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ABSTRACT

This paper discusses a new volume- and volume concentration–conserving, positive-definite, un-

conditionally stable iterative numerical scheme for solving temporary cloud/raindrop coalescence followed

by breakup and the coupling of the scheme with an existing noniterative, volume- and volume concentration–

conserving collision/coalescence (coagulation) scheme. The breakup scheme alone compares nearly exactly

with a constant-kernel analytical solution at a 300-s time step. The combined coagulation/breakup schemes

are stable and conservative, regardless of the time step and number of size bins, and convergent with higher

temporal and size resolution. The schemes were designed with these characteristics in mind for use in long-

term global or regional simulations. The use of 30 geometrically spaced size bins and a time step of 60 s

provides a good compromise between obtaining sufficient accuracy (relative to a much higher-resolution

result) and speed, although solutions with a 600-s time step and 30 bins are stable and conservative and take

one-eighth the computer time. The combined coagulation/breakup schemes were implemented into the

nested Gas, Aerosol, Transport, Radiation, General Circulation, Mesoscale, and Ocean Model (GATOR-

GCMOM), a global–urban climate–weather–air pollution model. Coagulation was solved over liquid, ice,

and graupel distributions and breakup simultaneously over the liquid distribution. Each distribution in-

cluded 30 size bins and 16 chemical components per bin. Timing tests demonstrate the feasibility of the

scheme in long-term global simulations.

1. Introduction

The solution to the integro-differential equation for the

combined processes of cloud drop collision/coalescence

(coagulation) and collision/temporary coalescence/breakup

(breakup) is a challenging numerical problem for which

few satisfying solutions have been developed. The pur-

pose of this paper is to present a new volume- and vol-

ume concentration (that is, volume multiplied by number

concentration)–conserving, positive-definite, iterative nu-

merical solution to the breakup component of this

equation and a method of coupling the scheme with an

existing volume- and volume concentration–conserving

noniterative coagulation scheme.

The integro-differential equation for coagulation and

breakup is
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where n is the time-dependent particle number concen-

tration (particles per cubic centimeter of air); y � y and y

are the single-particle volumes of two colliding/coalescing

particles; y is the volume of the new, permanently coa-

lesced particle; b is the coagulation kernel (rate coefficient;

cubic centimeters per particle per second) of colliding

particle pair y � y, y or y, y; B is the breakup kernel

(cubic centimeters per particle per second) for particle

pair y9, y0; and P is the number of fragments of volume

y per temporarily coalescing colliding pair y9, y0. The

coagulation portion of Eq. (1) (first two terms) is applied

to aerosol and hydrometeor size distributions. The breakup

portion (last two terms) is applied generally to hydro-

meteor particles.
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Many solutions exist to the coagulation portion of Eq. (1).

Some solutions for aerosol particles have assumed that

particles are spread over lognormal modes (e.g., Pratsinis

1988; Binkowski and Shankar 1995). Other solutions for

aerosols have assumed discrete aerosol size distributions

(e.g., Gelbard and Seinfeld 1978; Suck and Brock 1979;

Strom et al. 1992; Jacobson et al. 1994; Fassi-Fihri et al.

1997; Trautmann and Wanner 1999; Fernandez-Diaz

et al. 2000; Sandu 2002; Jacobson 2002). Solutions for

hydrometeor particles over discrete size distributions

have also been developed (e.g., Bleck 1970; Tzivion et al.

1987; Hounslow et al. 1988; Lister et al. 1995; Bott 2000;

Jacobson 2003). The discretized solutions generally con-

serve various properties, but almost all are explicit, thereby

requiring a time step limited by stability constraints. Fur-

thermore, almost all numerical solutions have treated

coagulation over only one size distribution. Jacobson

et al. (1994) and Jacobson (2002, 2003) developed non-

iterative, semi-implicit, volume conserving, and volume

concentration–conserving coagulation schemes for any

number of discrete aerosol and/or hydrometeor distri-

butions, any number of size bins per distribution, and

any number of components per size bin that were un-

conditionally stable for any time step. These solutions

also converged to exact solutions with higher size bin

resolution.

With respect to breakup, Hu and Srivastava (1995),

Brown (1997, 1999), and Seifert et al. (2005, hereafter

S05) applied the coagulation scheme of Bleck (1970), ex-

tended to breakup, operator-splitting the solution from that

of coagulation. Gillespie and List (1978) and List et al.

(1987) similarly extended the finite-element coagulation

solution of Gelbard and Seinfeld (1978) to include

breakup. That scheme has also been used by McFarqu-

har (2004) and others. Feingold et al. (1988) extended

the method-of-moments coagulation scheme of Tzivion

et al. (1987) to drop breakup using a transformation

from Bleck (1970).

All extended schemes appear to work well, but all are

explicit and thus subject to a limit on the time step based

on stability and positive-definiteness constraints. This is

not so much of an issue for box or 3D cloud models run

for hours to days, but for 3D global or regional climate

models that may be run for years or decades, it is desirable

to have the flexibility of using any time step without the

possibility of a negative number or an otherwise unstable

solution, while conserving volume exactly (which co-

agulation and breakup physically do). Although coarsely-

resolved-in-space models have significant uncertainty

with respect to predicting cloud properties, some such

models, including the model applied here, treat cumulus

clouds as subgrid phenomena and cloud microphysical

processes in some detail. The present parameterization

may be particularly beneficial for such models as it increases

the detail of breakup numerics to a level similar to that

of other microphysical processes. Below, such a scheme

is presented. First, the size grid used here and some of

the major terms in Eq. (1) are discussed.

2. Size grid, kernels, and coalescence efficiencies

The numerical solutions discussed here can be obtained

with any discretized size distribution. However, here,

Eq. (1) is discretized over i 5 1, . . ., NC geometrically

spaced hydrometeor size bins between low and high

diameters of 0.5 mm–8 mm. In this distribution, the single-

particle volume (cm3) in size bin i 1 1 equals that in bin

i multiplied by a constant, Vrat: yi11 5 Vratyi. For a given

low and high central volume (or diameter d) of the bin

and a specified number of size bins,

V
rat

5
y

NC

y
1

� �1/(N
C
�1)

5
d

NC

d
1

 !3/(N
C
�1)

. (2)

Subsequent equations will be written in terms of a dis-

cretized size distribution.

a. Coagulation and breakup kernels and
coalescence efficiencies

The discretized form of the coagulation kernel for

particles of size i and j (cubic centimeters per particle per

second) is

b
i,j

5 K
i,j

E
coal,i,j

, (3)

where Ki,j is a collision kernel (cubic centimeters per

particle per second) and Ecoal,i,j is a coalescence efficiency

(dimensionless). The total collision kernel for aerosol and

hydrometeor particles accounts for the kernels due to

Brownian motion, Brownian diffusion enhancement, van

der Waal’s forces, viscous forces, fractal geometry, grav-

itational collection, turbulent shear, turbulent inertial

motion, diffusiophoresis, thermophoresis, and electric

charge (Jacobson 2003, 2005). For gravitational collection

alone, used here for some tests, the kernel is

K
g,i, j

5 E
coll,i, j

p(r
i
1 r

j
)2jV

f ,i
� V

f , j
j, (4)

where Ecoll,i,j is a dimensionless collision efficiency

[taken from Beard and Grover (1974)], r is drop radius

(cm), and Vf is the terminal fall speed (cm s21), calcu-

lated here from the parameterization of Beard (1976), as

given in Jacobson [2005, his Eq. (20.9)].

When particles collide but do not permanently co-

alesce, they temporarily coalesce and then break up.

The breakup kernel (cubic centimeters per particle per

second) is
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B
i, j

5 K
i,j

(1� E
coal,i, j

) 5 b
i,j

(1� E
coal,i,j

)/E
coal,i, j

, (5)

where Ecoal,i,j is a dimensionless coalescence efficiency.

Coalescence efficiencies used here are obtained from

Beard and Ochs (1995, hereafter BO95) for small-particle

diameter ds , 300 mm, from Low and List (1982a, hereafter

LL82a) for ds . 500 mm, and from an interpolation for-

mula between the two ranges from S05.

BO95 give efficiencies in two ranges: ds from 14 to

200 mm and ds from 200 to 800 mm. For ds , 14 mm, the

efficiencies converge to 1. For the smaller range (14–

200 mm), the coalescence efficiency is found by a Newton–

Raphson iteration (with iteration number n) with

E
c, f ,i, j,n11

5
A

0
1 E

c, f ,i, j,n
[A

1
1 E

c, f ,i, j,n
(A

2
1 E

c, f ,i, j,n
A

3
)]� ln[r

s
(mm)]� ln[r

b
(mm)/200]

A
1
1 E

c, f ,i, j,n
(2A

2
1 3E

c, f ,i, j,n
A

3
)

, (6)

where A0 5 5.07, A1 5 25.94, A2 5 7.27, and A3 5 25.29;

rs is the small-particle radius (mm); and rb is the big-

particle radius (mm). This equation converges within four

iterations with a first guess of Ec,f,i,j,1 5 0.5. For the larger

range (200–800 mm), the BO95 coalescence efficiency is

E
c,e,i, j

5 max 0.767� 10.14
21.5

6p

q4(1 1 q)
ffiffiffiffiffiffiffiffiffiffi
We

i,j
*

q
(1 1 q2)(1 1 q3)

, 0

6664
7775,

(7)

where q 5 rs/rb and

We
i, j
* 5 r

w
r

s
(V

f ,b
� V

f ,s
)2/s

w
(8)

is the Weber number (dimensionless) for engineering

and fluid dynamics applications. In this equation, rw is

liquid water density (g cm23), rw is liquid water surface

tension (dyn cm21 5 g s22), and Vf is the fall speed of the

big and small drops (cm s21). The overall BO95 co-

alescence efficiency is then taken as (S05)

E
c,bo,i, j

5 min[max(E
c,e,i, j

, E
c, f ,i, j

), 1]. (9)

The LL82a parameterization for coalescence efficiency

at large particle diameter is

E
c,ll,i, j

5 a 1 1
d

s

d
b

� ��2

exp �
bs

w
E2

T,i, j

S
c,i, j

 !
for

E
T,i, j

, 5.0 3 10�6 J (10)

(otherwise, zero), where a 5 0.778, b 5 2.61 3 106 m2 J22,

sw here is in units of Joules per square centimeter, and ds

and db are the small- and big-particle diameters (cm), re-

spectively. In addition,

E
T,i, j

5 CKE
i, j

1 DS
i, j

(11)

is the total coalescence energy (J) of the two colliding

drops,

CKE
i, j

5
pr

w

12

d3
bd3

s

(d3
b 1 d3

s )
(V

f ,b
� V

f ,s
)2 (12)

is the collision kinetic energy of the colliding drops (J),

S
T ,i, j

5 ps
w

(d2
b 1 d2

s ) (13)

is the summed surface energies (J) of the two drops be-

fore collision (with sw in Joules per square centimeter),

S
c,i, j

5 ps(d3
b 1 d3

s )2/3 (14)

is the surface energy (J) of the spherical equivalent of

the coalesced drop, and

DS
i, j

5 S
T,i, j
� S

c,i, j
(15)

is the difference between the total surface energy (J) of

the two individual drops on their own and the surface

energy of the single spherical temporarily coalesced drop.

The interpolation formula between the BO95 and

LL82a efficiencies, modified slightly for the range of

application from S05, is

E
c,i, j

5

E
c,bo,i,j

, d
s
, 300 mm

cos2 p

2

(d
s
� 300 mm)

200 mm

� �
E

c,bo,i, j
1 sin2 p

2

(d
s
� 300 mm)

200 mm

� �
E

c,ll,i, j

E
c,ll,i, j

, d
s
. 500 mm

8>><
>>: . (16)
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Figure 1 shows coalescence efficiencies from Eq. (16)

under near-surface conditions, with which the experiments

resulting in the underlying parameterizations were per-

formed. The figure follows Fig. 3 of S05 closely despite the

slight difference in the range of interpolation. The figure

here is also extended to slightly higher diameter.

b. Breakup distribution

The solution to drop breakup requires the specification

of a breakup distribution for each colliding pair of drops.

Here, we use the formulation from Straub et al. (2010,

hereafter S10), who based their parameterization on

a matrix of 32 drop pairs with small and large diameters

ranging from 0.02 to 0.5 cm, including 10 pairs considered

from Low and List (1982b). Although this parameteri-

zation is based on small drops down to 0.02 cm only,

Brown (1999, see his Fig. 3) suggests that drops much

smaller than this colliding with large drops can result in

breakup. As such, we somewhat arbitrarily apply the S10

parameterization down to 0.005-cm diameter. Below this

diameter, we assume that noncoalescing collision [as de-

termined by one minus Eq. (16)] results in bounceoff, but

not breakup.

The S10 parameterization involves determining the

number of fragments in model size bin l per temporarily

coalescing pair i, j as

P
i, j,l

5 p
i, j,l,1

1 p
i, j,l,2

1 p
i, j,l,3

1 p
i, j,l,4

, (17)

where the ps are the number of fragments in size l per

temporarily coalescing pair i, j from each of four breakup

size distribution ranges. The size distribution in range 1 is

a lognormal distribution with

p
i, j,l,1

5
N

1
Dd

l

d
l
s

g,1

ffiffiffiffiffiffi
2p
p exp �

(lnd
l
� m

1
)2

2s2
g,1

$ %
, (18)

where

N
1

5 max 0.088
d

b

d
s

CW
i, j
� 7

� �
, 0

� �
(19)

is the number of fragments summed over the entire log-

normal distribution per temporarily coalescing pair,

m
1

5 lnD
1
�

s2
g,1

2
(20)

is the geometric mean number diameter (cm) of the

distribution,

s2
g,1 5 ln

Var

D2
1

1 1

 !
(21)

is the square of the geometric standard deviation, Var 5

(0.0125)2CWi,j/12 is the variance, and D1 5 0.04 cm. In

these equations, CWi,j 5 (CKEi,j)(Wei,j), where Wei,j 5

CKEi,j /Sc,i,j is another form of the dimensionless Weber

number.

The size distributions in ranges 2 and 3 are normal

distributions. For range 2, the number of fragments in

size l per temporarily coalescing pair i, j is

p
i, j,l,2

5
N

2
Dd

l

s
2

ffiffiffiffiffiffi
2p
p exp �

(d
l
�D

2
)2

2s2
2

$ %
, (22)

where the number of fragments per colliding pair, summed

over the distribution, is

N
2

5 max[0.22(CW
i, j
� 21), 0] (23)

and the normal-distribution mean number diameter is

D2 5 0.095 cm. The normal-distribution standard de-

viation is

s
2

5
max[0.007(CW

i, j
� 21), 0]ffiffiffiffiffi

12
p . (24)

For range 3, the number of fragments in size l per tem-

porarily coalescing pair i, j is

p
i, j,l,3

5
N

3
Dd

l

s
3

ffiffiffiffiffiffi
2p
p exp �

(d
l
�D

3
)2

2s2
3

$ %
, (25)

FIG. 1. Coalescence efficiencies determined from Eq. (16), which

relies on efficiencies from BO95 for ds , 0.3 mm, from LL82a for

ds . 0.5 mm, and an interpolation formula from S05 between the

two. Efficiencies were obtained at a temperature of 208C and

pressure of 1013 hPa.
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where the number of fragments per pair, summed over

the distribution, is

N
3

5 maxfmin[0.04(46� CW
i, j

), 1]0g, (26)

the normal-distribution mean number diameter is D3 5

0.9ds cm, and the standard deviation is

s
3

5

0.01(1 1 0.76
ffiffiffiffiffiffiffiffiffiffiffiffi
CW

i, j

q
)ffiffiffiffiffi

12
p . (27)

For each range k 5 1–3, the sum of pi,j,l,k over all dis-

crete sizes l 5 1, . . . , NC converges to Nk with increasing

size resolution (smaller values of Vrat). However, for

coarse size resolution, the sum is less than Nk. To ensure

exact number conservation, pi,j,l,k is normalized here with

p
i, j,l,k

5 p
i, j,l,k

N
k

�
NC

l51
p

i, j,l,k

(28)

after pi,j,l,k is first solved.

Finally, for range 4, the number of fragments per

temporarily coalescing pair is determined by conserving

volume between the volumes of the original coalescing

pair and the summed volumes among all fragments of all

sizes. The exact volumes (cm3) of fragments, summed

over all sizes for each range 1–3, respectively, are (S10)

V
b,1

5
p

6
N

1
exp 3m

1
1

9

2
s2

g,1

� �
, (29)

V
b,2

5
p

6
N

2
exp(m3

2 1 3m
2
s2

2), (30)

V
b,3

5
p

6
N

3
exp(m3

3 1 3m
3
s2

3). (31)

To conserve volume, one more single fragment is pro-

duced from the volume-conservation relationship:

V
b,4

5
p

6
(d3

i 1 d3
j)� V

b,1
� V

b,2
� V

b,3
. (32)

However, since the single fragment in range 4 does not

fall exactly into a discrete model size bin, its volume and

number must be partitioned here between two adjacent

discrete bins whose centers surround yb,4 in a number-

and volume-conserving manner. The resulting number

concentrations partitioned to adjacent bins l and l 1 1

are determined for the present size bin structure as

n
l
5

y
l11
� V

b,4

y
l11
� y

l

and (33)

n
l11

5 1� n
l
, (34)

respectively. In sum, the total number of fragments pro-

duced per colliding pair is

N
T ,i, j

5 N
1
1 N

2
1 N

3
1 1 (35)

and the total volume of such fragments is Vb,1 1 Vb,2 1

Vb,3 1 Vb,4 5 p(di
3 1 dj

3)/6; thus, the volume of the

breakup distribution for each colliding pair is conserved

exactly.

Table 1 compares the number of fragments calculated

from Eq. (35) here with those calculated by S10 (see

their Table 1) for 32 colliding pairs of drops for which

laboratory or high-resolution model data were available.

The calculations here give almost identical results to

TABLE 1. Number of drop fragments NT per colliding pair for laboratory-based and high-resolution computation-based drop pair

determinations given in S10 (see their Table 1). Results were obtained at a temperature of 208C and pressure of 1013 hPa. Other con-

ditions, including CKE, were obtained from Table 1 of Schlottke et al. (2010).

Pair ds (cm) db (cm) NT (S10) NT (here) Pair ds (cm) db (cm) NT (S10) NT (here)

1 0.0395 0.18 2 2 17 0.0395 0.32 2 2

2 0.0395 0.40 2 2 18 0.14 0.41 7.83 7.8

3 0.0395 0.44 2 2 19 0.06 0.24 2 2

4 0.0715 0.18 2 2 20 0.07 0.3 2.45 2.45

5 0.1 0.18 2 2 21 0.07 0.36 2.72 2.72

6 0.1 0.18 3.58 3.57 22 0.07 0.45 2.81 2.81

7 0.1 0.30 4.52 4.52 23 0.1 0.12 2 2

8 0.1 0.46 5.02 5.01 24 0.1 0.41 4.93 4.92

9 0.18 0.36 5.73 5.7 25 0.12 0.25 2.56 2.56

10 0.18 0.46 10.24 10.2 26 0.12 0.3 3.99 3.98

11 0.035 0.06 2 2 27 0.12 0.36 5.56 5.55

12 0.035 0.12 2 2 28 0.12 0.46 6.6 6.58

13 0.06 0.12 2 2 29 0.14 0.36 6.2 6.17

14 0.0395 0.25 2 2 30 0.16 0.18 2 2

15 0.09 0.24 2.35 2.34 31 0.16 0.41 9.05 9.02

16 0.15 0.27 2.7 2.7 32 0.18 0.25 2 2
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those in S10. Figure 2 shows the calculated size distri-

butions of six of these pairs over 300 discretized size bins

from 0.5 mm to 8 mm, which also compare well with

results shown in Fig. 5 of S10.

Figure 3 shows the number of fragments per colliding

drop pair from Eq. (35) for the entire size distribution

of colliding particles up to 6 mm. The figure indicates

a peak in the number of breakup fragments when par-

ticles of 2 mm collide with those of 5 mm. Minima occur

for equal-sized drops and for very large drops colliding

with much smaller drops.

c. Solution to collision/coalescence (coagulation)

The numerical solution to Eq. (1) is obtained first by

operator-splitting the coagulation and breakup solutions.

Previous solutions to Eq. (1) have been operator split as

well (section 1). The effect of different operator-splitting

time steps will be examined. Below, the coagulation solution

FIG. 2. Breakup size distributions of six colliding drop pairs with the method of S10 calculated over 300 discrete size

bins from 0.5 mm to 8 mm in diameter. The figures can be compared with the corresponding pairs in Fig. 5 of S10. The

numbers below the pair identifier are the small- and big-particle diameters resulting in the temporarily coalesced pair

that breaks up.
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is first shown. A new method of solving for breakup is

then given.

The collision/coalescence (coagulation) terms in Eq.

(1) are solved with the semi-implicit solution of Jacobson

et al. (1994) and Jacobson (2002, 2003). The scheme

assumes that particles of each size contain multiple

components q 5 1, NV, where the sum of the volume

concentration of each component in each size bin vq,i

(cubic centimeters of particles per cubic centimeters of

air) over all components in the size bin equals to the total

volume concentration of particles in the bin vi. Further,

the number concentration is related to the total volume

concentration and the single-particle volume in the bin by

ni 5 vi/yi. The scheme can be applied to any number of

aerosol or hydrometeor size distributions simultaneously,

as shown in Jacobson (2002, 2003). In fact, for the 3D

model application discussed here, it is implemented for

liquid, ice, and graupel size distributions simultaneously.

However, below the solution is shown for one size dis-

tribution for illustrative purposes.

The scheme is noniterative, positive-definite, uncondi-

tionally stable, and conservative of single-particle volume

and volume concentration for all particle components and

the total particle. Number concentration converges to the

exact solution upon an increase in resolution. The co-

agulation solution, in terms of the volume concentration

(cubic centimeters per cubic centimeters of air) of com-

ponent q within particles in aerosol-contrail size bin k at

time t after one time step h (s) is

v
q,k,t

5

v
q,k,t�h

1 h�
k

j51
�
k�1

i51
f

i, j,k
b

i, j
v

q,i,t
n

j,t�h

0
@

1
A

1 1 h�
N

B

j51
[(1� f

k, j,k
)b

k, j
n

j,t�h
]

, (36)

where

f
i, j,k

5

y
k11
� V

i, j

y
k11
� y

k

� �
y

k
# V

i, j
, y

k11
k , N

B

1� f
i, j,k�1

y
k�1

# V
i, j

, y
k

k . 1

1 V
i, j

. y
k

k 5 N
B

0 all other cases

8>>>>><
>>>>>:

(37)

is the volume fraction of a coagulated pair i, j, with

volume single-particle volume Vi,j 5 yi 1 yj, partitioned

into bin k. This intermediate particle has volume be-

tween those of two model bins, k and k 1 1, and needs to

be partitioned between the two.

Equation (36) is solved in the order k 5 1, . . . , NC. No

production occurs into the first bin, k 5 1, since k 2 1 5 0

for the first bin in the numerator of Eq. (36). Thus, all

necessary vq,i,t terms are known when each vq,k,t is cal-

culated. Once the equation is solved, vk,t (cubic centi-

meters per cubic centimeters of air) is recalculated by

summing vq,k,t over all components q 5 1, NV and new

number concentrations (particles per cubic centimeter)

are nk,t 5 vk,t/yk.

d. Solution to drop breakup

The numerical solution to drop breakup is determined

here as follows. Breakup involves two terms [last two terms

in Eq. (1)]: one that gives the production of new fragments

in a given size bin and the other that describes the loss of

drops to collision/temporary coalescence/breakup. Since

drops of each size compete simultaneously with drops of

every other size for collision/temporary coalescence, it is

necessary to solve for the loss of drops implicitly rather

than explicitly, both for accuracy (e.g., faster convergence

upon refining the size grid and time step) and stability.

The present scheme allows for stability with any time step

and size grid resolution although accuracy improves upon

increasing both. Concentrations from the implicit solution

are then applied to the breakup distribution to determine

the number of new fragmented drops in a manner con-

sistent with the loss terms.

The implicit solution to the loss term [fourth term in

Eq. (1)] is obtained by first writing the term as

dn
i

dt
5�n

i
�
N

C

j51
B

i, j
n

j
(38)

FIG. 3. Number of resulting fragments per colliding drop pair

from Eq. (35), which relies on the parameterization of S10. Results

were obtained at a temperature of 208C and pressure of 1013 hPa.

Note that the fall speed used to calculate CKE for this figure [as

described under Eq. (4)] differs from that used to calculate it in

Table 1, so the number of fragments differ slightly.
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and then discretizing the equation further with

n
i,t

5 n
i,t�h
� hn

i,t
�
N

C

j51
B

i, j
n

j,t
, (39)

where h is the time step size (s), t is the current time step,

and t 2 h is the previous time step. This equation can be

solved exactly but iteratively for any time step among all

size bins i 5 1, . . . , NC simultaneously with

n
i,t,n11

5
n

i,t�h

1 1 h �
N

C

j51
B

i, j
n

j,t,n,est

, (40)

where the subscript n is the iteration number. For each

iteration, it is necessary to solve Eq. (40) for all size bins i

before moving on to the next iteration. The estimated

value in the denominator of Eq. (40) is determined as

n
i,t,n,est

5 (n
i,t,n

1 n
i,t,n�1,est

)/2, (41)

with ni,t,0,est 5 ni,t2h and ni,t,1 5 ni,t2h. The use of an

estimated value instead of a value from iteration n in Eq.

(40) speeds up convergence significantly by preventing

the solution from oscillating between two vastly differ-

ent numbers on its way to convergence. Convergence is

said to occur when

�
N

C

j51
n

j,t,n11
��

N
C

j51
n

j,t,n

�
N

C

j51
n

j,t,n

, 10�16 ! convergence. (42)

The advantage of this convergence criterion is that the

computational time for it is low, since the division is

taken outside of the summation loop (and divisions re-

quire ;12 times more computer time than additions),

and the accuracy is the same as any other criterion.

For 30–300 size bins, convergence generally occurs

within 15–70 iterations. Since only one equation is iter-

ated across all size bins, the computer time for iteration

is minimized (computer timings are discussed in section

3). The iteration technique described is related to that

developed for the multistep implicit–explicit (MIE)

method, used to solve chemical ordinary differential

equations (Jacobson and Turco 1994). With the MIE

method, the forward Euler and the linearized backward

Euler schemes are iterated, both with reaction rates de-

termined from the linearized backward Euler scheme.

Convergence of both the forward and linearized backward

Euler schemes individually and to each other is guaranteed,

as demonstrated in Jacobson [2005, his Eqs. (12.66) and

(12.67) and Fig. 12.1], and the resulting solution conserves

mass and is positive definite. Since both converge, it is

necessary only to solve either the forward Euler or line-

arized backward Euler schemes so long as the one chosen

is converged completely. In the present case, we iterate

the linearized backward Euler [Eq. (40), as applied to

breakup] until convergence.

Once convergence has occurred, the number concen-

tration (particles per cubic centimeter) of temporarily

coalesced drops for each pair i 5 1, NC, j 5 i, NC is now

R
i, j,t

5
B

i, j
n

i,t
n

j,t
for i 6¼ j

0.5B
i, j

n
i,t

n
j,t

for i 5 j

(
. (43)

The 0.5 is not needed for i 6¼ j since Ri,j,t is evaluated and

used only for j 5 i, NC, not j 5 1, NC, so production terms

are not double counted. The fragments of the tempo-

rarily coalesced pairs are then distributed among each

size l 5 1, NC with

n
l,t

5 n
l,t

1 R
i, j,t

P
i, j,l

, for each i 5 1, N
C

and

j 5 i, N
C

, (44)

which results in exact volume conservation. This equation

also gives the total number of fragments per temporarily

coalesced pair over all sizes exactly as NT,i,j [Eq. (35)].

Next, since each drop contains multiple chemical com-

ponents, it is necessary to solve for the redistribution

of particle components during temporary coalescence/

fragmentation. This is accomplished exactly for each q 5 1,

NV component with

v
q,i,t

5 v
q,i,t
�

v
q,i,t�h

n
i,t�h

R
i, j,t

, for each i 5 1, N
C

; j 5 i, N
C

,

(45)

v
q, j,t

5 v
q, j,t
�

v
q, j,t�h

n
j,t�h

R
i, j,t

, for each i 5 1, N
C

; j 5 i, N
C

.

(46)

Before marching through Eqs. (45) and (46), the first

term on the right side of these equations is set to vq,i,t2h

(which is the same as vq,j,t2h, since i and j describe the

same size distribution). In these equations, the ratio

Ri,j,t/ni,t2h is the volume (and number) fraction of par-

ticles in size bin i that is lost to temporarily coalescence

of particles of size i, j. The product of this fraction and

the initial volume concentration of component q in the

bin vq,j,t2h is the volume concentration of component q

lost to temporary coalescence of particles of size i, j.

Equations (45) and (46) are positive so long as Eq. (42)

has converged. Thus, ensuring convergence of Eq. (42)

ensures a positive-definite scheme.
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Finally, the volume concentration of component q

added to each size bin l 5 1, NC due to fragmentation of

temporarily coalesced particles is

v
q,l,t

5 v
q,l,t

1 R
i, j,t

Q
i, j,l

v
q,i,t�h

n
i,t�h

1
v

q, j,t�h

n
j,t�h

 !
, for

each i 5 1, N
C

; j 5 i, N
C

, (47)

where

Q
i, j,l

5 P
i, j,l

y
i

y
i
1 y

j

(48)

is the volume fraction of coalesced drop pair i, j frag-

menting into size bin l. The sum of Qi,j,l over all sizes l 5 1,

NC for each i, j pair is unity.

In sum, the temporary coalescence/breakup scheme is

positive definite for any time step, exactly volume- and

volume concentration–conserving for all components of

all particle sizes, and exactly volume-conserving of

breakup fragments.

Finally, the discrete size-resolved lightning scheme of

Jacobson and Streets (2009) is modified in the present

scheme by considering that temporary coalescence fol-

lowed by breakup and temporary coalescence followed

by bounceoff both result in charge separation. Above

a small-particle diameter of 0.005 cm, it is assumed that

temporary coalescence results in breakup; otherwise, it

results in bounceoff (section 2b). One minus Eq. (16)

gives the noncoalescence (breakup plus bounceoff) effi-

ciencies for all sizes. This efficiency is used in Eq. (6) of

Jacobson and Streets (2009) to give the effective ‘‘boun-

ceoff kernel’’ (or bounceoff kernel at small sizes and

breakup kernel at large sizes as defined here), which is

used in Eq. (5) of that paper to determine charge sepa-

ration and the lightning flash rate.

3. Results

The coagulation/breakup scheme is analyzed here for

accuracy against an analytical solution, stability at long

time step and coarse size resolution, and convergence

upon refinement of the time step and size grid.

First, results from the breakup scheme alone are com-

pared with the analytical solution of Feingold et al. (1988),

which assumes a constant breakup kernel B. The analytical

solution is

n
l,t

5
n

l,0
1 gN

0
(eat � 1)e�gy

ldy
l

1 1
1

b
(eat � 1)

, (49)

where nl,t is the number concentration (particles per

cubic centimeter) of drops in size bin l at time t, b is

a positive integer that characterizes the fragment con-

centration (b 5 1 indicates no change in the summed

number concentration of particles over time and b 5

2, . . . represent an increase), g 5 bN0/V0, a 5 bBN0, and

N0 and V0 are the summed number and volume con-

centration (cm3 cm23) of the initial number concentra-

tion size distribution nl,0. The summed drop number

concentration as a function of time is Nt 5 bN0eat/(b 1

eat 2 1). The analytical solution assumes a breakup size

distribution (number of fragments in size bin l due to

breakup of the temporarily coalesced pair i, j) for use in

Eq. (44) of the form

P
i, j,l

5 g2(y
i
1 y

j
)e�gy

ldy
l
. (50)

Figure 4 compares results from the model with those

from the analytical solution for two cases described in the

caption with a model time step of 300 s. The model results

are nearly indistinguishable from those of the analytical

solution in both cases and become completely indis-

tinguishable at greater time resolution. Feingold et al.

(1988) similarly show that results from their two-moment

scheme follow those of the analytical solution nearly ex-

actly, but with a time step of 3 s. Those of a one-moment

scheme they tested retarded breakup slightly.

Figure 5 shows model results alone after 12 h of

coagulation/breakup of an initial Marshall–Palmer size

distribution (Marshall and Palmer 1948). Solutions for

different size bin resolutions at the same time step (Fig.

5a) and solutions for different time steps at the same size

bin resolutions (Fig. 5b) are shown. In all cases, the so-

lutions equilibrate, as found in many previous studies

that used an initial Marshall–Palmer distribution (e.g.,

List et al. 1987; Hu and Srivastava 1995; Brown 1999;

S05). The equilibrated solutions converge upon a re-

finement of each the size bin resolution and the time

step. All solutions conserve volume exactly, are positive

definite, and are unconditionally stable (stable for any

time step and size bin resolution).

Figure 6a shows results from a high-resolution (1-s time

step, 300 bins) simulation of coagulation alone versus co-

agulation combined with breakup after 1 h of simulation,

where the model was initialized with a lognormal cloud

drop distribution. Results at 1 s and 300 bins are consid-

ered here to be the ‘‘exact’’ numerical solution for com-

parison with subsequent tests at coarser temporal and size

resolution. The difference between the two curves shown

indicates that treating breakup is important for ensuring

that coagulated particles do not become artificially large

and that a model predicts a sufficient number of particles

smaller than raindrop size to simulate cloud optical depths

physically. The broader size distribution that results from

treating breakup is also important since the evaporation
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rate of drops below cloud base depends significantly on

particle size, with smaller particles evaporating faster.

Thus, a broader distribution is likely to result in more

water reevaporation below cloud base. The figure also

indicates that breakup may be responsible for reproducing

some drops below 4-mm diameter although this result

depends highly on the accuracy of the breakup distribu-

tion parameterization used.

Figure 6b shows the result for the coagulation plus

breakup case in Fig. 6a at different size bin resolutions

and at a 60-s time step. The result for 300 bins and 1 s (the

so-called exact solution) is also shown for comparison.

The figure indicates relatively little difference in the so-

lution at a 60-s time step and at 30 size bins relative to the

exact solution, which is good news considering that the

exact solution requires about 41 000 times more com-

puter time on one processor for a 1-h simulation than that

at 60 s and 30 bins (652 s versus 0.016 s on an Intel Xeon

5260, 3.33 GHz).

Figure 6c shows the result for coagulation plus breakup

after 1 h at different time steps, all over 30 size bins. The

figure indicates that the solutions for 1, 30, and 60 s are

quite similar but those at 300, 600, and 1800 s begin to

diverge. In all cases, though, the solutions are volume

conservative, positive definite, and unconditionally stable.

To obtain a better idea of computer timings, some of

the simulations in Fig. 6c were run for 1 yr continuously

in a box model. The computer times for 60-, 300-, and 600-s

time steps were 98.2, 23.6, and 12.4 s yr21, respectively,

on the single processor listed above. The times suggest

FIG. 4. Comparison of the model numerical solution to drop breakup alone with the analytical solution of Feingold

et al. (1988), which assumes a constant breakup kernel B. Figures are for (a) b 5 8, B 5 1023 cubic centimeters per

particle per second, initial geometric mean number diameter Dg 5 1200 mm, initial geometric standard deviation

sg 5 1.2, N0 5 0.02 particle per cubic centimeter, 300 size bins, a simulation time of 1 h, and a model time step of h 5

300 s and (b) b 5 4, B 5 1024 cubic centimeters per particle per second, Dg 5 1000 mm, sg 5 1.4, N0 5 0.1 particle per

cubic centimeter, 300 size bins, a simulation time of 4 h, and h 5 300 s.

FIG. 5. Equilibrium solution (after 12 h) of collision/coalescence and breakup [all terms in Eq. (1)] resulting from

an initial Marshall–Palmer size distribution, dN/Dp 5 N0 exp(24.1R20.21Dp), where R 5 42 mm h21 is the rainfall

rate, N0 5 8000 mm21 m23, Dp is drop diameter (mm), and the rainfall liquid water content is 2 g m23. (a) Results

from four model size bin resolutions: 30 bins (Vrat 5 2.722), 60 bins (Vrat 5 1.636), 100 bins (Vrat 5 1.341), and 300 bins

(Vrat 5 1.102) at h 5 1 s. (b) Results from the same problem for four time steps at a size resolution of 100 bins. Results

were obtained at a temperature of 208C and pressure of 700 hPa.
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that a factor of 10 increase in the time step size resulted

in about a factor of 8 decrease in computer time. A

greater decrease in computer time did not occur since

a few more iterations were required per time step at

longer time steps to converge the breakup iteration.

Coagulation (which is noniterative) required 20.2%,

17.1%, and 16.0% of the time, respectively, for each

time step. Thus, breakup required about 5–6 times more

computer time than did coagulation.

Timing tests in a global model

The new cloud drop breakup scheme described here

was implemented into the nested Gas, Aerosol, Transport,

Radiation, General Circulation, Mesoscale, and Ocean

Model (GATOR-GCMOM), a global–urban climate–

weather–air pollution model (Jacobson et al. 2007;

Jacobson and Streets 2009; Jacobson 2010), and com-

puter timings were obtained.

Previously, the model treated cloud collision/coalescence

(coagulation) among size- and composition-resolved liquid,

ice, and graupel in the same manner as described here but

parameterized liquid drop breakup simply by redistributing

drops larger than a certain size with a single breakup dis-

tribution, as described in Jacobson (2003). Also, the

previous scheme used a longer time step for both co-

agulation and breakup, either 1800 or 3600 s. The scheme

here is more physical as it treats breakup due to specific

drop pair interactions; however, it is iterative and thus

takes more computer time.

In the present application, the model was applied over

;188 000 grid cells (48 3 58 resolution in the horizontal

and 58 layers in the vertical, including 14 layers above

18 km. The model treated three hydrometeor size dis-

tributions (liquid, ice, and graupel), 30 size bins per

distribution, and 16 chemical component inclusions per

size bin, and the particle number in each bin. Coag-

ulation and breakup were operator split. Coagulation

was solved among all three hydrometeor distributions

simultaneously as in Jacobson (2003), and breakup was

solved over the liquid distribution. Operator-splitting

time steps between coagulation and breakup of 60, 300,

and 600 s were compared. The additional model com-

puter times required in each case compared with the

previous method of coagulation/breakup (where the

operator split time step was 3600 s and breakup was

solved noniteratively and only for the largest drops)

were 6, 1.4, and 0.75 days yr21 of simulation, respec-

tively, on 24 Intel Nehalem processor cores. To put this

in context, 0.75 days yr21 represents ;5.5% and 6 days yr21

represents ;44% of the overall computer time of the

model. Thus, while the new iterative technique con-

sumed at least 6% more time than the previous method

because of both the more frequent coagulation and

breakup calls and the iterative breakup solution, it should

FIG. 6. (a) Solution to coagulation alone (‘‘Coag

only’’) and coagulation plus breakup (‘‘Coag1

breakup’’) after 1 h of simulation, starting with an ini-

tial geometric mean number diameter and a standard

deviation of 20 and 1.5 mm, respectively, and an initial

total particle number of 1000 cm23. The numerical

solution in both cases was obtained over a size grid of

300 bins and h 5 1 s. (b) As in Fig. 5a, but for co-

agulation plus breakup over size grids of 300, 100, 60,

and 30 bins at a time step of 60 s and over 300 bins at

h 5 1 s. (c) As in Fig. 5a, but for coagulation plus

breakup over a size grid of 30 bins and h 5 1, 10, 60, 300,

600, and 1800 s.
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allow for more physically correct feedbacks among cloud

variables for studies of climate response.

4. Conclusions

A new volume- and volume concentration–conserving,

positive-definite, iterative numerical scheme for solving

temporary drop coalescence followed by breakup was

developed. The scheme was coupled with an existing

volume- and volume concentration–conserving non-

iterative collision/coalescence code. The breakup scheme

compares nearly exactly with a constant-kernel analyt-

ical solution at a 300-s time step. The combined schemes

are stable and conservative, regardless of the time step

and number of size bins, and convergent with higher

temporal and size resolution. Geometric size spacing

with 30 bins and a time step of 60 s provide a good

compromise between obtaining sufficient accuracy (rel-

ative to a much higher-resolution result) and speed

when applied in a 3D model, although solutions at 600-s

time step and 30 bins are still stable and conservative

and take one-eighth the computer time. The combined

schemes were applied to the nested GATOR-GCMOM,

a global–urban climate–weather–air pollution model.

Coagulation was solved over liquid, ice, and graupel

distributions and breakup over the liquid distribution.

Each distribution included 30 size bins and 16 chemical

components per bin. Timing tests demonstrate the fea-

sibility of the scheme in long-term global simulations.
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