., 2001]. Others were assumed to be independent of temperature. Because aerosol particles are present at all temperatures, reactions could always occur over the observed temperature ranges of the reaction probabilities.

Heterogeneous (gas-particle) chemistry was calculated together with homogeneous gas-phase kinetic and photochemistry with SMVGEAR II. The pseudo-first-order rate coefficient (s^{-1}) of a heterogeneous reaction, $E(g) + F(a) \rightarrow G(g) + H(a)$, where E is a gas and F is adsorbed to a particle surface, is generally written as

$$k_{s,E} = \frac{1}{4} v_E \gamma_{E,F} a$$

(S1)

where v_E is the thermal speed of gas E (cm/s), $\gamma_{E,F}$ is the reaction probability (dimensionless) of gas E with adsorbed gas F, and a is the surface-area concentration (e.g., square centimeters of surface per cubic centimeter of air) summed over all particles.
of all sizes in all size distributions in which reactions occur. In the case of reactions on aerosol surfaces, it is the area concentration summed over the two aerosol distributions in Table S1. In the case of reactions on liquid cloud surfaces, it is the area concentration summed over the liquid hydrometeor distribution in Table S1. In the case of reactions on ice cloud surface, it is the area concentration summed over the ice and graupel hydrometeor distributions in Table S1. The thermal speed is calculated as

\[\bar{v}_E = \sqrt{8k_B T A / \pi m_E} , \]

where \(k_B \) is Boltzmann’s constant, \(T \) is absolute temperature, \(A \) is Avogadro’s number, and \(m_E \) is the molecular weight of species \(E \).

Because Equation S1 implicitly includes the concentration of an adsorbed reactant but not of the gas reactant; it is a pseudo-first-order rate coefficient (s\(^{-1}\)). However, in order to conserve mass of all chemicals in the atmosphere, it is necessary to track the reduction in mass of the adsorbed reactant, whether it is \(\text{H}_2\text{O} \), \(\text{HCl} \), or \(\text{HBr} \), in the reaction. To do this, it is necessary to convert Equation S1 to a second-order rate coefficient (cm\(^3\) molec. s\(^{-1}\)). This can be done either by first calculating the transfer of gas \(F \) to particle surfaces and then solving for the change in \(F \) as an adsorbed species in a second-order reaction with \(E \) or by solving for \(F \) as a gas in a second-order reaction with \(E \), but including the estimated transfer of \(F \) to surfaces in the rate coefficient. The latter method was chosen here since it requires significantly less computational resources. The resulting second-order reaction is \(\text{E}(g) + \text{F}(g) \rightarrow \text{G}(g) + \text{H}(a) \), where the second-order rate coefficient (cm\(^3\) molec. \(^{-1}\) s\(^{-1}\)) is now determined as

\[
k_{s,E,F} = \frac{1}{4} \bar{v}_E \gamma_{E,F} \frac{N_{s,F,int}}{n_m N_{g,F,t-h}} \]

(S2)

In this equation, \(n_m \) is the maximum number of adsorption sites on the surface of a particle per square centimeter [assumed here as 10\(^{15}\), e.g., Tabazadeh and Turco, 1993], \(N_{s,F,int} \) is the time-integrated average number concentration (molec. cm\(^{-3}\)-air) of gas \(F \)
adsorbed to surfaces of particles of all sizes during chemical time step h, and $N_{g,F,t-h}$ (molec. cm$^{-3}$-air) is the number concentration of gas F at the beginning of the time step.

The time-integrated average number concentration of gas molecules adsorbed to particle surfaces is derived by first assuming that the time-rate of change of the number concentration (molec. cm$^{-3}$-air) on all surfaces is

$$\frac{dN_{s,F}(t)}{dt} = \frac{1}{4} \nu_F a N_{g,F}(t) = \frac{1}{4} \nu_F a \left[N_{g,F,t-h} - N_{s,F}(t)\right]$$

(S3)

where $N_{g,F}(t)=N_{g,F,t-h}-N_{s,F}(t)$ is the instantaneous gas-phase concentration of adsorbing species F. Integrating this equation gives the instantaneous number concentration of molecules on particle surfaces at time t after start of growth as

$$N_{s,F}(t) = N_{g,F,t-h} \left(1 - \exp^{-\nu_F a t/h} \right)$$

(S4)

Further integrating the surface concentration over time step h and averaging over the time step gives the time-integrated average number concentration on surfaces as

$$N_{s,F,int} = \frac{1}{h} \int_0^h N_{s,F}(t) \, dt = N_{g,F,t-h} \left[1 - \frac{4}{\nu_F a h} \left(1 - e^{-\nu_F a h/h} \right) \right]$$

(S5)

Figure S2 shows a plot of $N_{s,F,int} / N_{g,F,t-h}$ for HCl adsorption versus time step size at 190 K. As the surface area concentration decreases, the ratio decreases, which decreases the rate coefficient in Equation S2. The time step h is really the time interval during which chemistry is integrated over much smaller time steps in the model. Thus, for example, if $h = 4$ hours, chemistry is integrated during this period with time steps varying from 10^{-9} s to 900 s (with photolysis varying with these steps as well), but with surface coverage of the adsorbed species held constant and determined from Equation S5.
The use of Equation S2 assumes that molecules of gas E react with molecules of adsorbed gas F only on the surfaces of particles. After the reaction occurs, a gas product escapes and an adsorbed product remains. During the long model time interval (e.g., $h=14,400$ s), additional molecules of gas F adsorb to the surface on top of adsorbed products. The total number of layers of adsorbed gas F that can deposit on a surface during time step h is simply

$$L = \frac{N_{s,F,\text{int}}}{a_n m}$$ \hspace{1cm} (S6)

indicating that Equation S2 can be rewritten as

$$k_{s,E,F} = \frac{1}{4} \bar{v}_E \gamma_{E,F} a \frac{L}{N_{s,F,h}}$$ \hspace{1cm} (S7)

However, the equation used in the model is Equation S2 combined with Equation S5, which yields the second-order rate coefficient (cm3 molec.$^{-1}$ s$^{-1}$),

$$k_{s,E,F} = \frac{1}{4} \frac{\bar{v}_E \gamma_{E,F}}{n_m} \left[1 - \frac{4}{\bar{v}_F a h} \left(1 - e^{-\bar{v}_F a h/4} \right) \right]$$ \hspace{1cm} (S8)

The use of Equation S8 assumes that surface reactions occur only with newly adsorbed molecules F each time step h. This assumption appears reasonable as Equation S6 suggests multiple layers of gas are buried each time interval following reaction to a new adsorbed component.

In the model, chemical calculations were operator split from other processes for a time interval of four hours, during which SMVGEAR II solved chemistry using time steps varying between 10^{-9} and 900 s. Each time step was predicted based on the stiffness of the system, the relative error tolerance (set to 10^{-3}), and the absolute error tolerance (variable). With the second-order rate coefficient expression, Equation S8, all bimolecular heterogeneous reactions used could be solved conserving mass, assuming
reactants and products were in the gas phase. Aerosol and liquid heterogeneous reactions occurred on the aerosol and cloud liquid, distributions respectively. Water-ice and nitric acid trihydrate (NAT) reactions occurred on both the cloud ice and graupel distributions. Products were partitioned to the size-resolved aerosol or hydrometeor particle proportionally to the number of surface sites on each particle.

Radiative transfer was solved through gases, aerosol particles, clouds, sea ice, and snow [Jacobson, 2004, 2006]. Aerosols fed back to meteorology through their effects on radiation, clouds, the relative humidity, and pressure. For example, aerosol uptake of liquid water by hydration, calculated iteratively during internal aerosol equilibrium calculations in each size bin following nonequilibrium growth, modified the absolute humidity and temperature (due to latent heat exchange), both of which affected the relative humidity, which fed back to the rate of water uptake. Similarly, since precipitation and evaporation changed the amount of water vapor, which changed air pressure, changes in aerosols changed air pressure by changing cloud drop size and, therefore precipitation rates.

Ocean mixed-layer depths, velocities, temperatures, and energy and mass transport were predicted in time with a 2-D potential enstrophy-, kinetic energy-, and mass-conserving scheme, forced by wind stress [Ketefian and Jacobson, 2008]. Additional layers existed below each ocean mixed-layer grid cell to treat energy and chemical diffusion from the mixed layer to the deep ocean and ocean chemistry.

S3. Baseline Emissions. Table 1 of the main text shows global gas emissions from fossil fuel sources (including shipping and aircraft), biofuel burning, and biomass burning used in the model. Baseline global (1°x1° resolution) monthly emissions of NO\textsubscript{x}, N\textsubscript{2}O, CO, CO\textsubscript{2}, SO\textsubscript{2}, CH\textsubscript{4}, and speciated organic gases from anthropogenic sources aside from shipping, aircraft, biofuel burning, and biomass burning, were obtained from Olivier et al. [1996]. Gas emissions from this dataset were originally for 1995, except that speciated
organics were for 1990 but scaled to 1995 by the 1995:1990 total nonmethane organic emission ratio since the 1995 organic gas inventory did not include speciation. Species not treated explicitly (e.g., alkanes, ethyne, trimethylbenzene) were split into carbon bond groups with splitting factors from Carter (http://pah.cert.ucr.edu/~carter/emitdb/).

The world CO\textsubscript{2} emission rate from onroad vehicles in 1995 was 3760 Tg-CO\textsubscript{2}/yr [Olivier et al., 1996], or 15.2% of the total fossil-fuel carbon dioxide emitted that year. The carbon dioxide emission rate in 2004 was about 22% higher than in 1995 [Marland et al., 2006]. However, 1995 data were used for this study since most other emissions were from that year. The results found here for 1995 may be scalable to other years with different CO\textsubscript{2} emissions.

Emission of FFOV H\textsubscript{2} and H\textsubscript{2}O were derived as follows. The mass emission ratio of H\textsubscript{2}:CO from a FFOV was estimated as 0.0285 g-H\textsubscript{2}/g-CO, the mean value from Barnes et al. [2003]. Although the reported uncertainty of this number was +/-12%, such uncertainty, and differences between Barnes et al. and other studies, which are up to about 33%, would have little impact on the results here since it was found that the primary influence on results was the reduction in fossil fuels, not hydrogen chemistry. The 1995 onroad vehicle emission rate of CO was 195.7 Tg-CO/yr [Olivier et al., 1996], giving a FFOV H\textsubscript{2} emission rate of 5.58 Tg-H\textsubscript{2}/yr.

Water vapor emissions from FFOV were determined from the fleet-averaged gasoline plus diesel stoichiometric reaction \(\text{CH}_1.85 + 1.4625 \text{O}_2 \rightarrow \text{CO}_2 + 0.925 \text{H}_2\text{O} + \text{energy} \) [Colella et al., 2005]. Thus, while emitting 3760 Tg-CO\textsubscript{2}/yr, FFOV simultaneously emitted 1424 Tg-H\textsubscript{2}O/yr in 1995.

Natural and anthropogenic ammonia emissions were from Bouwman et al. [1997]. Natural emissions of biogenic isoprene, monoterpenes, other volatile organics, and nitric oxide; lightning NO and N\textsubscript{2}O, ocean DMS, volcanic SO\textsubscript{2}, CO\textsubscript{2} from bacterial and plant respiration (and CO\textsubscript{2} removal by photosynthesis) and CO\textsubscript{2} from ocean evaporation/dissolution were calculated during the model simulation as in Jacobson and
In addition natural H_2, CH_4, and N_2O emissions from soils and the oceans were treated, with emissions summarized in Table 1.

Table S3 summarizes the baseline black carbon (BC), primary organic carbon (POC), and sulfate emissions from aircraft, shipping, other fossil fuels, biofuels, and biomass burning used here. Fine BC and POC emissions from aircraft were obtained by applying emission factors of 0.038 g-BC/kg-fuel [Petzold et al., 1999] to fuel-use data [Mortlock et al., 1998; Sutkus et al., 2001] and assuming a POC:BC emission ratio of 1:1. Those from shipping were estimated by dividing the gridded, monthly sulfur shipping emission rate [Corbett et al. 1999] which totaled 4.24 Tg-S/yr, by 29.5 g-S/kg-fuel [Corbett et al., 2003, Table 1, for 1999 data] and multiplying the result by 1.02 g-BC-C/kg-fuel for shipping [Bond et al., 2004]. That for POC was obtained in the same manner, but by multiplying the result by 0.33 g-POC-C/kg-fuel [Bond et al., 2004]. Fine BC and POC for all other fossil-fuel sources (on- and nonroad vehicles, power sources, etc.) globally were obtained from Bond et al. [2004] after subtracting out shipping emissions. The totals from [Bond et al., 2004] before subtracting out such emissions were 3.040 Tg-BC-C/yr and 2.408 Tg-POC-C/yr. Fine biofuel-burning BC and POC emissions were obtained from Bond et al. [2004].

Natural plus anthropogenic biomass-burning particle and gas emissions were obtained by combining satellite-derived 8-day fuel burn data [Giglio et al., 2006] with landuse data (to determine fire type) and emission factors [Andreae and Merlet, 2002]. Fuel burn data for five separate years were used and repeated beyond five years in all simulations. It is generally estimated that about 90% of biomass-burning emissions today is anthropogenic. Coarse BC and POC aerosol particle emissions (not shown in Table S3) for all sources in the model were estimated as 25% and 45% those of fine BC and POC emissions, respectively. The POM:POC emission ratio used was 1.6:1 for fossil fuels and 2:1 for biofuel and biomass burning. The emission rate of S(VI) from fossil fuels was 1% that of BC+POM+S(VI).
Fossil-fuel components were emitted into the EFFS distribution. Biofuel- and biomass-burning components were emitted into the IM distribution. Gases (H₂, H₂O, NO, NO₂, N₂O, NH₃, SO₂, CO, CO₂, CH₄, CH₃OH, CH₃Cl, CH₃Br, C₂H₄, C₂H₆, C₃H₆, C₃H₈, HCHO, HCOOH, CH₃COOH, CH₃CHO, CH₃COCH₃, C₄H₆, C₅H₈, C₆H₆, C₆H₇CHO, C₆H₈CH₃, C₆H₄CH₃CH₃, and CH₃SCH₃) and other particle components (NH₄⁺, Cl⁻, SO₄²⁻, NO₃⁻, Na⁺, K⁺, Ca²⁺, Mg²⁺) from biomass and biofuel burning were obtained by multiplying BC biofuel or biomass emission rates by the ratio of the mean biofuel or biomass emission factor for each gas or particle component to that of BC from Andreae and Merlet [2001]. The ions K⁺, Ca²⁺, and Mg²⁺ were not carried in the simulations, but their mole-equivalent emissions were added to those of Na⁺. Emissions of gases from shipping were obtained by scaling emission factors of individual gases to those of sulfur from the gridded inventory of Corbett et al. [2003], as described for particles above. Emissions of gases from aircraft were similarly obtained by applying emission factors to fuel use data from Mortlock et al. [1998] and Sutkus et al. [2001].

S4. WHFCV Emissions. For the WHFCV scenario, all onroad vehicles worldwide were converted to hydrogen fuel cell vehicles where the hydrogen was generated by wind electrolysis. Hydrogen was assumed to be produced in electrolyzers at local filling stations, and electricity for the electrolyzers was sent from wind farms to the filling station via transmission lines. Thus, no hydrogen pipelines or transport by vehicles was needed. Following electrolysis, the hydrogen was compressed and stored. Electricity for compression originated from the wind farms. Hydrogen was dispensed into vehicles at the stations.

The replacement of FFOV with WHFCV resulted in a reduction in emissions associated with FFOV and an increase in emissions associated with WHFCV. The only emissions associated with WHFCV were hydrogen leakage and chemically-produced water vapor (Table 1, main text). Fossil-fuel-related emissions due to the manufacture of
hydrogen fuel-cell vehicles, wind turbines, electrolyzers, and compressors were assumed to be offset by eliminating the manufacture of fossil-fuel vehicles, oil refineries, and oil wells and the transport of oil, diesel, and gasoline by trucks, trains, and ships although this is clearly a simplification.

Hydrogen leakage was assumed to occur during electrolysis of water, hydrogen compression, hydrogen storage at the filling station, vehicle fueling, in-vehicle hydrogen storage, in-vehicle flow through the fueling system, and hydrogen usage in the fuel cell stack. Studies have suggested a future hydrogen leakage rate of 3%, since the rate of natural gas leakage today is about 1% and that since hydrogen is a smaller molecule and more permeable than methane [Schultz et al., 2003; Colella et al., 2005]. Here, the leakage rate was similarly assumed to be 3%, the upper limit considered by Zittel et al. [1996] and Shultz et al. [2003]. This leakage rate is lower than that used in Colella et al. [2005], since they used a 10% leakage rate to ensure a conservative result, recognizing that the real leakage rate is most likely 1-3%. For this study, it was desired to calculate climate effects under a likely rather than conservative scenario. Because the major impacts found here were due almost exclusively to reductions in carbon dioxide and air pollution-precursor gases and particles rather than changes in hydrogen, a hydrogen leakage rate of 3 versus 10% does not impact the conclusions of this study.

The emission rate of hydrogen from leakage (kg-H₂/yr) was estimated here as

\[E_{H_2} = M_{H_2} \frac{f_L}{1 - f_L} \]
(S9)

where \(f_L = 0.03 \) is the fractional leakage rate and

\[M_{H_2} = \frac{V_{M_H} \rho_G L_H \eta_G}{V_{M_H} \rho_G L_H \eta_H} \]
(S10)
is the annual mass of hydrogen needed after leakage (kg-H$_2$/yr) to replace FFOV with WHFCV vehicles [Colella et al., 2005, Eq. 1]. In this equation, V_{MT} is the vehicle miles traveled per year (mi/yr), ρ_G is the density of gasoline (750 kg/m3), L_H is the lower heating value of gasoline (44 MJ/kg), η_{FG} is the tank-to-wheel efficiency of an average FFOV (0.16), V_{MPG} is the fleet averaged mileage of all onroad vehicles, including heavy and light-duty vehicles (17.11 mi/gal), G is 264.17287 gal/m3, L_{HH} is the lower heating value of hydrogen (120 MJ/kg), and η_{HL} is the fleet-averaged tank-to-wheel efficiency of a WHFCV (0.46). These parameter values were justified in Colella et al. [2005].

In the present study, the leakage rate of hydrogen was determined in each grid cell by combining Equations S9 and S10 with a back-calculation of vehicle miles traveled from onroad transportation carbon dioxide emissions using

$$V_{MT} = \frac{E_{\text{CO}_2} m_C}{e_c m_{\text{CO}_2}} \quad \text{(S11)}$$

where E_{CO_2} is the onroad FFOV carbon dioxide emission rate (kg-CO$_2$/yr) determined in each grid cell from emission data [Olivier et al., 1996], m_C is the molecular weight of carbon (12.011 g/mol), m_{CO_2} is the molecular weight of carbon dioxide (44.0098 g/mol), and e_c is the average emission rate of carbon per mile, selected as the 1999 U.S. fleet-averaged value of 0.140 kg-C/mi [Colella et al., 2005, Table 2].

Combining Equation S11 with the global vehicle CO$_2$ emission rate (Section S3) gives 7.33x1012 mi/yr traveled worldwide. U.S. onroad vehicles moved 2.68x1012 mi in 1999, suggesting that about 36% of the world’s vehicle mileage was in the U.S. From Equation S10, the global hydrogen production rate to power all 1995 onroad vehicles worldwide is 155.7 Tg-H$_2$/yr. An additional 4.82 Tg-H$_2$/yr leaks (Equation S9), requiring a total production of 160.5 Tg-H$_2$/yr to account for leakage from and hydrogen consumption in WHFCV. For comparison, Schultz et al. [2003] estimated hydrogen leakage due to converting 50% of the world’s fossil fuel combustion of approximately 10-15 Tg-H$_2$/yr assuming a 3% leakage rate. Scaling this number by 15.2% (the percent
of the world’s fossil fuel used in vehicles - Section S3) / 50% (the percent of the world’s fossil fuel converted in Schultz et al.) gives 3-4.6 Tg-H₂/yr, close to that derived here. Tromp et al. [2003] estimated hydrogen leakage (at a 10% leakage rate) from 100% of fossil fuel combustion of 60-120 Tg-H₂/yr. Scaling this number by (3% leakage / 10% leakage) * (15.2% / 100%) gives 2.7-5.5 Tg-H₂/yr, surrounding the estimate here. H₂ emissions from Colella et al. [2005], once scaled by differences in leakage rate (3% here versus 10% in that study) and vehicle miles traveled between the world in 1995 and U.S in 1999, yields the same emissions as here.

Whereas hydrogen leakage from WHFCV may increase H₂ emissions by 4.82 Tg-H₂/yr, the elimination of FFOV may reduce H₂ emissions by 5.58 Tg-H₂/yr (Section S3). Thus, switching to WHFCV may cause little change in H₂ emissions.

Water vapor emissions (kg-H₂O/yr) due to the fuel cell reaction H₂ + 0.5O₂ → H₂O + energy were calculated as

\[
E_{\text{H}_2\text{O}} = M_{\text{H}_2\text{O}} \frac{m_{\text{H}_2\text{O}}}{m_{\text{H}_2}}
\]

(S12)

where \(m_{\text{H}_2\text{O}}\) and \(m_{\text{H}_2}\) are the molecular weights of water vapor (18.015 g/mol) and hydrogen (2.016 g/mol), respectively. With the hydrogen mass required here to operate vehicles (155.7 Tg-H₂/yr), global water vapor emissions from WHFCV were 1390 Tg-H₂O/yr. Water vapor emissions from FFOV were 1424 Tg-H₂O/yr (Section S3).

Whereas conversion to WHFCV may slightly reduce water vapor and hydrogen emissions relative to FFOV, such reductions are not statistically significant and could change sign with slight changes in assumptions. For example, WHFCV would emit more H₂ than FFOV if the leakage rate increased from 3.0 to 3.5%. As such, it can be concluded only that emissions of water vapor and hydrogen from WHFCV are effectively the same as those from FFOV they replace.
Table S3 shows black carbon, primary organic carbon, and sulfate emissions in the WHFCV scenario. BC, POC, and sulfate emissions all decreased in the WHFCV scenario relative to the baseline scenario.

S5. Additional Figures. Figure S1 shows modeled annually-averaged vertical profiles of the globally-averaged differences between parameters from the WHFCV and FFOV simulations. These figures are referred to in the main text only.

S6. Implications and Caveats. An important question to address for this study is the feasibility and unintended consequences of running the world’s or U.S.’ onroad vehicles on hydrogen produced by electrolysis from wind-generated electricity. A separate analysis [Jacobson, 2008] indicates that, if this were done in the U.S. in 2007, 229,000-428,000 5-MW wind turbines operating in locations where the wind speed is 8.5 m/s (low number of turbines) to 7.0 m/s (high number of turbines) would be needed. Such turbines would require about 1.1-2.1% of the 50 U.S. states, for turbine spacing, but only 3-8 square kilometers of land area for the turbine footprint on the ground. Almost all the area between turbine towers could be used for farming, ranching, fishing, or open space.

For comparison, wind-powered battery-electric vehicles (WBEV) would require about 3 times fewer 5 MW turbines to run the same vehicles: 73,000-144,000. The reason is that batteries are 75-86% efficient from plug to wheel, whereas WHFCV have three plug-to-wheel efficiency losses – electrolysis (about 74% efficient), compression (about 90% efficient), and the fuel cell (about 46-50% efficient) – which together give a plug-to-wheel efficiency of about 30-33%. This is much lower than that of WBEV but higher than the tank-to-wheel efficiency of FFOV (around 16-18%). Replacing all U.S. onroad FFOV with WBEV would require an ocean and land area equivalent to 0.35-0.7 percent of the 50 U.S. states, for turbine spacing. The footprint on the ground to power onroad U.S. WBEV would be only 0.9-2.8 km² for the turbine towers.
The percentages of U.S. land required for turbine spacing in both cases (0.9-2.8% for WHFCV and 0.35-0.7% for WBEV) is much less than the 15% of U.S. land available that has wind speeds at 80 m that are fast enough for economical wind power production [Archer and Jacobson, 2005].

Whereas WHFCV emit water vapor and molecular hydrogen, WBEV do not emit either. The additional hydrogen and water vapor reduction by battery-electric vehicles powered by wind (WBEV) relative to WHFCV, though, should have little impact on stratospheric and tropospheric composition and climate since the changes in pollution-precursor gases and particles and carbon dioxide, which are similar for WBEV as for WHFCV in their lifecycle, dominate the effects of WHFCV versus FFOV.

The results here found for wind-powered HFCVs and BEVs should apply similarly to such vehicles powered by solar photovoltaic’s, concentrated solar power, geothermal power, hydroelectric power, tidal power, and wave power, since these electric power sources have lifecycle emissions not significantly lower than those of wind turbines [Jacobson, 2008].

Wind turbines extract energy from the wind, reducing their speeds and increasing vertical velocities. However, if the entire world (electric plus nonelectric sources) were powered by 7.7 million 1.5 MW turbines, the combined energy loss from the slower winds among all wakes worldwide in the boundary layer (about 1 km) would be only about 0.05% [Sta. Maria and Jacobson, 2008].

S7. References

Table S1. Aerosol and hydrometeor size distributions treated in the model and the parameters (number concentration and chemical mole concentrations) present in each size bin of each size distribution.

<table>
<thead>
<tr>
<th>Aerosol Emitted</th>
<th>Aerosol Internally Mixed (IM)</th>
<th>Cloud / Precipitation Liquid</th>
<th>Cloud / Precipitation Ice</th>
<th>Cloud / Precipitation Graupel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td>BC</td>
<td>BC</td>
<td>BC</td>
<td>BC</td>
<td>BC</td>
</tr>
<tr>
<td>POM</td>
<td>POM</td>
<td>POM</td>
<td>POM</td>
<td>POM</td>
</tr>
<tr>
<td>SOM</td>
<td>SOM</td>
<td>SOM</td>
<td>SOM</td>
<td>SOM</td>
</tr>
<tr>
<td>H₂O(l)-hydrated</td>
<td>H₂O(aq)-hydrated</td>
<td>H₂O(aq)-hydrated</td>
<td>H₂O(aq)-hydrated</td>
<td>H₂O(aq)-hydrated</td>
</tr>
<tr>
<td>H₄SO₄(aq)</td>
<td>H₄SO₄(aq)</td>
<td>H₄SO₄(aq)</td>
<td>H₄SO₄(aq)</td>
<td>H₄SO₄(aq)</td>
</tr>
<tr>
<td>HSO₄⁻</td>
<td>HSO₄⁻</td>
<td>HSO₄⁻</td>
<td>HSO₄⁻</td>
<td>HSO₄⁻</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>SO₄²⁻</td>
<td>SO₄²⁻</td>
<td>SO₄²⁻</td>
<td>SO₄²⁻</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>NO₂⁻</td>
<td>NO₂⁻</td>
<td>NO₂⁻</td>
<td>NO₂⁻</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Cl⁻</td>
<td>Cl⁻</td>
<td>Cl⁻</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>H⁺</td>
<td>H⁺</td>
<td>H⁺</td>
<td>H⁺</td>
<td>H⁺</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>NH₄⁺</td>
<td>NH₄⁺</td>
<td>NH₄⁺</td>
<td>NH₄⁺</td>
</tr>
<tr>
<td>NH₄NO₃(s)</td>
<td>NH₄NO₃(s)</td>
<td>NH₄NO₃(s)</td>
<td>NH₄NO₃(s)</td>
<td>NH₄NO₃(s)</td>
</tr>
<tr>
<td>(NH₄)₂SO₄(s)</td>
<td>(NH₄)₂SO₄(s)</td>
<td>(NH₄)₂SO₄(s)</td>
<td>(NH₄)₂SO₄(s)</td>
<td>(NH₄)₂SO₄(s)</td>
</tr>
<tr>
<td>Na⁺ (K⁺,Mg⁺²⁺,Ca⁺²⁺)</td>
<td>Na⁺ (K⁺,Mg⁺²⁺,Ca⁺²⁺)</td>
<td>Na⁺ (K⁺,Mg⁺²⁺,Ca⁺²⁺)</td>
<td>Na⁺ (K⁺,Mg⁺²⁺,Ca⁺²⁺)</td>
<td>Na⁺ (K⁺,Mg⁺²⁺,Ca⁺²⁺)</td>
</tr>
<tr>
<td>Soildust</td>
<td>Soildust</td>
<td>Soildust</td>
<td>Soildust</td>
<td>Soildust</td>
</tr>
<tr>
<td>H₂O(aq)-condensed</td>
<td>H₂O(aq)-condensed</td>
<td>H₂O(aq)-condensed</td>
<td>H₂O(aq)-condensed</td>
<td>H₂O(aq)-condensed</td>
</tr>
<tr>
<td>H₂O(s)</td>
<td>H₂O(s)</td>
<td>H₂O(s)</td>
<td>H₂O(s)</td>
<td>H₂O(s)</td>
</tr>
</tbody>
</table>

POM is primary organic matter; SOM is secondary organic matter. H₂O(aq)-hydrated is liquid water hydrated to electrolytes in solution. H₂O(aq)-condensed is condensed water. Condensed and hydrated water existed in the same particles. If condensed water evaporated, hydrated water and other aerosol material remained. H₂O(s) is liquid water that froze or water vapor that deposited as ice. Emitted species in the fossil-fuel soot distribution included BC, POM, H₂SO₄(aq), HSO₄⁻, and SO₄²⁻. The remaining species in the distribution formed by gas-to-particle conversion or crystallization. Sea spray, soildust, biomass burning, biofuel burning, pollen, spores, and bacteria were emitted into the internally-mixed distribution. Emitted species in sea spray included H₂O, Na⁺, K⁺, Mg⁺²⁺, Ca⁺²⁺, Cl⁻, NO₂⁻, H₂SO₄(aq), HSO₄⁻, and SO₄²⁻. Those in biomass and biofuel burning included the same plus BC and POM. In both cases, K⁺, Mg⁺²⁺, Ca⁺²⁺ were treated as equivalent Na⁺. Pollen, spores, and bacteria were emitted into the same species. Homogenously nucleated species (H₂O, H₂SO₄(aq), HSO₄⁻, SO₄²⁻, NH₄⁺) entered the IM distribution. Condensing gases on both aerosol distributions included H₂SO₄ and SOM. Dissolving gases on both aerosol distributions included HNO₃, HCl, and NH₃. All gases dissolved in liquid hydrometeor particles according to their effective Henry’s constant. All aerosol and hydrometeor distributions were affected by self-coagulation and heterocoagulation to other distributions.
Table S2. Simulation- and globally-averaged values from the baseline simulation (with FFOV) and percent differences between the WHFCV (“wind”) and baseline simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Wind-base</th>
<th>% Diff.</th>
<th>Parameter</th>
<th>Baseline</th>
<th>Wind-base</th>
<th>% Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface air temp. (K)</td>
<td>287.6</td>
<td>-0.0017</td>
<td></td>
<td>Benzene (mg/m³)</td>
<td>6.1</td>
<td>-2.5</td>
<td></td>
</tr>
<tr>
<td>Surface albedo</td>
<td>0.195</td>
<td>+0.20</td>
<td></td>
<td>Toluene (mg/m³)</td>
<td>0.87</td>
<td>-12.2</td>
<td></td>
</tr>
<tr>
<td>Cloud optical depth</td>
<td>4.82</td>
<td>-1.7</td>
<td></td>
<td>Isoprene (mg/m³)</td>
<td>4.0</td>
<td>+10.2</td>
<td></td>
</tr>
<tr>
<td>Cloud liquid (kg/m³)</td>
<td>0.015</td>
<td>-0.98</td>
<td></td>
<td>Monoterpenes (mg/m³)</td>
<td>0.29</td>
<td>+5.0</td>
<td></td>
</tr>
<tr>
<td>Cloud ice (kg/m³)</td>
<td>0.0043</td>
<td>-1.3</td>
<td></td>
<td>SO₂ (mg/m³)</td>
<td>0.90</td>
<td>+0.89</td>
<td></td>
</tr>
<tr>
<td>Activated CCN (No cm⁻²)</td>
<td>2.93</td>
<td>-2.6</td>
<td></td>
<td>NH₃ (mg/m³)</td>
<td>0.23</td>
<td>+2.8</td>
<td></td>
</tr>
<tr>
<td>Activated IDN (No cm⁻³)</td>
<td>0.067</td>
<td>-7.9</td>
<td></td>
<td>HCl (mg/m³)</td>
<td>1.2</td>
<td>+0.66</td>
<td></td>
</tr>
<tr>
<td>Cloud fraction</td>
<td>0.567</td>
<td>-0.04</td>
<td></td>
<td>ClONO₂ (mg/m³)</td>
<td>0.33</td>
<td>+2.2</td>
<td></td>
</tr>
<tr>
<td>Precipitation (mm/day)</td>
<td>2.68</td>
<td>+0.35</td>
<td></td>
<td>HOCl (mg/m³)</td>
<td>0.25</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>Surface wind speed (m/s)</td>
<td>5.92</td>
<td>-0.042</td>
<td></td>
<td>ClO (mg/m³)</td>
<td>0.30</td>
<td>+1.2</td>
<td></td>
</tr>
<tr>
<td>Ocean pH</td>
<td>7.86</td>
<td>+0.021</td>
<td></td>
<td>Cl₂ (mg/m³)</td>
<td>0.009</td>
<td>-8.5</td>
<td></td>
</tr>
<tr>
<td>Surf. thermal-IR (W/m²³)</td>
<td>-70.1</td>
<td>+0.28</td>
<td></td>
<td>BrO (mg/m³)</td>
<td>0.018</td>
<td>+3.3</td>
<td></td>
</tr>
<tr>
<td>Surface solar (W/m²)</td>
<td>170</td>
<td>+0.32</td>
<td></td>
<td>PM BC (mg-BC/m³)</td>
<td>0.21</td>
<td>-6.7</td>
<td></td>
</tr>
<tr>
<td>Surface UV (W/m²)</td>
<td>9.74</td>
<td>+0.86</td>
<td></td>
<td>PM POM (mg-POM/m³)</td>
<td>1.3</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>Aerosol optical depth</td>
<td>0.23</td>
<td>-3.8</td>
<td></td>
<td>PM SOM (mg-SOM/m³)</td>
<td>7.4</td>
<td>-6.1</td>
<td></td>
</tr>
<tr>
<td>CO₂ (kg/m²)</td>
<td>6.2</td>
<td>-0.46</td>
<td></td>
<td>PM H₂O (mg/m³)</td>
<td>52</td>
<td>-2.5</td>
<td></td>
</tr>
<tr>
<td>H₂O (kg/m³)</td>
<td>28.3</td>
<td>+0.22</td>
<td></td>
<td>PM S(VI) (mg-SO₄²⁻/m³)</td>
<td>2.7</td>
<td>-2.7</td>
<td></td>
</tr>
<tr>
<td>H₂ (mg/m³)</td>
<td>898</td>
<td>-0.77</td>
<td></td>
<td>PM NO₃⁻ (mg/m³)</td>
<td>0.9</td>
<td>-18.6</td>
<td></td>
</tr>
<tr>
<td>NO (mg/m³)</td>
<td>0.28</td>
<td>-8.8</td>
<td></td>
<td>PM Cl⁻ (mg/m³)</td>
<td>1.9</td>
<td>-0.42</td>
<td></td>
</tr>
<tr>
<td>NO₂ (mg/m³)</td>
<td>0.78</td>
<td>-11</td>
<td></td>
<td>PM H⁺ (mg/m³)</td>
<td>0.025</td>
<td>-4.4</td>
<td></td>
</tr>
<tr>
<td>HNO₃ (mg/m³)</td>
<td>5.8</td>
<td>-1.6</td>
<td></td>
<td>PM NH₄⁺ (mg/m³)</td>
<td>0.33</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>OH (mg/m³)</td>
<td>0.0067</td>
<td>-0.58</td>
<td></td>
<td>PM NH₄NO₃ (mg/m³)</td>
<td>0.77</td>
<td>-9.5</td>
<td></td>
</tr>
<tr>
<td>O₃ (mg/m³)</td>
<td>6300</td>
<td>+0.41</td>
<td></td>
<td>PM (NH₄)SO₄ (mg/m³)</td>
<td>0.50</td>
<td>+6.3</td>
<td></td>
</tr>
<tr>
<td>Surface O₃ (ppbv)</td>
<td>16.6</td>
<td>-6.2</td>
<td></td>
<td>PM Na⁺ (mg/m³)</td>
<td>1.8</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>PAN (mg/m³)</td>
<td>12.5</td>
<td>-11.6</td>
<td></td>
<td>PM Soil dust (mg/m³)</td>
<td>140</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>CO (mg/m³)</td>
<td>5130</td>
<td>-4.8</td>
<td></td>
<td>PM Pol/spor/bact (mg/m³)</td>
<td>0.67</td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td>CH₄ (mg/m³)</td>
<td>10,200</td>
<td>+0.25</td>
<td></td>
<td>PMₜₚ (mg/m³)</td>
<td>204</td>
<td>-2.8</td>
<td></td>
</tr>
<tr>
<td>HCHO (mg/m³)</td>
<td>4.0</td>
<td>-3.9</td>
<td></td>
<td>Surface PM₂.₅ (µg/m³)</td>
<td>47.8</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>CH₃CHO (mg/m³)</td>
<td>21.9</td>
<td>-1.6</td>
<td></td>
<td>Surface PM₁₀ (µg/m³)</td>
<td>137</td>
<td>-1.6</td>
<td></td>
</tr>
</tbody>
</table>

3 Divide mg/m³ by 1.9637 to obtain Tg. Masses are of total chemical. UV=ultraviolet. PM=particulate matter of all sizes. PMₜₚ=PM<10µm diameter. CCN=cloud condensation nuclei. IDN=ice deposition nuclei.
Table S3. Fine-particle global emission rates of black carbon (BC) (Tg-C/yr), primary organic carbon (POC) (Tg-C/yr), and S(VI) (Tg-SO$_4$/yr) for the baseline and WHFCV scenarios.

<table>
<thead>
<tr>
<th></th>
<th>(a) Aircraft</th>
<th>(b) Shipping</th>
<th>(c) All other Fossil Fuel</th>
<th>(d) Total Fossil Fuel (a+b+c)</th>
<th>(e) Biofuel</th>
<th>(f) Biomass burning</th>
<th>(g) Total (d+e+f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC Baseline</td>
<td>0.0062</td>
<td>0.147</td>
<td>3.029</td>
<td>3.182</td>
<td>1.634</td>
<td>2.806</td>
<td>7.622</td>
</tr>
<tr>
<td>BC WHFCV</td>
<td>0.0062</td>
<td>0.147</td>
<td>2.423</td>
<td>2.576</td>
<td>1.634</td>
<td>2.806</td>
<td>7.016</td>
</tr>
<tr>
<td>POC Baseline</td>
<td>0.0062</td>
<td>0.047</td>
<td>2.371</td>
<td>2.424</td>
<td>6.490</td>
<td>24.12</td>
<td>33.03</td>
</tr>
<tr>
<td>POC WHFCV</td>
<td>0.0062</td>
<td>0.047</td>
<td>1.897</td>
<td>1.950</td>
<td>6.490</td>
<td>24.12</td>
<td>32.55</td>
</tr>
<tr>
<td>S(VI) Baseline</td>
<td>0.00082</td>
<td>0.0069</td>
<td>0.030</td>
<td>0.0377</td>
<td>1.52</td>
<td>0.58</td>
<td>2.138</td>
</tr>
<tr>
<td>S(VI) WHFCV</td>
<td>0.00082</td>
<td>0.0069</td>
<td>0.024</td>
<td>0.0317</td>
<td>1.52</td>
<td>0.58</td>
<td>2.132</td>
</tr>
</tbody>
</table>

Data sources and sulfate/other emissions associated with these sources are described in the text.
Figure S1: Modeled annually-averaged vertical profiles of the globally-averaged differences and percent differences between parameters from the WHFCV and FFOV simulations. These figures are referred to in the main text only.
Figure S2. Ratio of the time-integrated average number concentration of molecules adsorbed to particle surfaces to the initial number concentration of molecules in the gas phase as a function of time step size h, obtained from Equation S5, for three values of surface area concentration, a (cm2-particles cm$^{-3}$-air). $T=190$ K and $m_r=36.46$ g/mol (HCl), giving a thermal speed of 33,216 cm/s.
Reaction List. Gas-phase chemical kinetic reactions, reaction rate coefficients, and photoprocesses, and heterogeneous reactions treated in the model.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kinetic Reaction</th>
<th>F_e^a</th>
<th>Rate Coefficient (s$^{-1}$, cm3 s$^{-1}$, or cm6 s$^{-1}$)</th>
<th>Ref.</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}$</td>
<td></td>
<td>6.00×10^{-34} (300/T)$^{2.3}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\text{O} + \text{O}_3 \rightarrow 2 \text{O}_2$</td>
<td></td>
<td>8.00×10^{-12} e$^{-2060/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\text{O}(^1\text{D}) + \text{O}_3 \rightarrow 2\text{O}_2$</td>
<td></td>
<td>1.20×10^{-10}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\text{O}(^1\text{D}) + \text{O}_3 \rightarrow \text{O}_2 + 2\text{O}$</td>
<td></td>
<td>1.20×10^{-10}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\text{O}(^1\text{D}) + \text{O}_2 \rightarrow \text{O} + \text{O}_2$</td>
<td></td>
<td>3.30×10^{-11} e$^{-55/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$\text{O}(^1\text{D}) + \text{N}_2 \rightarrow \text{O} + \text{N}_2$</td>
<td></td>
<td>2.15×10^{-11} e$^{-110/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\text{O}(^1\text{D}) + \text{CO}_2 \rightarrow \text{O} + \text{CO}_2$</td>
<td></td>
<td>7.50×10^{-11} e$^{-115/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$\text{O}(^1\text{D}) + \text{N}_2 + \text{M} \rightarrow \text{N}_2\text{O} + \text{M}$</td>
<td></td>
<td>2.80×10^{-36} (300/T)$^{0.9}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\text{O}(^1\text{D}) + \text{N}_2\text{O} \rightarrow \text{N}_2 + \text{O}_2$</td>
<td></td>
<td>4.90×10^{-11} e$^{-20/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\text{O}(^1\text{D}) + \text{N}_2\text{O} \rightarrow \text{NO} + \text{NO}$</td>
<td></td>
<td>6.70×10^{-11} e$^{-20/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$\text{O}(^1\text{D}) + \text{H}_2 \rightarrow \text{OH} + \text{H}$</td>
<td></td>
<td>1.10×10^{-10}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$\text{O}(^1\text{D}) + \text{H}_2\text{O} \rightarrow \text{OH} + \text{OH}$</td>
<td></td>
<td>1.63×10^{-10} e$^{-60/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$\text{H} + \text{O}_2 \rightarrow \text{H}_2\text{O}_2$</td>
<td>(P) 0.6</td>
<td>4.40×10^{-32} (300/T)$^{1.3}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$\text{H} + \text{O}_3 \rightarrow \text{O}_2 + \text{OH}$</td>
<td></td>
<td>4.70×10^{-11} (300/T)$^{0.2}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$\text{H} + \text{HO}_2 \rightarrow \text{H}_2 + \text{O}_2$</td>
<td></td>
<td>1.40×10^{-10} e$^{-470/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>$\text{H} + \text{HO}_2 \rightarrow \text{OH} + \text{OH}$</td>
<td></td>
<td>5.67×10^{-12}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$\text{H} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}$</td>
<td></td>
<td>7.29×10^{-11}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>$\text{OH} + \text{O} \rightarrow \text{H} + \text{O}_2$</td>
<td></td>
<td>2.43×10^{-12}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>$\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2$</td>
<td></td>
<td>2.20×10^{-11} e$^{-120/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{H}$</td>
<td></td>
<td>1.70×10^{-12} e$^{-940/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>$\text{OH} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{OH}$</td>
<td>(P) 0.6</td>
<td>2.8×10^{-12} e$^{-1800/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$\text{OH} + \text{OH} \rightarrow \text{H}_2\text{O}_2$</td>
<td>(P) 0.6</td>
<td>1.80×10^{-12}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>$\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2$</td>
<td></td>
<td>6.90×10^{-31} (300/T)$^{0.8}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$\text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2 + \text{H}_2\text{O}$</td>
<td></td>
<td>2.6×10^{-12}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$\text{OH} + \text{NO} \rightarrow \text{HONO}$</td>
<td>(P) 0.6</td>
<td>7.00×10^{-31} (300/T)$^{2.6}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>$\text{OH} + \text{NO}_2 \rightarrow \text{HNO}_3$</td>
<td>(P) 0.6</td>
<td>3.60×10^{-11} (300/T)$^{0.1}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>$\text{OH} + \text{NO}_3 \rightarrow \text{HO}_2 + \text{NO}_2$</td>
<td></td>
<td>1.80×10^{-20} (300/T)$^{3.0}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>$\text{OH} + \text{HONO} \rightarrow \text{H}_2\text{O} + \text{NO}_2$</td>
<td></td>
<td>2.80×10^{-11}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>$\text{OH} + \text{HNO}_3 \rightarrow \text{H}_2\text{O} + \text{NO}_3$</td>
<td></td>
<td>1.80×10^{-11} e$^{-390/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$\text{OH} + \text{HO}_2\text{NO}_2 \rightarrow \text{H}_2\text{O} + \text{NO}_2 + \text{O}_2$</td>
<td></td>
<td>1.30×10^{-12} e$^{-380/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>$\text{OH} + \text{CO} \rightarrow \text{HO}_2 + \text{CO}_2$</td>
<td></td>
<td>2.20×10^{-11}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>$\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2$</td>
<td></td>
<td>1.80×10^{-11} e$^{-390/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>$\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2$</td>
<td></td>
<td>3.00×10^{-11} e$^{-200/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>$\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$</td>
<td></td>
<td>1.40×10^{-14} e$^{-490/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>$\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2$</td>
<td></td>
<td>3.50×10^{-12} e$^{-250/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>$\text{HO}_2 + \text{NO}_2 \rightarrow \text{HO}_2\text{NO}_2$</td>
<td>(P) 0.6</td>
<td>2.00×10^{-31} (300/T)$^{3.4}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>$\text{HO}_2\text{NO}_2 \rightarrow \text{HO}_2 + \text{NO}_2$</td>
<td></td>
<td>2.90×10^{-12} (300/T)$^{1.1}$</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Inorganic Chemistry

Ref.:
- A
- B
- C
- D
- E

F_e^a: Rate coefficient for the chemical reaction.

Rate Coefficient: Values in parentheses indicate temperature dependencies or references.

Ref.: References for the rate coefficients.
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
<th>Rate Constant</th>
<th>Temperature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>HO2 + NO3 → HNO3 + O2</td>
<td>3.50 × 10^{-12}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>H2O2 + O → OH + HO2</td>
<td>1.40 × 10^{-12} e^{-2000/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>NO + O → NO2 (P) 0.6</td>
<td>9.00 × 10^{-32} (300/T)^{1.5}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>NO + O3 → NO2 + O2</td>
<td>3.00 × 10^{-12} e^{-1500/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>NO2 + O → NO + O2</td>
<td>5.60 × 10^{-12} e^{-1800/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>NO2 + O → NO3 (P) 0.6</td>
<td>2.50 × 10^{-31} (300/T)^{1.8}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>NO2 + O3 → NO3 + O2</td>
<td>2.20 × 10^{-11} (300/T)^{0.7}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>NO3 + O → NO2 + O2</td>
<td>1.20 × 10^{-13} e^{-2450/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>NO3 + NO → 2 NO2</td>
<td>1.00 × 10^{-11}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>NO3 + NO2 → N2O5 (P) 0.6</td>
<td>1.50 × 10^{-11} e^{-1700/T}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>N2O5 → NO3 + NO2</td>
<td>2.00 × 10^{-30} (300/T)^{4.4}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>N2O5 + H2O → 2 HNO3</td>
<td>1.40 × 10^{-12} (300/T)^{0.7}</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Organic Chemistry

Alkane, Alkene, and Aldehyde Chemistry

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
<th>Rate Constant</th>
<th>Temperature</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>CH4 + O(1D) → CH3O2 + OH</td>
<td>1.50 × 10^{-10}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>CH4 + O(1D) → CH3O + H</td>
<td>3.00 × 10^{-11}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>CH4 + O(1D) → HCHO + H2</td>
<td>7.00 × 10^{-12}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>CH4 + OH → CH3O2 + H2O</td>
<td>2.45 × 10^{-12} e^{-1775/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>CH3O + O2 → HCHO + HO2</td>
<td>3.90 × 10^{-14} e^{-900/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>CH3O + NO → HCHO + HO2 + NO</td>
<td>8.00 × 10^{-12}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>CH3O + NO → CH3ONO (P) 0.6</td>
<td>2.30 × 10^{-29} (300/T)^{2.8}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>CH3O + NO2 → CH3ONO2 (P) 0.6</td>
<td>3.80 × 10^{-11} (300/T)^{0.6}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>CH3ONO2 + OH → HCHO + NO2 + H2O</td>
<td>5.30 × 10^{-29} (300/T)^{4.4}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>CH3O2 + HO2 → CH3OOH + O2</td>
<td>1.90 × 10^{-11} (300/T)^{1.8}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>CH3O2 + NO → CH3O + NO2</td>
<td>5.00 × 10^{-13} e^{-810/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>CH3O2 + NO2 → CH3O2NO2 (P) 0.6</td>
<td>4.10 × 10^{-13} e^{-750/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>CH3O2NO2 → CH3O2 + NO2</td>
<td>2.80 × 10^{-12} e^{-300/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>CH3O2 + CH3O2 → 2 CH3O + O2</td>
<td>1.00 × 10^{-30} (300/T)^{4.8}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>CH3O2 + CH3O2 → HCHO + CH3OH</td>
<td>7.20 × 10^{-12} (300/T)^{2.1}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>CH3O2 + CH3C(O)OO → CH3O2 + CH3O + CO2</td>
<td>k_{sl} / (1.30 × 10^{-28} e^{-11200/T})</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>CH3O2 + CH3C(O)OO → CH3COOH + HCHO + O2</td>
<td>5.90 × 10^{-13} e^{-509/T}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>CH3COOH + OH → CH3O2 + CO2 + H2O</td>
<td>7.04 × 10^{-14} e^{-365/T}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>CH3OOH + OH → CH3O2 + H2O</td>
<td>2.00 × 10^{-12} e^{-500/T}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>C2H6 + OH → C2H5O2 + H2O</td>
<td>2.10 × 10^{-13} e^{-500/T}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>C2H5O2 + NO → C2H5O + NO2</td>
<td>4.00 × 10^{-13} e^{-200/T}</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>C2H5O2 + NO2 → C2H5O2NO (P) 0.6</td>
<td>3.80 × 10^{-12} e^{-200/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>C2H5O2NO2 → C2H5O2 + NO2</td>
<td>8.70 × 10^{-12} e^{-1070/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>C2H5O2 + HO2 → ROOH + O2</td>
<td>8.80 × 10^{-15} e^{-10440/T}</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>C2H5O + O2 → CH3CHO + HO2</td>
<td>7.50 × 10^{-13} e^{-700/T}</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

34
C₂H₅O + NO → C₂H₅ONO (P) 0.6
C₂H₅O + NO → CH₃CHO + HO₂ + NO
C₂H₅O + NO₂ → C₂H₅ONO₂ (P) 0.6
C₃H₈ + OH → C₃H₁₀₂ + H₂O
C₃H₇O₂ + NO → C₃H₇O + NO₂
C₃H₇O + O₂ → CH₃COCH₃ + HO₂
C₃H₇O + NO → C₃H₇ONO
C₃H₇O + NO → CH₃COCH₃ + HO₂ + NO
C₂H₄ + OH → HOC₂H₄O₂ (P) 0.6
HOC₂H₄O₂ + NO → NO₂ + 2 HCHO + H
HOC₂H₄O₂ + NO → NO₂ + CH₃CHO + OH
C₂H₄ + O₃ → HCHO + H₂COO
C₂H₄ + O₃ → HCHO + HCOOH*
H₂COO + NO → NO₂ + HCHO
H₂COO + H₂O → HCOOH + H₂O
H₂COO + HCHO → OZD
H₂COO + CH₃CHO → OZD
H₂COO + ALD₂ → OZD
HCOOH + OH → H + CO₂ + H₂O
HCOOH* → CO₂ + H₂
HCOOH* → CO + H₂O
HCOOH* → OH + HO₂ + CO
C₃H₆ + OH → HOC₃H₆O₂ (P) 0.5
HOC₃H₆O₂ + NO → NO₂ + CH₃CHO + HCHO + HO₂
C₃H₆ + O₃ → HCHO + CH₃HCOO
C₃H₆ + O₃ → HCHO + CH₃HCOO*
C₃H₆ + O₃ → CH₃CHO + H₂COO
C₃H₆ + O₃ → CH₃CHO + H₂COO*
CH₃HCOO + NO → NO₂ + CH₃CHO
CH₃HCOO + H₂O → CH₃COOH + H₂O
CH₃HCOO + HCHO → OZD
CH₃HCOO + CH₃CHO → OZD
CH₃HCOO + ALD₂ → OZD
CH₃HCOO + HCOOH* → CH₄ + CO₂
CH₃HCOO* → CH₃O₂ + CO + OH
CH₃HCOO* → CH₃O + CO + HO₂
HCHO + OH → HO₂ + CO + H₂O
HCHO + O → OH + HO₂ + CO
HCHO + NO₃ → HNO₃ + HO₂ + CO
HCHO + HO₂ → HOCH₂O₂
HOCH₂O₂ → HO₂ + HCHO
HOCH₂O₂ + HO₂ → ROOH
HOCH₂O₂ + NO → NO₂ + HO₂ + HCOOH

2.8×10⁻²⁷ (300/T)⁴.⁰
5.0×10⁻¹² (300/T)¹.⁰
1.3×10⁻¹¹
2.0×10⁻²⁷ (300/T)⁴.⁰
2.8×10⁻¹¹ (300/T)¹.⁰
1.0×10⁻¹¹ e⁻⁶⁶⁰/T
2.7×10⁻¹² e⁻⁶⁶⁰/T
1.4×10⁻¹⁴ e⁻⁴¹⁰/T
3.4×10⁻¹¹
6.5×10⁻¹²
3.5×10⁻¹¹
1.0×10⁻²⁸ (300/T)⁰.⁸
8.8×10⁻¹²
6.9×10⁻¹²
2.0×10⁻¹²
4.4×10⁻¹⁵ e⁻²⁶³⁰/T
7.5×10⁻¹⁵ e⁻²⁶³⁰/T
7.0×10⁻¹²
4.0×10⁻¹⁶
2.0×10⁻¹²
2.0×10⁻¹²
4.0×10⁻¹³
0.21
0.60
0.19
8.0×10⁻²⁷ (300/T)³.⁵
3.0×10⁻¹¹
6.0×10⁻¹²
4.8×10⁻¹⁶ e⁻¹⁹⁰⁰/T
2.7×10⁻¹⁵ e⁻¹⁹⁰⁰/T
1.2×10⁻¹⁵ e⁻¹⁹⁰⁰/T
2.0×10⁻¹⁵ e⁻¹⁹⁰⁰/T
7.0×10⁻¹²
4.0×10⁻¹⁶
2.0×10⁻¹²
2.0×10⁻¹²
2.0×10⁻¹²
2.0×10⁻¹²
0.16
0.64
0.20
9.0×10⁻¹² e⁻²⁰⁰/T
3.4×10⁻¹¹ e⁻¹⁶⁰⁰/T
5.8×10⁻¹⁶
6.7×10⁻¹⁵ e⁻⁶⁰⁵/T
2.4×10⁻¹² e⁻⁷⁰⁰⁰/T
5.6×10⁻¹⁵ e⁻²³⁰⁰/T
7.0×10⁻¹²
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Temperature</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃CHO + O → CH₂O(O)O + OH</td>
<td>1.80×10⁻¹¹</td>
<td>1100/K</td>
<td></td>
</tr>
<tr>
<td>CH₃CHO + OH → CH₂O(O)O + H₂O</td>
<td>5.60×10⁻¹²</td>
<td>270/K</td>
<td></td>
</tr>
<tr>
<td>CH₃CHO + NO₃ → CH₂O(O)O + HNO₃</td>
<td>1.40×10⁻¹²</td>
<td>1900/K</td>
<td></td>
</tr>
<tr>
<td>ALD₂ + O → CH₂O(O)O + OH</td>
<td>1.80×10⁻¹¹</td>
<td>1100/K</td>
<td></td>
</tr>
<tr>
<td>ALD₂ + OH → CH₂O(O)O + H₂O</td>
<td>5.60×10⁻¹¹</td>
<td>270/K</td>
<td></td>
</tr>
<tr>
<td>ALD₂ + NO₃ → CH₂O(O)O + HNO₃</td>
<td>1.40×10⁻¹¹</td>
<td>1900/K</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OO + H₂O → ROOH + O₂</td>
<td>4.30×10⁻¹³</td>
<td>1040/K</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OO + HO₂ → CH₂O₂ + OH + CO₂</td>
<td>3.16×10⁻¹³</td>
<td>1040/K</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OO + NO → NO₂+ CH₂O₂ + CO₂</td>
<td>8.10×10⁻¹¹</td>
<td>270/K</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OO + NO₂ → CH₂O(O)OOONOO₂ (P) 0.6</td>
<td>9.70×10⁻²⁹ (300/K)⁵.6</td>
<td>9.30×10⁻¹² (300/K)¹.5</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OO + NO → CH₂O(O)O + NO₂</td>
<td>2.90×10⁻¹¹</td>
<td>500/K</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OO + CH₂O(O)O → 2 CH₂O₂ + O₂</td>
<td>1.33×10⁻¹³ + 3.82×10⁻¹¹ e⁻²⁰₀₀/K</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₂OCH₂O(O)O + NO → CH₂O(O)O + HCHO + NO₂</td>
<td>8.10×10⁻¹¹</td>
<td>2000/K</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OH + OH → HCHO + HO₂ + H₂O</td>
<td>6.21×10⁻¹² e⁻⁶²⁰/K</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₂O(O)OH + OH → CH₂O + H₂O</td>
<td>1.09×10⁻¹² e⁻⁶²⁰/K</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C₂H₅OH + OH → CH₂CHO + HO₂ + H₂O</td>
<td>6.52×10⁻¹² e⁻²³⁰/K</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C₂H₅OH + OH → HOC₂H₄O₂ + H₂O</td>
<td>3.80×10⁻¹³ e⁻²³⁰/K</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>PAR + OH → RO₂ + H₂O</td>
<td>9.20×10⁻¹⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR + OH → RO₂R + H₂O</td>
<td>7.20×10⁻¹⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO₂ + NO → NO₂ + HO₂ + CH₂CHO + XOP</td>
<td>4.40×10⁻¹¹ e⁻¹⁴₀₀/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RO₂ + NO → NTR</td>
<td>7.00×10⁻¹²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO₂R + NO → NO₂ + ROR</td>
<td>1.20×10⁻¹⁰ e⁻¹⁴₀₀/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RO₂R + NO → NTR</td>
<td>1.50×10⁻¹¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTR → RO₂ + NO₂</td>
<td>1.60×10⁴</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>RO → KET + HO₂</td>
<td>2.10×10¹⁴ e⁻⁸₀₀/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RO → KET + DOP</td>
<td>4.00×10¹⁴ e⁻⁸₀₀/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RO → CH₂CHO + DOP + XOP</td>
<td>4.40×10¹⁴ e⁻⁸₀₀/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RO → CH₂COCH₃ + DOP + 2 XOP</td>
<td>6.80×10⁻¹²</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>XOP + PAR → RO₂</td>
<td>5.10×10⁻¹⁲</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>DOP + PAR → RO₂</td>
<td>1.50×10⁻¹²</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>DOP + PAR → AO₂ + 2 XOP</td>
<td>1.70×10⁻¹³</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>AO₂ + NO → NO₂ + CH₂COCH₃ + H₂O</td>
<td>6.80×10⁻¹²</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>OLE + O → 2 PAR</td>
<td>8.10×10⁻¹²</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>OLE + O → CH₂CHO</td>
<td>4.10×10⁻¹² e⁻³₂⁴/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + O → HO₂ + CO + RO₂</td>
<td>4.10×10⁻¹² e⁻³₂⁴/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + O → RO₂ + XOP + CO + HCHO + OH</td>
<td>1.20×10⁻¹² e⁻³₂⁴/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + OH → CH₂O₂ + CH₂CHO + XOP</td>
<td>2.40×10⁻¹² e⁻³₂⁴/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + O₃ → CH₂CHO + H₂CO₂ + XOP</td>
<td>5.20×10⁻¹₂ e⁻₅₀₄/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + O₃ → HCHO + CH₂HCO₂ + XOP</td>
<td>2.80×10⁻¹⁵ e⁻₂₁₀₅/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + O₃ → CH₂CHO + HCOOH* + XOP</td>
<td>2.80×10⁻¹⁵ e⁻₂₁₀₅/K</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OLE + O₃ → HCHO + CH₂COOH* + XOP</td>
<td>4.30×10⁻¹⁵ e⁻₂₁₀₅/K</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Aromatic Chemistry

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Energie</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆H₆ + OH → 0.4 BO₂ + 0.4 H₂O + 0.5 CRES + 0.6 HO₂ + XOP</td>
<td>3.10×10⁻¹² e⁻270/T</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>TOL + OH → BO₂ + H₂O</td>
<td>1.70×10⁻¹³ e⁻322/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>TOL + OH → CRES + HO₂</td>
<td>7.60×10⁻¹³ e⁻322/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>TOL + OH → TO₂</td>
<td>1.20×10⁻¹² e⁻322/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BO₂ + NO → NO₂ + BZA + HO₂</td>
<td>8.10×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BZA + OH → BZO₂ + H₂O</td>
<td>1.30×10⁻¹¹</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BZO₂ + NO → NO₂ + PHO₂ + CO₂</td>
<td>2.50×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BZO₂ + NO₂ → PBZN</td>
<td>8.40×10⁻¹²</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>PBZN → BZO₂ + NO₂</td>
<td>1.60×10⁻¹⁵ e⁻¹₃₀₃₃/T</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>PHO₂ + NO → NO₂ + PHO</td>
<td>8.10×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>PHO + NO₂ → NPHN</td>
<td>1.30×10⁻¹¹ e⁻300/T</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>CRES + OH → CRO + H₂O</td>
<td>1.60×10⁻¹¹</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CRES + OH → CRO₂ + H₂O</td>
<td>2.50×10⁻¹¹</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CRES + NO₃ → CRO + HNO₃</td>
<td>2.20×10⁻¹₁</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CRO + NO₂ → NCRC</td>
<td>1.40×10⁻¹¹</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CRO₂ + NO → NO₂ + OPEN + HO₂</td>
<td>4.00×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CRO₂ + NO → NO₂ + ACID + HO₂</td>
<td>4.00×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>TO₂ + NO → NO₂ + OPEN + HO₂</td>
<td>7.30×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>TO₂ + NO → NTR</td>
<td>8.10×10⁻¹³</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>TO₂ → HO₂ + CRES</td>
<td>4.20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>XYL + OH → CRES + PAR + HO₂</td>
<td>3.32×10⁻¹² e⁻¹₁₁₆/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>XYL + OH → XLO₂ + H₂O</td>
<td>1.70×10⁻¹² e⁻¹₁₁₆/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>XYL + OH → TO₂</td>
<td>5.00×10⁻¹² e⁻¹₁₁₆/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>XYL + OH → XINT</td>
<td>6.60×10⁻¹² e⁻¹₁₁₆/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>XLO₂ + NO → NO₂ + HO₂ + BZA + PAR</td>
<td>8.10×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>XINT + NO → NO₂ + HO₂ + 2 CH₂COCHO + PAR</td>
<td>8.10×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CH₃COCHO + OH → MGTX + H₂O</td>
<td>1.50×10⁻¹¹</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>MGTX + NO → NO₂ + CH₃O(O)OO + CO₂</td>
<td>8.10×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPEN + OH → OPPX + CH₂C(O)OO + HO₂ + CO</td>
<td>3.00×10⁻¹¹</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPEN + O₃ → CH₃CHO + MGTX + HCHO + CO</td>
<td>1.60×10⁻¹₈ e⁻⁵₀₀/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPEN + O₃ → HCHO + CO + OH + 2 HO₂</td>
<td>4.30×10⁻¹₈ e⁻⁵₀₀/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPEN + O₃ → CH₂COCHO</td>
<td>1.10×10⁻¹₇ e⁻⁵₀₀/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPEN + O₃ → CH₃C(O)OO + HCHO + HO₂ + CO</td>
<td>3.20×10⁻¹₈ e⁻⁵₀₀/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPEN + O₃ →</td>
<td>5.40×10⁻¹₈ e⁻⁵₀₀/T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>OPPX + NO → NO₂ + HCHO + HO₂ + CO</td>
<td>8.10×10⁻¹²</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Terpene Chemistry

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Energie</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOP + OH → ISOH</td>
<td>2.55×10⁻¹¹ e⁻⁴₁₀₂/T</td>
<td>F,G</td>
<td></td>
</tr>
<tr>
<td>ISOP + O₃ → 0.17 MACR + 0.378 MVK + 0.664 OH+ 0.054 PAR + 0.054 OLE + 0.054 H₂COO + 0.5 HCHO + 0.366 HO₂ + 0.068 CO₂ + 0.461 CO + 0.366 RO₂R + 0.121</td>
<td>7.86×10⁻¹⁵ e⁻¹₉₁₂₉/T</td>
<td>G,H</td>
<td></td>
</tr>
</tbody>
</table>

37
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACID</td>
<td>3.50×10^{-11}</td>
<td>F,G</td>
</tr>
<tr>
<td>202 ISOP + O \rightarrow 0.22 MACR + 0.63 MVK + 0.08 ISOH</td>
<td>$3.02 \times 10^{-12} e^{-445.9/T}$</td>
<td>F,G</td>
</tr>
<tr>
<td>203 ISOP + NO$_3$ \rightarrow ISNT</td>
<td>$1.22 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>204 ISOH + NO \rightarrow 0.364 MACR + 0.477 MVK + 0.840 HCHO + 0.08 ISNI1 + 0.08 ISNI2 + 0.886 HO$_2$ + 0.840 NO$_2$</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>205 ISNT + NO \rightarrow 1.1 NO$_2$ + 0.8 HO$_2$ + 0.80 ISNI1 + 0.1 MACR + 0.15 HCHO + 0.05 MVK + 0.05 DISN</td>
<td>3.35×10^{-11}</td>
<td>F</td>
</tr>
<tr>
<td>206 ISNI1 + OH \rightarrow ISNIR</td>
<td>1.88×10^{-11}</td>
<td>F</td>
</tr>
<tr>
<td>207 ISNI2 + OH \rightarrow ISNIR</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>208 ISNIR + NO \rightarrow 0.05 DISN + 0.05 HO$_2$ + 1.9 NO$_2$ + 0.95 CH$_3$CHO + 0.95 CH$_3$COCH$_3$</td>
<td>5.00×10^{-18}</td>
<td>F</td>
</tr>
<tr>
<td>209 ISNI1 + O$_3$ \rightarrow 0.2 O + 0.08 OH + 0.5 HCHO + 0.5 IALD1 + 0.5 ISNI2 + 0.5 NO$_2$</td>
<td>2.00×10^{-13}</td>
<td>F</td>
</tr>
<tr>
<td>210 ISOH + ISOH \rightarrow 0.6 MACR + 0.6 MVK + 1.2 HCHO + 1.2 HO$_2$</td>
<td>$6.15 \times 10^{-11} e^{-900/T}$</td>
<td>F</td>
</tr>
<tr>
<td>211 ISOH + HO$_2$ \rightarrow IPRX</td>
<td>2.00×10^{-11}</td>
<td>F</td>
</tr>
<tr>
<td>212 IPRX + OH \rightarrow ISOH</td>
<td>8.00×10^{-18}</td>
<td>F</td>
</tr>
<tr>
<td>213 IPRX + O$_3$ \rightarrow 0.7 HCHO</td>
<td>$1.36 \times 10^{-15} e^{-2113.7/T}$</td>
<td>F,H</td>
</tr>
<tr>
<td>214 MACR + O$_3$ \rightarrow 0.8 CH$_3$COCHO + 0.7 HCHO + 0.2 O + 0.09 H$_2$COO + 0.2 CO + 0.275 HO$_2$ + 0.215 OH + 0.16 CO$_2$ + 0.15 CH$_2$CCH$_3$CHOO</td>
<td>$7.50 \times 10^{-16} e^{-1519.9/T}$</td>
<td>H</td>
</tr>
<tr>
<td>215 MVK + O$_3$ \rightarrow 0.5 CH$_3$COCHO + 0.5 HCHO + 0.2 H$_2$O + 0.2 CO$_2$ + 0.56 CO + 0.28 HO$_2$ + 0.36 OH + 0.1 CH$_3$CHO + 0.28 CH$_3$CO$_3$ + 0.12 ACID + 0.12 UNR</td>
<td>$1.86 \times 10^{-11} e^{-175/T}$</td>
<td>F</td>
</tr>
<tr>
<td>216 MACR + OH \rightarrow 0.42 MAC1 + 0.08 MAC2 + 0.5 CH$_2$CCH$_3$C(O)OO</td>
<td>$4.11 \times 10^{-12} e^{-453/T}$</td>
<td>F</td>
</tr>
<tr>
<td>217 MVK + OH \rightarrow 0.28 MV1 + 0.72 MV2</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>218 MAC1 + NO \rightarrow 0.95 HO$_2$ + 0.95 CO + 0.95 CH$_3$COCH$_3$ + 0.95 NO$_2$ + 0.05 ISN12</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>219 MAC2 + NO \rightarrow 0.95 HO$_2$ + 0.95 HCHO + 0.95 CH$_3$COCHO + 0.95 NO$_2$ + 0.05 ISN12</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>220 MV1 + NO \rightarrow 0.95 CH$_3$COCHO + 0.95 HCHO + 0.05 ISN12 + 0.95 NO$_2$ + 0.95 HO$_2$</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>221 MV2 + NO \rightarrow 0.95 CH$_3$CHO + 0.95 CH$_3$(O)OO + 0.05 ISN12 + 0.95 NO$_2$</td>
<td>$1.39 \times 10^{-11} e^{-180/T}$</td>
<td>F</td>
</tr>
<tr>
<td>222 MV1 + HO$_2$ \rightarrow ROOH</td>
<td>$6.15 \times 10^{-11} e^{-900/T}$</td>
<td>F</td>
</tr>
<tr>
<td>223 MV2 + HO$_2$ \rightarrow ROOH</td>
<td>$6.15 \times 10^{-11} e^{-900/T}$</td>
<td>F</td>
</tr>
<tr>
<td>224 MAC1 + HO$_2$ \rightarrow ROOH</td>
<td>$6.15 \times 10^{-11} e^{-900/T}$</td>
<td>F</td>
</tr>
<tr>
<td>225 MAC2 + HO$_2$ \rightarrow ROOH</td>
<td>$6.15 \times 10^{-11} e^{-900/T}$</td>
<td>F</td>
</tr>
<tr>
<td>226 CH$_2$CCH$_3$(O)OO + NO$_2$ \rightarrow MPAN</td>
<td>8.40×10^{-12}</td>
<td>F</td>
</tr>
<tr>
<td>227 MPAN \rightarrow CH$_2$CCH$_3$(O)OO + NO$_2$</td>
<td>$1.58 \times 10^{16} e^{-1350/T}$</td>
<td>F</td>
</tr>
<tr>
<td>228 CH$_2$CCH$_3$(O)OO + NO \rightarrow C$_2$H$_4$ + CH$_3$O$_2$ + NO$_2$ + CO$_2$</td>
<td>1.40×10^{-11}</td>
<td>F</td>
</tr>
<tr>
<td>229 TEPH + OH \rightarrow RO227</td>
<td>1.77×10^{-10}</td>
<td>H</td>
</tr>
<tr>
<td>230 TEPH + O$_3$ \rightarrow 0.445 CO + 0.055 H$_2$O$_2$ + 0.89 OH + 0.11 UNR + 0.445 RO229 + 0.445 RO230</td>
<td>1.40×10^{-16}</td>
<td>H</td>
</tr>
<tr>
<td>231 TEPH + O \rightarrow UNR</td>
<td>8.59×10^{-11}</td>
<td>H</td>
</tr>
<tr>
<td>232 TEPH + NO$_3$ \rightarrow RO228</td>
<td>2.91×10^{-11}</td>
<td>H</td>
</tr>
<tr>
<td>233 RO227 + NO \rightarrow 0.38 AP8 + 0.62 NO$_3$ + 0.62 HO$_3$ + 0.62 UNR</td>
<td>$8.89 \times 10^{-13} e^{-180.2/T}$</td>
<td>H</td>
</tr>
<tr>
<td>Equation</td>
<td>Reaction Type</td>
<td>Conditions</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Cl + O₂ → ClO₂</td>
<td>(P) 0.6</td>
<td></td>
</tr>
<tr>
<td>ClO₂ + M → Cl₂ + O₂ + M</td>
<td>(P) 0.6</td>
<td>$K_{294} / (6.60×10^{-25} \times e^{2302/T})$</td>
</tr>
<tr>
<td>Cl + O₃ → ClO + O₂</td>
<td></td>
<td>2.30×10⁻¹¹ $e^{-1200/T}$</td>
</tr>
<tr>
<td>Cl + H₂ → HCl + H</td>
<td></td>
<td>3.05×10⁻¹¹ $e^{-12270/T}$</td>
</tr>
<tr>
<td>Cl + HCl → Cl₂ + O₂</td>
<td></td>
<td>3.05×10⁻¹¹ $e^{-1270/T}$</td>
</tr>
<tr>
<td>Cl + HO₂ → ClO₂ + OH</td>
<td></td>
<td>1.80×10⁻¹¹ $e^{-1170/T}$</td>
</tr>
<tr>
<td>Cl + HO₂ → ClO₂ + OH</td>
<td></td>
<td>4.10×10⁻¹¹ $e^{-1450/T}$</td>
</tr>
<tr>
<td>Cl + H₂O₂ → Cl₂ + HO₂</td>
<td></td>
<td>1.10×10⁻¹¹ $e^{-980/T}$</td>
</tr>
<tr>
<td>Cl + O₂ → Cl₂ + O₂</td>
<td>(P) 0.6</td>
<td>1.80×10⁻¹¹ (300/T)²⁰</td>
</tr>
<tr>
<td>Cl + ClO → Cl₂ + O₂</td>
<td></td>
<td>1.00×10⁻¹⁰ (300/T)¹⁰</td>
</tr>
<tr>
<td>Cl + ClO₂ → Cl₂ + ClO₂</td>
<td></td>
<td>2.00×10⁻¹⁶</td>
</tr>
<tr>
<td>Cl + Cl₂O → Cl₂ + Cl₂O</td>
<td></td>
<td>7.30×10⁻¹² $e^{-1280/T}$</td>
</tr>
<tr>
<td>Cl + HOCl → Cl₂ + OH</td>
<td></td>
<td>2.50×10⁻¹² $e^{-130/T}$</td>
</tr>
<tr>
<td>Cl + Cl₂O → Cl₂ + Cl₂O</td>
<td></td>
<td>3.40×10⁻¹² $e^{-160/T}$</td>
</tr>
<tr>
<td>Cl + Cl₂O → Cl₂ + Cl₂O</td>
<td></td>
<td>2.30×10⁻¹⁰</td>
</tr>
</tbody>
</table>

Sulfur Chemistry

<table>
<thead>
<tr>
<th>Equation</th>
<th>Reaction Type</th>
<th>Conditions</th>
<th>Rate Constant</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ + OH → HSO₃</td>
<td>(P) 0.6</td>
<td>3.00×10⁻³¹ (300/T)³³</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SO₂ + O + M → SO₃ + M</td>
<td></td>
<td>1.30×10⁻³³ (300/T)³⁶</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>HSO₃ + O₂ → SO₃ + HO₂</td>
<td></td>
<td>1.30×10⁻¹² $e^{-330/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SO₃ + H₂O + H₂O → H₂SO₄ + H₂O</td>
<td></td>
<td>8.50×10⁻⁴ $e^{-6540/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃SCH₃ + OH → CH₃SCH₂O₂ + H₂O</td>
<td></td>
<td>1.10×10⁻¹¹ $e^{-240/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃SCH₃ + OH → CH₃S(OH)CH₃</td>
<td></td>
<td>f</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃SCH₂O₂ + NO → CH₃SCH₂O₃ + NO₂</td>
<td></td>
<td>8.00×10⁻¹²</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CH₃SCH₂O₃ → CH₃S + HCHO</td>
<td></td>
<td>1.00×10¹</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CH₃S + O₂ → CH₃S(OH)CHO</td>
<td></td>
<td>3.00×10⁻¹⁸</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃SOO⁺ + NO → CH₃SO + NO₂</td>
<td></td>
<td>1.4×10⁻¹¹</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CH₃SOO⁺ → CH₃S + O₂</td>
<td></td>
<td>6.0×10²</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CH₃SO + O₃ → CH₃SO₂ + O₂</td>
<td></td>
<td>6.0×10⁻¹³</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CH₃SO₂ → CH₃O₂ + SO₂</td>
<td></td>
<td>1.1×10¹</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CH₃(SOCH₃) → CH₃SOH + CH₃O₂</td>
<td></td>
<td>5.0×10⁵</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>CH₃SOH + OH → CH₃SO₂ + H₂O</td>
<td></td>
<td>1.1×10⁻¹⁰</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Chlorine Gas-Phase Chemistry

<table>
<thead>
<tr>
<th>Equation</th>
<th>Reaction Type</th>
<th>Conditions</th>
<th>Rate Constant</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl₂ + Cl₂O → Cl₂ + Cl₂O</td>
<td>(P) 0.6</td>
<td>1.80×10⁻¹⁰</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cl₂O + Cl₂ → Cl₂O₂ + Cl₂</td>
<td></td>
<td>$K_{294} / (6.60×10^{-25} \times e^{2302/T})$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cl₂O₂ + M → Cl₂O + M</td>
<td></td>
<td>2.30×10⁻¹¹ $e^{-200/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cl₂O + Cl₂ → Cl₂O₂ + Cl₂</td>
<td></td>
<td>3.05×10⁻¹¹ $e^{-2270/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cl₂O₂ + Cl₂ → Cl₂O₃ + Cl₂</td>
<td></td>
<td>1.80×10⁻¹¹ $e^{-170/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cl₂O₃ + Cl₂ → Cl₂O₅ + Cl₂</td>
<td></td>
<td>4.10×10⁻¹¹ $e^{-450/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cl₂O₅ + Cl₂ → Cl₂O₆ + Cl₂</td>
<td></td>
<td>1.10×10⁻¹¹ $e^{-980/T}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Equation</td>
<td>Rate Expression</td>
<td>Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + O → Cl + O₂</td>
<td>$2.80 \times 10^{-11} e^{85/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + O₃ → ClO₂ + O₂</td>
<td>1.40×10^{-17}</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + OH → Cl + HO₂</td>
<td>$7.40 \times 10^{-12} e^{270/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + OH → HCl + O₂</td>
<td>$6.00 \times 10^{-13} e^{230/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + HO₂ → HOCl + O₂</td>
<td>$2.70 \times 10^{-12} e^{220/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + NO → Cl₂ + NO₂</td>
<td>$6.40 \times 10^{-12} e^{290/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + NO₂ → ClO₂ (P) 0.6</td>
<td>$1.80 \times 10^{-31} (300/T)^{3.4}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + ClO → Cl₂ + ClO₂</td>
<td>$1.50 \times 10^{-11} (300/T)^{1.9}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO + ClO → Cl₂ + ClO₂ (P) 0.6</td>
<td>$3.00 \times 10^{-11} e^{-2450/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂O₂ + M → ClO + ClO + M</td>
<td>$K_{285} / (9.30 \times 10^{-28} e^{8835/T})$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl + OH → Cl + H₂O</td>
<td>$2.60 \times 10^{-12} e^{-350/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClONO₂ + O → Cl + NO₂ + O₂</td>
<td>$2.90 \times 10^{-12} e^{-800/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO₂ + OH → HOCI + NO₂</td>
<td>$2.40 \times 10^{-12} e^{-1250/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCIO + O → ClO + O₂</td>
<td>$2.40 \times 10^{-12} e^{-960/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCIO + OH → HOCI + O₂</td>
<td>$4.50 \times 10^{-13} e^{-800/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCIO + NO → ClO + NO₂</td>
<td>$2.50 \times 10^{-12} e^{-660/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCl + O → ClO + OH</td>
<td>1.70×10^{-13}</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCl + OH → ClO + H₂O</td>
<td>$3.00 \times 10^{-12} e^{-500/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl₂ + OH → HOCl + Cl</td>
<td>$1.40 \times 10^{-12} e^{-900/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃Cl + OH → HCHO + ClO + H₂O</td>
<td>$2.40 \times 10^{-12} e^{-1250/T}$</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bromine Gas-Phase Chemistry

<table>
<thead>
<tr>
<th>Equation</th>
<th>Rate Expression</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br + O₃ → BrO + O₂</td>
<td>$1.70 \times 10^{-11} e^{-800/T}$</td>
<td>A</td>
</tr>
<tr>
<td>Br + HO₂ → HBr + O₂</td>
<td>$4.80 \times 10^{-12} e^{-310/T}$</td>
<td>A</td>
</tr>
<tr>
<td>Br + H₂O₂ → HBr + HO₂</td>
<td>$1.00 \times 10^{-11} e^{-3000/T}$</td>
<td>A</td>
</tr>
<tr>
<td>Br + HCHO → HBr + CO + HO₂</td>
<td>$1.70 \times 10^{-11} e^{-800/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + O → Br + O₂</td>
<td>$1.90 \times 10^{-11} e^{-230/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + OH → Br + HO₂</td>
<td>$1.70 \times 10^{-11} e^{-250/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + HO₂ → HOBr + O₂</td>
<td>$4.50 \times 10^{-12} e^{-460/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + NO → Br + NO₂</td>
<td>$8.80 \times 10^{-12} e^{-260/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + NO₂ → BrONO₂ (P) 0.6</td>
<td>$5.20 \times 10^{-31} (300/T)^{3.2}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + ClO → Br + OCIO</td>
<td>$6.90 \times 10^{-12} (300/T)^{2.9}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + ClO → Br + Cl₂ + O₂</td>
<td>$9.50 \times 10^{-13} e^{-550/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + ClO → BrCl + O₂</td>
<td>$2.30 \times 10^{-13} e^{-260/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + BrO → 2Br₂ + O₂</td>
<td>$4.10 \times 10^{-13} e^{-290/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + BrO → Br₂ + O₂</td>
<td>$2.40 \times 10^{-12} e^{-40/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + O₂ → Br₂ + O₂</td>
<td>$2.80 \times 10^{-14} e^{-860/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrO + O₁ → Br + 2O₂</td>
<td>$1.00 \times 10^{-12} e^{-3200/T}$</td>
<td>A</td>
</tr>
<tr>
<td>HBr + OH → Br + H₂O</td>
<td>$5.50 \times 10^{-12} e^{-200/T}$</td>
<td>A</td>
</tr>
<tr>
<td>HOBr + O → BrO + OH</td>
<td>$1.20 \times 10^{-10} e^{-430/T}$</td>
<td>A</td>
</tr>
<tr>
<td>BrCl + ClO → BrO + Cl</td>
<td>2.20×10^{-11}</td>
<td>A</td>
</tr>
</tbody>
</table>

Heterogeneous Chemistry

<table>
<thead>
<tr>
<th>Equation</th>
<th>Rate Expression</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O₅ + H₂O(a) → 2 HNO₃(a)</td>
<td>Aer. (J,A), ice (L), NAT (L), liq. (A)</td>
<td></td>
</tr>
<tr>
<td>N₂O₅ + HCl(a) → ClNO₂ + HNO₃(a)</td>
<td>Aer. (A), ice (L), NAT (L)</td>
<td></td>
</tr>
<tr>
<td>ClONO₂ + H₂O → HOCI + HNO₃(a)</td>
<td>Aer. (K), ice (L), NAT (L), liq. (A)</td>
<td></td>
</tr>
<tr>
<td>ClONO₂ + HCl(a) → Cl₂ + HNO₃(a)</td>
<td>Aer. (K), ice (L), NAT (L)</td>
<td></td>
</tr>
<tr>
<td>HOCl + HCl(a) → Cl₂ + H₂O(s)</td>
<td>Aer. (K), ice (L), NAT (L)</td>
<td></td>
</tr>
<tr>
<td>BrONO₂ + H₂O → HOBr + HNO₃(a)</td>
<td>Aer. (A), ice (A), liq. (A)</td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td>Equation</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>321</td>
<td>BrONO₂ + HCl(a) → BrCl + HNO₃(a)</td>
<td>Aer. (A), ice (A)</td>
</tr>
<tr>
<td>322</td>
<td>HOB + HCl(a) → BrCl + H₂O(s)</td>
<td>Aer. (A), ice (A)</td>
</tr>
<tr>
<td>323</td>
<td>HOB + HBr(a) → Br⁺ + H₂O(a)</td>
<td>Aer. (A), ice (A)</td>
</tr>
</tbody>
</table>

Photoprocesses

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>324</td>
<td>O₁ + hv → O + O</td>
<td>A</td>
</tr>
<tr>
<td>325</td>
<td>O₃ + hv → O₁(¹D) + O₂</td>
<td>A</td>
</tr>
<tr>
<td>326</td>
<td>O₃ + hv → O + O₂</td>
<td>A</td>
</tr>
<tr>
<td>327</td>
<td>HO₂ + hv → OH + O₁(¹D)</td>
<td>A</td>
</tr>
<tr>
<td>328</td>
<td>H₂O + hv → H + OH</td>
<td>A</td>
</tr>
<tr>
<td>329</td>
<td>H₂O₂ + hv → 2 OH</td>
<td>A</td>
</tr>
<tr>
<td>330</td>
<td>NO₂ + hv → NO + O</td>
<td>A</td>
</tr>
<tr>
<td>331</td>
<td>NO₃ + hv → NO₂ + O</td>
<td>B</td>
</tr>
<tr>
<td>332</td>
<td>NO₃ + hv → NO + O₂</td>
<td>B</td>
</tr>
<tr>
<td>333</td>
<td>N₂O + hv → N₂ + O(1D)</td>
<td>A</td>
</tr>
<tr>
<td>334</td>
<td>N₂O₅ + hv → NO₂ + NO₃</td>
<td>A</td>
</tr>
<tr>
<td>335</td>
<td>HONO + hv → OH + NO</td>
<td>A</td>
</tr>
<tr>
<td>336</td>
<td>HONO + hv → H + NO₂</td>
<td>A</td>
</tr>
<tr>
<td>337</td>
<td>HNO₂ + hv → OH + NO₂</td>
<td>A</td>
</tr>
<tr>
<td>338</td>
<td>HNO₃ + hv → HONO₂ + O₁(¹D)</td>
<td>A</td>
</tr>
<tr>
<td>339</td>
<td>HNO₃ + hv → OH + NO + O</td>
<td>A</td>
</tr>
<tr>
<td>340</td>
<td>HO₂NO₂ + hv → HO₂ + NO₂</td>
<td>B</td>
</tr>
<tr>
<td>341</td>
<td>HO₂NO₂ + hv → OH + NO₃</td>
<td>B</td>
</tr>
<tr>
<td>342</td>
<td>HCHO + hv → 2 HO₂ + CO</td>
<td>A</td>
</tr>
<tr>
<td>343</td>
<td>HCHO + hv → CO + H₂</td>
<td>A</td>
</tr>
<tr>
<td>344</td>
<td>CH₃OOH + hv → CH₃O + OH</td>
<td>B</td>
</tr>
<tr>
<td>345</td>
<td>CH₃CHO + hv → CH₃O₂ + HO₂ + CO</td>
<td>B</td>
</tr>
<tr>
<td>346</td>
<td>ALD₂ + hv → CH₃O₂ + HO₂ + CO</td>
<td>B</td>
</tr>
<tr>
<td>347</td>
<td>CH₃ONO + hv → CH₃O + NO</td>
<td>C</td>
</tr>
<tr>
<td>348</td>
<td>CH₃ONO₂ + hv → CH₃O₂ + NO₂</td>
<td>B</td>
</tr>
<tr>
<td>349</td>
<td>CH₃O₂NO₂ + hv → CH₃O₂ + NO₂</td>
<td>B</td>
</tr>
<tr>
<td>350</td>
<td>C₂H₅ONO₂ + hv → C₂H₅O₂ + NO₂</td>
<td>B</td>
</tr>
<tr>
<td>351</td>
<td>C₃H₇O₂NO₂ + hv → C₃H₇O + NO₂</td>
<td>B</td>
</tr>
<tr>
<td>352</td>
<td>CH₃CO₃NO₂ + hv → CH₃CO₃ + NO₂</td>
<td>A</td>
</tr>
<tr>
<td>353</td>
<td>CH₃COCH₃ + hv → CH₃O₂ + CH₃C(O)OO</td>
<td>B</td>
</tr>
<tr>
<td>354</td>
<td>KET + hv → CH₃C(O)OO + RO₂ + 2XOP</td>
<td>J</td>
</tr>
<tr>
<td>355</td>
<td>MVK + hv → CH₃C(O)OO + C₂H₄ + HO₂</td>
<td>K</td>
</tr>
<tr>
<td>356</td>
<td>MACR + hv → C₂H₄ + HO₂ + CO + CH₃O₂</td>
<td>A</td>
</tr>
<tr>
<td>357</td>
<td>CH₃COCHO + hv → CH₃C(O)OO + CO + HO₂</td>
<td>B</td>
</tr>
<tr>
<td>358</td>
<td>BZA + hv → PHO₂ + CO + HO₂</td>
<td>C</td>
</tr>
<tr>
<td>359</td>
<td>OPEN + hv → CH₃C(O)OO + CO + HO₂</td>
<td>C</td>
</tr>
<tr>
<td>360</td>
<td>HCl + hv → H + Cl⁻</td>
<td>A</td>
</tr>
<tr>
<td>361</td>
<td>ClO + hv → ClO + O</td>
<td>A</td>
</tr>
<tr>
<td>362</td>
<td>ClO + hv → ClO + O</td>
<td>A</td>
</tr>
<tr>
<td>363</td>
<td>OCIO + hv → ClO + O</td>
<td>A</td>
</tr>
<tr>
<td>364</td>
<td>HOCI + hv → OH + Cl⁻</td>
<td>A</td>
</tr>
<tr>
<td>365</td>
<td>ClONO₂ + hv → Cl + NO₃</td>
<td>A</td>
</tr>
<tr>
<td>366</td>
<td>ClONO₂ + hv → ClO + NO₂</td>
<td>A</td>
</tr>
<tr>
<td>367</td>
<td>Cl₂ + hv → Cl + Cl⁻</td>
<td>A</td>
</tr>
<tr>
<td>368</td>
<td>Cl₂O₂ + hv → Cl + ClO₂</td>
<td>A</td>
</tr>
<tr>
<td>369</td>
<td>ClO₂ + hv → Cl + ClO₂</td>
<td>A</td>
</tr>
<tr>
<td>370</td>
<td>CH₃Cl + hv → HCHO + ClO + HO₂</td>
<td>A</td>
</tr>
<tr>
<td>371</td>
<td>CFCl₃ + hv → 3Cl + F + CO₂</td>
<td>A</td>
</tr>
<tr>
<td>372</td>
<td>CF₂Cl₂ + hv → 2 Cl + 2F + CO₂</td>
<td>A</td>
</tr>
<tr>
<td>373</td>
<td>BrO + hv → Br + O</td>
<td>A</td>
</tr>
<tr>
<td>374</td>
<td>HOB + hv → Br + OH</td>
<td>A</td>
</tr>
</tbody>
</table>

41
BrONO₂ + hv → Br + NO₃
BrONO₂ + hv → BrO + NO₂
Br₂ + hv → Br + Br
CH₃Br + hv → CH₂O₂ + Br
HBr + hv → H + Br
BrCl + hv → Br + Cl

Species names are defined in Appendix Table B.3. of Jacobson [2005b]. In addition, C₄H₆=1,3-butadiene, C₆H₆=benzene., ALD₂=C₃ and higher aldehydes, TERPH = monoterpenes. Species above reaction arrows are second or third bodies included in pressure-dependent reactions (footnote a) or in thermal dissociation reactions in equilibrium with the forward (previous) reaction. M is total air. The "Ref." column refers to sources of data for reaction rate coefficients, absorption cross sections, and quantum yields.

\(k_r = k_{0, T} \frac{k_{0, r} [M]}{k_{0, T} [M]} \)

where \(k_{0,r} \) is the temperature-dependent three-body, low-pressure limit rate coefficient (the first rate listed), \(k_{0,T} \) is the two-body, high-pressure limit rate coefficient (the second rate listed), \([M] = [N₂] + [O₂] \) is the concentration (molecules \(\text{cm}^{-3} \)) of the third body, and \(F_c \) is the broadening factor.

\(k_r = 1.50 \times 10^{-13} (1+0.6p_a)(300/T)^{1.0} \)

where \(p_a \) is the ambient air pressure in atmospheres.

\(k_r = 1.0 \times 10^{-39} [M] e^{(8800/T)/(1+5.0 \times 10^{-30} [M] e^{(6280/T)}), \)

where \([M] = [N₂] + [O₂] \) (molecules \(\text{cm}^{-3} \)).