The Maximum Extractable Wind Power On Earth is 58 Times That Needed to Power 37.1 Percent of the World For All Purposes With Wind in 2050 After All Sectors Have Been Electrified

In
100% Clean, Renewable Energy and Storage for Everything
Textbook in Preparation
https://web.stanford.edu/group/efmh/jacobson/WWSBook/WWSBook.html

Mark Z. Jacobson
April 18, 2019
Contact: Jacobson@stanford.edu; Twitter @mzjacobson

6.8.6. World Saturation Wind Power Potential

Wind turbines compete for the same kinetic energy in the wind as each other. When one wind turbine converts kinetic energy to mechanical energy to spin a turbine’s blades, and its generator converts the mechanical energy to electrical energy, less kinetic energy is available for other wind turbines in the wind farm and in the world. As more turbines become operational, each turbine is able to extract less and less energy. At some point, the addition of one more turbine worldwide results in no additional increase in kinetic energy extraction from the wind. At that point, the annual average power extracted by the existing turbines is called the saturation wind power potential (SWPP) (Jacobson and Archer, 2012). The SWPP is important because it gives the upper limit to how much power is available from wind worldwide or over land for turbines at a given hub height.

The reduction in wind speed due to wind turbines can be illustrated mathematically as follows. The kinetic energy \(J \) in the wind at a given time \(t \) and location is

\[
E(t) = \frac{1}{2} M_a v(t)^2
\]

(6.34)

where \(M_a \) is the mass of air (kg) and \(v(t) \) is the instantaneous wind speed (m/s) at time \(t \). Suppose, during a time increment \(\Delta t \) (s), a wind turbine extracts an amount of energy \(J \) from the wind equal to

\[
\Delta E(t) = P_b[v(t)] \Delta t
\]

(6.35)

where \(P_b \) is the instantaneous power (W) generated by the turbine’s blades as a function of wind speed \(v(t) \). \(P_b \) is determined from the turbine’s power curve. The remaining kinetic energy in the wind at time \(t+\Delta t \) is thus

\[
E(t+\Delta t) = E(t) - P_b[v(t)] \Delta t = \frac{1}{2} M_a v(t + \Delta t)^2
\]

(6.36)

Solving for the resulting wind speed at the new time gives
\[v(t + \Delta t) = \sqrt{\frac{2[E(t) - P_a v(t) \Delta t]}{M_a}} \]

(6.37)

As such, the extraction of kinetic energy by a wind turbine reduces the wind speed seen by other turbines.

Depending on the purpose of the calculation, the air mass used in the above equations can be either the mass of the air flowing through the turbine during a specific time interval (e.g. \(M_a = \rho_a A_v v(t) \Delta t \)), where \(\rho_a \) is air density \((\text{kg/m}^3)\), or it can be the mass of all air in a large volume that has mean wind speed \(v(t) \). The former would be used to estimate the wind speed immediately downstream of one turbine. The latter would be used to estimate the change in the mean wind speed over a large volume of air encompassing the turbine. In the former case, Equation 6.37 is independent of the time increment \(\Delta t \) because that cancels out of all terms on the right side of the equation. In the latter, final wind speed varies with the time increment. Example 6.14 illustrates the results in the two cases.

Example 6.14. Extracting kinetic energy from the wind.

Estimate the wind speed in two cases (a) downstream of a turbine and (b) averaged over a large 5 km \(\times \) 5 km horizontal area \(\times \) 126 m vertical thickness region. In both cases, assume the upstream wind speed is 10 m/s, the turbine extracts 3,000 kW at that wind speed, the turbine blade diameter is 126 m, and the air density is 1.23 kg/m\(^3\). For each case, find the downstream wind speed after 1 minute and 10 minutes.

Solution:

The wind turbine swept area is \(\pi \times (126 \text{ m} / 2)^2 = 12,469 \text{ m}^2 \). In case (a), the mass of air passing the turbine blades over 1 minute is \(M_a = 1.23 \text{ kg/m}^3 \times 12,469 \text{ m}^2 \times 10 \text{ m/s} \times 1 \text{ min} \times 60 \text{ s/min} = 9.20 \times 10^6 \text{ kg} \). The initial kinetic energy in the wind, from Equation 6.34, is \(E = 0.5 \times 9.20 \times 10^6 \text{ kg} \times (10 \text{ m/s})^2 = 4.6 \times 10^9 \text{ J} \). From Equation 6.37, the downstream wind speed is 7.8 m/s, so the turbine reduced the wind speed by 22.2 percent. Over 10 minutes, the downstream wind speed is also 7.8 m/s.

In case (b), the mass of air is \(M_a = 1.23 \text{ kg/m}^3 \times (5,000 \text{ m})^2 \times 126 \text{ m} = 3.97 \times 10^9 \text{ kg} \). The initial kinetic energy in the wind, from Equation 6.34, is \(E = 0.5 \times 3.97 \times 10^9 \text{ kg} \times (10 \text{ m/s})^2 = 1.9 \times 10^{11} \text{ J} \). From Equation 6.37, the volume averaged wind speed is 9.995 m/s, so the turbine reduced the volume averaged wind speed by 0.05 percent. Over 10 minutes, the volume averaged wind speed is 9.95 m/s, so the turbine reduced it by 0.47 percent.

In sum, whereas the wind speed downstream of an individual turbine stays constant with time if the upstream wind speed stays constant, the mean wind speed averaged over a volume of air decreases if the extraction of kinetic energy is allowed to affect the overall kinetic energy in the volume of air.

The extraction of kinetic energy and reduction in wind speed by wind turbines must reach a limit. Figure 6.25(a) provides an estimate of this limit worldwide and over all world land. The figure was obtained by running global computer model simulations for several years. Each simulation contained a different number of wind turbines with a hub height of 100 m over land or over land plus ocean. Wind turbines extracted kinetic energy to produce power, and wind speeds were adjusted accordingly each time increment in a manner similar to with Equations 6.34 to 6.37. Simulations were also run in which the turbines extracted kinetic energy to produce power but the wind speeds were not adjusted.

Figure 6.25. (a) Annual average electric power generation by wind turbines as a function of their installed (nameplate) capacity worldwide (Global SWPP curve) and over all land outside Antarctica (Land SWPP). Also shown is power output if no competition among turbines were allowed (Global-No extraction). (b) Annual average power generation at three installed power densities, each consisting of 4 million 5 MW wind turbines (20 TW total nameplate capacity). Also shown is a line indicating the power output needed to provide 5.75 TW of power from wind worldwide. From Jacobson and Archer (2012).
Figure 6.25(a) indicates that, as the installed (nameplate) capacity of wind turbines increases over land plus ocean worldwide, the extractable power among all wind turbines increases, but with diminishing returns. In fact, above 3,000 TW of nameplate capacity, no additional power from the wind at 100 m can be extracted. Table 6.8 indicates that the worldwide limit to extractable power is about 253 TW. Over land outside of Antarctica, the limit is about 72 TW.

For comparison, the world needs only about 4.4 TW of annual average power output from wind in 2050 for wind to provide 37.1 percent of the world’s end-use power demand after all energy sectors have been electrified. As such, 16.4 times more extractable wind power over land is available than is needed, and 58 times more extractable power over land plus ocean worldwide is available than is needed to power the world with 37.1 percent wind in 2050. Thus, there is no resource barrier to obtaining even 100 percent of the world’s all-purpose electric power in 2050 from wind.

Table 6.8. Saturation wind power potential (SWPP) at 100 m above ground level (AGL) globally, 100 m AGL over land outside Antarctica, and at 10 km in the jet streams (from 10°S to 70°S and 10°N to 70°N). Also shown is the annual average power available worldwide at 100 m AGL if kinetic energy extraction by wind turbines were not accounted for. From Jacobson and Archer (2012). Also shown (“Wind needed in 2050”) is the end use wind power supply needed over land plus ocean in 2050 for wind to provide 37.1 percent of the world’s end-use power demand for all purposes after all energy has been electrified. That supply would be obtained with a projected nameplate capacity of 13.02 TW (Jacobson et al., 2017).

<table>
<thead>
<tr>
<th>Region</th>
<th>Annual Power Output (TW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global (No extraction)</td>
<td>1,750</td>
</tr>
<tr>
<td>Global-SWPP</td>
<td>253</td>
</tr>
<tr>
<td>Land-SWPP</td>
<td>72.0</td>
</tr>
<tr>
<td>Jet streams</td>
<td>378</td>
</tr>
<tr>
<td>Wind needed in 2050</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Table 6.8 also indicates that if wind turbines extracted power but wind speeds were not affected by the extraction, wind turbines could produce 1,750 TW in annual average power worldwide. As such, kinetic energy extraction reduces overall available power at 100 m by about 85 percent. Finally, Table 6.8 indicates that, in the jet streams, about 378 TW of annual average power is available. However, as of 2019, it is not cost effective to extract wind power from the jet streams commercially although some groups have tried.
Figure 6.25(b) examines the impact on total power output of different installed wind power densities but the same overall nameplate capacity. It examines a situation of 4 million 5-MW turbines (20 TW nameplate capacity total) in three configurations. In the first, the 20 TW are compressed into three wind farms globally. In the second, they are expanded slightly to 8 wind farms globally. In the third, the 20 TW are spread out over land from 15°S to 60°S and from 15°N to 60.56°N (Arctic Circle). The figure indicates that, when wind farms are separated from each other, their output power can increase by up to a factor of 4.6 for the same nameplate capacity. This is due to the reduced competition for available kinetic energy by wind turbines when wind farm are separated.

Finally, Figure 6.26 shows the vertical profile of the percent change in world wind speed for each kinetic energy extraction case in Table 6.8. It shows that saturating the world with wind turbines at 100 m or at 10 km reduces the global average wind speeds at those altitudes by 50 percent. Saturating land reduces the global average 100-m wind speed by about 12.2 percent. Using 4 million 5-MW turbines reduces the global average 100-m wind speed by only about 0.36 percent.

Figure 6.26. Percent wind speed reduction averaged globally as a function of altitude (air pressure) due to using wind turbines to extract kinetic energy to produce electricity. The jet stream case is with 930.6 million 5-MW wind turbines at 10 km from 10 °S to 70 °S and 10 °N to 70 °N. The world case is with 1.146 billion 5-MW turbines at 100 m over the world’s land and oceans. The land case is with 324.5 million 5-MW turbines over the world’s land, including Antarctica. The 50 percent 2030 demand case is with 4 million 5-MW turbines over the world’s land from 15 °S to 60 °S and from 15 °N to the Arctic Circle. In all cases, the turbines have 126-m blade diameters. From Jacobson and Archer (2012).

References