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Abstract—We present a Gear-type code that efficiently solves ordinary differential equations in large
grid-domains. To obtain the final code, we modified an original program of C.W. Gear, built and added
a sparse-matrix package, and vectorized all loops about the grid-cell dimension. Furthermore, to obtain at
Jeast 90% vectorization potential while preventing equations in some regions of the grid from slowing the
solution over the entire grid-domain, we divided the domain into blocks of grid-cells and vectorized around
these blocks. The sparse-matrix solution reduced the average number of LU-decomposition calculations,
compared to a full-matrix solution, by factors of between 20 (for a matrix of order 40) and 120 (for a matrix
of order 90). It also reduced both back-substitution calculations and total array space by factors of between
5 and 12 for the above matrix sizes. Vectorization on a CRAY-90 computer increased the speed by another
factor of about 120 over the code running in scalar form. We tested the speed and accuracy of the program
for several chemical applications on a single processor of the CRAY-90 computer. The code averaged
between 1 and 2 min of computer time per day of simulation to solve a smog-chemistry set of 92 species and
222 reactions over a 10,000-cell grid, with continuously changing photorates. It also took 3—4 min per day
to solve a stratospheric-chemistry set of 39 species and 108 reactions over a 100,000-cell grid. In addition,
we tested the speed of the code while it solved aqueous chemistry in 43 aerosol size bins, along with other
physical processes and transport, over a large grid. Finally, we compared the speed and other statistics from
SMVGEAR to those of an existing sparse matrix Gear code, LSODES, and to a new method that we call

the Multistep Implicit-Explicit (MIE) method.

Key word index: Gear code, air pollution photochemistry, stratospheric photochemistry, aqueous chem-

istry, ordinary differential equations.

1. INTRODUCTION

Over the years, mathematicians and scientists have
developed techniques to solve systems of stiff ordinary
differential equations (ODEs). In chemical terms,
a stiff system occurs when the lifetimes of some species
are many orders of magnitude smaller than the life-
times of other species. Because explicit ODE solvers
require numerous short time-steps in order to main-
tain stability, most current techniques solve ODEs
implicitly or semi-implicitly.

Among the high- and variable-order techniques to
solve stiff ODEs include variations of Runge-Kutta,
Richardson Extrapolation/Bulirsch-Stoer, and pre-
dictor—corrector methods (Press et al., 1992; Gear,
1967, 1969, 1971; Stoer and Bulirsch, 1980). In par-
ticular, Gear’s backward differentiation predictor—
corrector scheme spawned a number of advanced
Gear-type codes (e.g. Hindmarsh, 1972, 1974, 1975,
1976, 1977, 1980, 1983; Spellman and Hindmarsh,
1975; Morris and Hindmarsh, 1975; Byrne and
Hindmarsh, 1976; Sherman and Hindmarsh, 1980;
Brown and Hindmarsh, 1986).

* To obtain a copy of this code, please send a request by
either e-mail to jacobson@yosemite.atmos.ucla.edu or regu-
lar mail to the authors at the address above.
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Other techniques to solve stiff ODEs include the
midpoint and trapezoidal methods (e.g. Gear, 1971;
Press et al., 1992), family methods (e.g. Crutzen, 1971,
Turco and Whitten, 1974; Brasseur and Solomon,
1984; Austin, 1991; Elliott et al. 1993), parameteriza-
tion methods (e.g. Jacob et al., 1989), hybrid pre-
dictor—corrector methods (e.g. McRae et al., 1982),
iterative backward differentiation methods (e.g.
Curtiss and Hirschfelder, 1952; Hunt, 1966;
Shimazaki and Laird, 1970; Turco and Whitten, 1974;
Rosenbaum, 1976), iterative hybrid schemes (Hes-
stvedt et al.; 1978) and many others.

To date, one limitation of most schemes has been
their inability to solve equations both quickly and
with a high order of accuracy in multiple grid-cell
models. With the onset of faster vector machines and
parallel processors, this limitation is eroding. How-
ever, even with a fast machine, accurate solutions in
10*-10° grid-cells over simulation periods of months
to years still requires considerable computer time.
Here, we introduce SMVGEAR (Sparse-Matrix
Vectorized Gear Code), which is designed to reach
peak speed performance on vectorized machines when
the number of grid-cells is large. On non-vector ma-
chines, SMVGEAR also has advantages.

The first building-block of SMVGEAR is an ori-
ginal code of Gear (1971, pp. 158-166). Gear’s code
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solves systems of ODEs using a time-step and order
dependent on the stiffness of the equations. In sum-
mary, Gear’s code solves the set of ODEs (e.g.
Hindmarsh, 1983).

dy/dt=f(t.y) 0]

where y is a vector of species concentrations, and ¢ is
time. To solve the equations, Gear sets up a prediction
matrix

PxI—hByJ 2

where I is the identity matrix, h the time-step,
Bo a scalar multiplier that depends on the order of the
method, and

J=0df/dy ©)

is a Jacobian matrix of partial derivative for the sys-
tem. With the prediction matrix, the code iteratively
solves the equation

Px=B @

where x is a vector used to correct y and its derivat-
ives, and B is a continuously changing vector found
from evaluating equation (1) with corrected values of
y. When the error from the correction vector x be-
comes less than a provided error, the corrector has
converged, and the code then checks whether the sum
of etrors over all iterations for a time-step is less than
another error tolerance. If the system of equations
passes the second error check, the time-step is
complete. Otherwise, the code either re-evaluates the
Jacobian, reduces the time-step and re-evaluates the
Jacobian, or reduces the order and time-step and re-
evaluates the Jacobian.

After a number of successful time-steps dependent
on the value of the current order, the code re-estim-
ates the time-step feasible at one order lower than, the
same order as, and one order higher than the current
order. It then chooses the next time-step as the largest
of the three estimates and chooses the order as that
order allowing the largest step.

While Gear’s original code is elegant, a shortcom-
ing is its need to decompose a matrix many times and
perform numerous back-substitutions for each de-
composition. Both full matrix decomposition and
back-substitution require a significant number of cal-
culations. In response to this problem, researchers at
Lawrence Livermore Laboratory and elsewhere began
to look for ways to reduce the number of matrix
calculations.

A characteristic of most ODE systems is that their
initial matrices contain many zero values. To exploit
the sparse structure of these matrices, Hindmarsh
(1975) introduced the first of several versions of the
Gear code that solves Jacobian matrices that have
banded structures. In addition, Spellman and
Hindmarsh (1975), Sherman and Hindmarsh (1980),
and Hindmarsh (1983), introduced Gear codes that
solve Jacobians that have arbitrary sparsity. These
latter programs used subroutines from the Yale
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Sparse Matrix Package (Sherman, 1975; Eisenstat
et al., 1977a,b). More recently, the group at Liver-
more has studied matrix-free methods of integrating
stiff ODEs (Brown and Hindmarsh 1986; Hindmarsh,
1986; Byrne, 1990).

The modified Gear-code and the accompanying
sparse-matrix solver we present, SMVGEAR, have
some similarities to, yet several differences from, some
of the codes developed at Livermore. In this paper,
we describe how we built SMVGEAR, compare
SMVGEAR to LSODES, a 1987 sparse-matrix Gear
code (see Hindmarsh, 1983, for the most recent up-
date), and compare SMVGEAR to a new forward-
backward Euler method, which we call the Multistep
Implicit-Explicit (MIE) scheme.

2. BUILDING SMVGEAR

Starting with Gear’s 1971 code, we made major
modifications in two areas. We vectorized the code
around the grid-cell dimension and built and imple-
mented a vectorized sparse-matrix package. Other
changes were minor in comparison.

2.1. Vectorization around the grid-cell dimension

Vectorization is a process by which many com-
puters speed up calculations in an inner DO ... CON-
TINUE loop. Up to a point, the longer the inner
vectorized loop, the faster the calculations in the loop,
and the greater the number of megaflops (million
floating point operations per second) the program
achieves. On Cray computers, such as the CRAY
Y-MP, a vectorized loop reaches 90% of its maximum
speed when the inner vector length is about 512 ele-
ments (NAS, 1992). Vectorized loops are also sensitive
to the types of operations performed within. For
example, a loop will often not vectorize if a recursion
occurs within it. Also, vectorized loops that contain
certain operations or certain pointer arrays are often
slower than vectorized loops written strategically with
different operations or without the arrays.

At first glance, a Gear-type code appears to have
two dimensions around which one can vectorize. One
dimension is the number of species, and a less appar-
ent dimension is the number of grid-cells. If one runs
a Gear-type code in a single grid-cell, then the only
practical vectorization dimension is the number of
species. However, running a Gear-code in one grid-
cell rarely presents a computational problem in the
first place. Also, most atmospheric models contem-
plate calculations in multiple grid-cells.

Based on experience, we have found that an atmo-
spheric model vectorized around the grid-cell dimen-
sion is much faster than one vectorized around the
number of species when the model contains more than
a few tens of grid-cells. A reason is that all classical
matrix decomposition/back substitution codes re-
quire several varying-length inner loops. For example,
matrix inner loops often march from length of one to



length of either the order or one-half the order of the
matrix. Thus, if the model has many grid-cells, it will
perform calculations in each cell with many inefficient
inner loops.

However, if we vectorize the code around the grid-
cell dimension, then the inner loop is efficient so long
as the model contains at least a few tens of grid-cells.
Theoretically, for a model with 50,000 grid-cells, every
inner loop can have a length of 50,000. However, for
pure chemistry models, this length is unnecessary and
undesirable. For example, since the speed of a CRAY
Y-MP computer reaches 90% of its maximum when
the inner loop is 512 units, we save array space by
dividing the grid-domain (entire grid) into grid-blocks
of 500 or so cells.

Furthermore, by limiting the size of each grid-
block, we reduce excess calculations. The reason is
that, in order to vectorize around grid-cells, we per-
form the same operations in every cell; thus, the num-
ber of operations in a block is limited by the number
of operations in the grid-cell containing the stiffest
ODEs. Consequently, the smaller a grid-block, the
fewer the number of cells forced to iterate at the same
pace as the stiffest cell in the block.

To perform the same operations throughout a grid-
block, we need to ensure that the time-step and the
order of the integration method (different from the
order of the matrix) are the same in each cell within
the block. To obtain the same time-step and order, we
first calculate the time-step required in each cell of
a block for (a) the current order, (b) one order lower
than the current order, and (c) one order higher than
the current order. Next, for each of the three orders,
we choose among the time-steps of all the cells in the
block for the shortest. Finally, in the same manner as
Gear, we choose among the three pairs of shortest
steps and corresponding orders for the longest of
these steps and for the order allowing the longest step.
Thus, the time-step and order of all cells in a block
will be identical and limited by the grid-cell with the
stiffest equations.

If we include horizontal and vertical transport im-
plicitly in the ODEs, then we still vectorize around
grid-cells. However, in such cases, we need to solve all
equations, simultaneously, over all grid-cells; thus, the
grid-domain can have only one block.

The speed-up from vectorizing loops around the
grid-cell dimension is large. For example, on the
CRAY-90 computer, the speed of SMVGEAR in
vectorized form is, on average, a factor of 120 greater
than its speed in scalar form. Individual subroutines
have exhibited speed-up factors of 220 or more. To the
contrary, the same code vectorized around the species
dimension can be up to forty times slower than the
code vectorized around the grid dimension.

2.2. JSPARSE: a package for evaluating sparse
Jacobian matrices

The second major adjustment we made to Gear’s
original code was to build into SMVGEAR an algo-

rithm (JSPARSE) that reduces the number of matrix
calculations yet still vectorizes every matrix calcu-
lation around the grid-cell dimension. JSPARSE re-
duces the number of matrix calculations in several
ways. First, it reorders species so that those with the
fewest combined production and loss terms appear
first in order and those with the most appear last.
This ordering allows ODEs with the most terms to
reside in the bottom rows of the matrix and ODEs
with the fewest terms to reside in the top rows,
maximizing the number of matrix multiplications that
include a zero term (e.g. Zlatev, 1991, p. 111). Second,
JSPARSE eliminates all calculations in which a zero,
known in advance, multiplies another number. To
determine, in advance, every occurrence of a zero
multiplication, the code, at the beginning of the
program, runs through a practice matrix decomposi-
tion/back-substitution, and sets new arrays eliminat-
ing all calculations in which a zero occurs.

Furthermore, since our atmospheric model con-
templates running both gas- and aqueous-phase and
day and night chemistry, we form different sparse-
matrix arrays for each of four chemistry cases: (a) gas-
phase day, (b) gas-phase night, (c) aqueous-phase day,
and (d) aqueous-phase night. We designed the pro-
gram to include any number of additional processes
as well. Separating day from night chemistry reduces
the number of matrix calculations since photo-dis-
sociation equations do not operate at night.

To further reduce the number of matrix calcu-
lations, we removed partial pivoting from the de-
composition process. The original reason to remove
partial pivoting was to maintain the same sequence of
calculations in each grid-cell. If we included partial
pivoting, then the order of calculations in each grid-
cell would differ, and we could not vectorize around
the grid-cell dimension. Fortunately, the use of partial
pivoting is unnecessary, as confirmed by Sherman and
Hindmarsh (1980, p. 195). They state, “... experience
has shown that pivoting is only rarely required in
certain applications, and, in any case, if the factoriza-
tion process should fail, a change in the step-size h will
usually improve matters because of the form of P.”
Based on tests of SMVGEAR to date, removing the
pivot has had little or no effect on stability or accu-
racy.

JSPARSE minimizes array space in several ways.
First, it pre-determines how many matrix positions
will fill in as a result of matrix decomposition and
back-substitution. This value is the sparse-matrix array
length for a given set of ODEs. For example, in a case
of smog chemistry, with 92 species and 222 chemical
reactions, the order of the original matrix was 92; thus
its dimension was 92 x 92 = 8464. However, the initial
matrix was sparse, with only 695 positions filled for
day chemistry and 671 for night chemistry. As matrix
calculations proceeded, JSPARSE filled-in about 150
more matrix positions in each case.

The number of fill-ins depends almost entirely on
the ordering of the ODEs in the matrix. For example,
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in the smog-chemistry case the ODEs originally had
no specific ordering. Consequently, the final matrix
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To measure the efficiency of SMVGEAR, we com-
pared it to another sparse-matrix Gear-code called
LSODES (Livermore Solver for Ordinary Differential
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Equations with Sparse Matrices), and to a code that
we built prior to SMVGEAR, called MIE (Multistep
Implicit-Explicit solver). LSODES, written jointly by
A. C. Hindmarsh and A. H. Sherman, is part of
ODEPACK (Hindmarsh, 1983), a collection of ODE
solver software available through NETLIB, a public-
domain software collection. LSODES originated as
GEARS (Spellman and Hindmarsh, 1975; Sherman
and Hindmarsh, 1980), and the version of LSODES
we obtained was last updated in 1987.

3.1. LSODES

LSODES and SMVGEAR have several similarities.
First, the driver routines of both codes are modifica-
tions of an original program of Gear (1971). Second,
both codes set up sparse-matrix arrays at the begin-
ning of the program. Third, both codes re-order the
ODE:s in the matrix to reduce fill-in and eliminate all
calculations involving multiplication by zero. Fourth,
neither code uses partial pivoting during the matrix
computations.

On the other hand, the codes currently differ in
several areas. First, while SMVGEAR vectorizes
around the grid-cell dimension, LSODES vectorizes
around the species and other dimensions. By restruc-
turing all arrays, one could probably vectorize
LSODES around grid-cells. Second, SMVGEAR
sums up several terms at a time within matrix and
other loops to further improve vectorization and re-
duce the number of overhead calculations.

Third, while one can adjust both codes for any
ODE application, SMVGEAR includes changeable
input data sets for atmospheric chemistry problems
and routines that automatically determine first and
partial derivatives. Thus, to change the chemical
problem, one needs only to change the species and
equations in the input data set. On the other hand, to
run LSODES as provided, a user needs to write a rou-
tine for evaluating the first derivative. LSODES can
internally calculate partial derivatives.

Fourth, SMVGEAR contains arrays that permit it
to solve any number of ODE systems during the same
model run. For example, it can solve gas-phase chem-
istry separately from aqueous-phase chemistry during
the same run while minimizing array requirements.
Furthermore, it contains different arrays for day and
night chemistry. To run two or more processes in the
same model with LSODES, one would have to either
restructure all arrays or implement two or more full
versions of LSODES in the model.

Fifth, SMVGEAR contains one common-block
while LSODES includes COMMON statements in
every subroutine. Thus, while the subroutines in
LSODES are more modular, one can make changes
in SMVGEAR more easily. Sixth, aside from the set-
up routines, SMVGEAR has only five subroutines—
(a) a driver routine that calculates time-steps, method
orders, and final concentrations; (b) a routine that
calculates partial derivatives; (c) a routine that per-
forms matrix decomposition; (d) a routine that
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performs back-substitutions; and (e) a routine that
evaluates first derivatives. LSODES, on the other
hand, calls about 13 subroutines during the solution-
phase of the program.

For the most part, other differences are minor. We
want to acknowledge, however, that we borrowed
three ideas from LSODES. These include LSODES’
method of (a) predicting the first time-step, (b) setting
the error weight, and (c) determining convergence of
the corrector iteration. For example, LSODES uses
a relative and absolute error tolerance to determine
convergence in a slightly different manner from Gear
(1971), whose convergence test we previously used.
LSODES calculates an error weight for each species
i at time ¢, as

Wei=ErCi+Ea (&)

where C! is the concentration of species i at time ¢,
Eg is a relative error tolerance, and E, an absolute
error tolerance. LSODES then computes the root-
mean-square norm over all species’ errors divided by
their error weights and uses the norm to determine
convergence.

3.2. MIE

MIE, on the other hand, is not a Gear-type code. In
this section, we describe the algorithm. In sum, to
obtain results from MIE, we estimate species concen-
trations by iterating over a backward-Euler formula,
and use the estimates in a forward-Euler to obtain
final concentrations for a time-step. The step-size for
the MIE method can vary, but currently it is not
determined so elaborately as in Gear-type codes. In-
stead, we usually start with a fixed time-step, gradu-
ally increase the step, but reduce it if convergence
becomes difficult. There is no reason why, however,
we cannot predict a time-step for the MIE code. After
a series of time-steps, we complete a time-interval,
which has a pre-determined length. At the end of the
interval, we go on to another process in the model and
then return to MIE for another interval.

Here, we describe the iteration sequences of the
MIE algorithm for a single time-step. In the following
notation C is concentration, in units of molecules per
cubic centimeter of air for gas-phase and moles per
liter of water for aqueous-phase species. The super-
scripts t and ¢ + 1 indicate value at the beginning and
end, respectively, of a time-step. The superscripts est,
MAX, and m, respectively, indicate an estimated
value, a maximum estimated value, and an iteration
number. Finally, subscripts i and j identify species
numbers. Thus, C#"™ is the mth estimated concentra-
tion of species i, and Cet! s the first estimated con-
centration of i. One can solve for each species’ final
concentration, Ci*!, during a time-step in the follow-
ing order:

(i) Set the first and the maximum estimated concen-
trations of each species to its initial concentration.

cemi=Ct ©
cpaxi=cy. )
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(i) Iterate over equations (8)—(17). The first step in
the sequence is to calculate reaction rates with estim-
ated concentrations. Each rate describes a uni-, bi-
(equation (8)), or ter-molecular kinetic reaction, or
a photodissociation process (equation (9)), such as

R,e'.ﬂ.m = K" C iest,m C;Sl,m (8)
and
Rﬁ!t,m = J" C iest,m (9)

where the subscript n is the reaction or photo process
number and RZ"™ is the mth estimated overall rate of
a reaction (e.g. No. cm~3s™?! for gas-phase). Also,
K, is the kinetic reaction rate coefficient (e.g. s~ !, cm?
No."!'s™*, or cm® No.”2 s~ ! for gas-phase) and J, is
the coefficient of a photodissociation process (s ~1). If
the rate coefficient is pressure-dependent, temper-
ature-dependent, or empirical, then we calculate it at
the beginning of a time-interval and change it only
before the next interval.

(iii) Next, sum up the mth estimated explicit pro-
duction rate, Pf*™, and explicit loss rate, L{™™ (e.g.
No. cm~3s™! for gas-phase), and calculate the impli-
cit loss coefficient, If*™ (s 1), of each species. Below,
the subscript n(p) is reaction rate n of the pth produc-
tion term, and n(l) is rate n of the Ith loss term. The
production and loss terms are

No. prods
Pf'“'m = Z R:s('p')" (10)
p=1
No. losses
Lem= Y R (11)
1=1
and
lgom = Lgstm | C . (12)

(iv) With the mth implicit loss and explicit produc-
tion terms, calculate the m+ 1th estimated concentra-
tion of each species with a backward Euler formula
(Curtiss and Hirschfelder, 1952). The backward Euler
is implicit (Rosenbaum, 1976; Shampine and Gear,
1979) and can be written as

Ciest.m+1 =[C!+Pestm At]/[1+1gstm At] (13)

where At is the time-step, in seconds. Next, use the
estimated concentrations to calculate production and
loss terms during the subsequent iteration. Equation
(13) always yields a positive concentration and con-
tains no exponential terms, minimizing computer
time.

In the special case where a species has no produc-
tion, equation (13a) describes its final concentration. If
we calculate estimates with equation (13b) instead of
with equation (13) in such cases, the explicit concen-
tration of the species will approach the solution from
equation (13a). Equation (13b) gives a slightly more
accurate solution than (13) when a species rapidly
decays.

_qest.m
Citl=Cle "

C‘gsl.mﬁ»l = C:( 1 _e—l;‘"""A()/ l:;st.m At.

(13a)
{(13b)

M. Z. JacoBsoN and R. P. Turco

(v) Calculate tentative final concentration of each
species explicitly with the forward-Euler formula,
written as

CIT'=Cl4[PEm—L&m AL (14)

(vi) Test whether the system has reasonably con-
verged for the time-step. At some point during the
iteration sequence, concentrations calculated from
equation (14) should exceed zero and converge. The
more iterations the code takes after all explicit con-
centrations exceed zero, the closer each concentration
approaches the converged solution. We define Np as
a number of iterations we instruct the code to take,
during which all values from equation (14) exceed
zero. When all explicit concentrations exceed zero
during a total of Np iterations, the iteration sequence
ends.

If C{*1>0 for every species i for Np iterations, then
stop iterating and set each final concentration to
Ci*'. If Ci*'1<0 for at least one species, iterate
more. (15)

At first, one might think the above convergence
criteria is risky. However, to date, it has worked well.
For a large set of equations, the criteria works when
Np=1 because MIE usually takes 3-30 iterations
before it dampens heavy oscillations and before every
explicit concentration exceeds zero during a time-step.
Thus, by the time all explicit values exceed zero, most,
but not all, have converged.

Furthermore, when using the MIE code, we often
take a series of time-steps during a time-interval. At
the end of the interval, we go to another process in the
model, and come back to MIE for its next interval,
Because solutions to first-order rate equations tend to
dampen over time, the implicit and, therefore, explicit
solutions from equations (13) and (14), respectively,
converge from time-step to time-step. Since we treat
the implicit loss-coefficient (equation (12)) of second-
order, self-reactions, as if they were first-order reac-
tions, these equations also dampen. Thus, because
errors tend to dampen each time-step and because we
want an accurate solution only by the end of an
interval, we need to fully converge concentrations
only at the end of an interval.

For small sets of equations we set Np>1 during
every time-step because all explicit solutions may ex-
ceed zero before MIE has dampened oscillations. By
setting Np>1, we allow iterations after all explicit
values exceed zero, improving the solution.

If convergence does not occur after a maximum
number of iterations permitted (which we set to be-
tween 100 and 300), then we reduce the time-step.
Typically, MIE iterates between three and 30 times
per time-step.

(vii) The last iteration step is to “cap” the implicit
estimate to prevent some from exploding to infinity
upon iteration. A cap can also significantly decrease
the number of iterations needed for convergence. The
choice of a cap is not unique. Some include holding
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the maximum estimate to the larger(est) of the initial
concentration and (a) the first estimate, (b) any of the
first four estimates, or (c) the value of the previous
estimate before being limited by the cap. We use (c).
The equations describing cap (c) are

C?IAX‘"'+1=MAX{C,?S"M+1, Ci} (16)

and

Cfs""'+1=MIN{Cf‘“‘"'+1, C,MAX'"'}. (17)

(viii) In this scheme, iterated explicit concentra-
tions from equation (14) and iterated implicit concen-
trations from equation (13) converge to the same
value. However, if a species is short-lived (I{**™At> 1),
its implicit concentration converges faster. Thus,
a way to reduce computer time is to calculate final
concentrations of short-lived species with equation
(13) instead of (14). However, calculating too many
final concentrations implicitly causes mass loss over
time. A way to reduce mass loss is to solve only a few
final concentrations implicitly. To do so, we define LT
as a unitless number to compare I{*™At against. If
I£™At > LT for a species, then we set the species’ final
concentration to its last estimate from equation (13).
Thus

if I§*mAt> LT then Ci*!=Cg™last (18)

We typically set LT and Np at the start of a time-
interval and re-set them for the last step of the inter-
val. For example, at the start, we often set Np=1 and
LT=108. For the last step, we either reduce LT to 102,
increase Np to between 20 and 250, or both. Gener-
ally, to prevent accumulation of error over time, we
want to force a sufficient number of iterations during
each time-step. Setting LT=10% or more for most
steps usually forces sufficient iterations.

Finally, when [£*"" At > LT, a species’ explicit con-
centration does not need to exceed zero because we
use its implicit concentration as the final value. Thus,
to speed up the code we can replace (15) with (15m).

If C1*1>0 or I#*™At>LT1 for each species i for
Np iterations, then stop iterating and set final concen-
trations to C!*!' when I{*™At<LTl or to
Cestlast when I8 At > LT. If Ci*! <0 for at least one
species, continue iterating. (15m)

Above, LT1 is any number greater than or equal to
LT.

In summary, the MIE code solves ODEs by estim-
ating species concentrations with an iterated back-
ward-Euler formula and using the estimates to
determine rates with a forward-Euler. While the for-
ward-Euler predicts the final concentration of most
species, the backward-Euler predicts the final concen-
tration of the shortest-lived species. We have applied
MIE to atmospheric chemistry problems only; how-
ever, there is no reason why MIE cannot solve ODEs
for other processes.
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3.3. Timing tests

We tested SMVGEAR against both LSODES and
MIE for three cases: two smog chemistry and
a stratospheric chemistry case. In the next section, we
show additional timings of SMVGEAR solving both
gas- and aqueous-chemistry in a full model.

The smog mechanism we tested was a combination
of inorganic equations compiled from DeMore et al.,
1990, organic equations from the Carbon-Bond IV
expanded mechanism (Gery et al., 1988), sulfur equa-
tions from Toon et al. (1987), and additional reactions
for a total of 92 gas-phase species or lumped bond
groups, 200 chemical reactions, and 22 photodissoci-
ation processes. Of the 200 kinetic rates, we calculated
several as three-body pressure-dependent reactions.

For the first smog simulation (SMOG11), we in-
itialized 14 species with concentrations of 5.0 x 10!
cm ™3, and most other active species with zero concen-
tration. However, we set the initial concentrations of
major atmospheric constituents, such as oxygen, ni-
trogen, water, carbon monoxide, and methane, at
realistic levels. For the second simulation (SMOG12),
we increased the initial concentration of 14 species
from 5 x 10! to 5 x 10'2 cm ~ 3 to increase the stiffness
of the system.

For the stratospheric test (STRAT), we used a set of
39 species, 84 chemical reactions, and 24 photodis-
sociation processes compiled primarily by S. Elliott
and R.P. Turco (personal communication). We as-
sumed an altitude of 20 km (pressure of 55.3 mb),
a constant temperature of 217 K, and fairly realistic
initial concentrations.

For both the smog and stratospheric tests, we
changed the photorates every time-step, no matter
how small. To simplify the tests, we varied the photo-
rates with a sine function during 12 of every 24 h and
turned the photorates off every other 12 h. Thus, the
only process occurring during the simulations shown
in this section was chemistry with photorates continu-
ously changing during each day.

Furthermore, we fixed the relative error tolerance
of both SMVGEAR and LSODES to 10~3 and the
absolute error tolerance of each species to 103. Both
codes predicted their own time-steps. For the MIE
code, we initialized the time-step at 10 s and allowed
the step-size to increase by a factor of two every 30
steps. After every 1800-s interval, we re-set the time-
step to 10 s. Also, for MIE, we set LT=10° and Np=1
at the beginning of each interval and changed
LT=10? and Np=20 for the last time-step of each
interval.

Before running speed comparisons among the
codes, we determined error resulting from each code’s
parameter values. We calculated the average abso-
lute-value concentration error over time as

100% & 1 " ) =CP
ERROR=—Z2Y {_ y ABS(—(—-)—C”' L )}
I j=1 Ns.ji=1 Ce,i
(19)
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Table 2. Average absolute-value percent error (as determined by equation (19)) in concentration for

SMVGEAR and MIE resulting from the choice of parameter values and/or error tolerances. In each case,

SMOG11, SMOG12, and STRAT, we averaged errors over all 1800-s time-invervals during the given

simulation period. The separate columns under SMVGEAR and MIE indicate the lowest concentrations
we included in the error calculation

SMVGEAR MIE
Simulation Include Include concs Include Include concs
period concs>10"ecm™3 >10"°cm™3 concs>10'cm™3 >10"%cm™3
(d) (%) (%) (%) (%)
SMOGI11 1 0.55 1.35 1.44 2.84
SMOGI12 1 0.46 1.08 142 2.61
STRAT 9 0.25 0.51 1.20 142

where Ny is the number of time-intervals during
a model run, Ng; is the number of species whose
concentration are above a minimum value after the
jth time interval, C'"Y) represents a concentration at
time t, corresponding to the end of the jth interval,
and the subscripts p, i and e, i refer to predicted and
exact concentrations, respectively, of species i. In all
cases, we used SMVGEAR with a stiff error tolerance
to obtain “exact” solutions after each time-interval.

Table 2 shows the time- and species-averaged er-
rors from MIE and SMVGEAR. For SMVGEAR, we
tested the effect of assuming a relative error tolerance
of 1073 and an absolute tolerance of 10? instead of
more stringent tolerances. For MIE, we tested the
effect of using the values for the time-steps, LT and
Np, given above. Since we used LSODES with the
same error tolerances as SMVGEAR, we assumed it
gave errors similar to those of SMVGEAR. For these
tests, we ran simulations of either one or nine days.
For both SMVGEAR and MIE, we divided the simu-
lation period into intervals of 1800 s in order to ob-
tain the error at the end of these intervals. The results
from Table 2 indicates that SMVGEAR gave lower
errors than MIE in all cases.

Finally, we tested the three codes running in a one
grid-cell model and tested SMVGEAR and MIE in
a 500 grid-cell model. Because the chemistry in each
grid-cell was the same and LSODES does not vector-
ize around grid-cells, LSODES takes the same time
per grid-cell to solve in 10,000 or 100,000 cells as it
does to solve in 1. Thus, to obtain LSODES results for
many grid-cells, we multiplied its time to solve in one
cell by the total number of cells in the domain. Sim-
ilarly, because we limited the block-size of
SMVGEAR and MIE to 500 cells in these examples,
we extrapolated its time to solve in 500 cells to its time
to solve in the entire domain.

For the two smog tests, we simulated chemistry for
3-day periods. For the stratospheric test, we simulated
for a 30-day period. During these tests, only MIE
divided the simulation period into intervals of 1800 s.
The other two codes integrated continuously.

Table 3 shows results from the three simulations
and characteristics of the different codes. First, in
large grid-domains, SMVGEAR was about 60-times

faster than LSODES and 30-55-times faster than
MIE. While some of SMVGEAR’s speed-up com-
pared to LSODES resulted from fewer matrix calcu-
lations, most resulted from vectorization. Because
MIE vectorizes around grid-cells, it, too, runs faster
over large domains than it does over small domains.

Second, in one grid-cell, LSODES was fastest be-
cause it vectorizes around the species dimension while
both SMVGEAR and MIE vectorize around the grid-
cell dimension. In fact, because SMVGEAR vectorizes
around grid-cells, every inner loop is inefficient in
a one grid-cell model. However, one can make
SMVGEAR more efficient in one grid-cell simply by
removing all the inner grid-cell loops.

Although SMVGEAR was slower in one grid-cell,
it performed fewer matrix decomposition and back-
substitution calculations, in all simulations, than did
LSODES. Thus, the greater speed of LSODES in one
grid-cell was attributable to its type of vectorization.
In fact, row (e) of Table 3 shows that, if we remove the
effects of vectorization, SMVGEAR performed slight-
ly faster than LSODES. However, the number of
matrix fill-ins in each case was similar for the two
codes. Meanwhile, the MIE code was far slower than
either of the other two codes in a one grid-cell model.

In sum, when we ran SMVGEAR over a grid-
domain, and the only process was gas-phase chem-
istry with diurnally changing photorates, SMVGEAR
was very fast on a vectorized machine compared to
the other two codes tested. Furthermore, without
vectorization, its time was slightly better than
LSODES, one of the fastest available ODE solvers.
From Table 3, we calculate that SMVGEAR required
about 1.4 min of simulation time per day of smog-
chemistry simulation over 10,000 grid-cells and
3.4 min per day of stratospheric-chemistry simulation
over 100,000 cells. In the next section, we discuss the
timing of SMVGEAR in a model containing other
processes.

4. APPLICATION OF SMVGEAR

In this section, we report the speed of SMVGEAR
in two other atmospheric applications. Because
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Table 3. Statistics from two smog-chemistry and one stratospheric-chemistry comparisons on a CRAY-90
computer. The smog-chemistry tests, described in the text, were for 3 simulation days, and the stratospheric
test was for 30 simulation days. For smog-chemistry, we tested the three solvers over both 10,000 grid-cells
and 1 cell, while for the stratospheric case, we tested over 100,000 cells and 1 cell. Row (e) in each case
normalizes the time of each code to a common speed of one megaflop since, with different numbers of
grid-cells, each code vectorizes differently. For all three simulations, SMVGEAR and LSODES used the
same error tolerances and a similar initial time-step
SMVGEAR LSODES MIE

SMOG11 CHEMISTRY

(a) CPU time to solve 3 days, 10,000 cells 3.9 min 4.08 h 216 h

(b) Megaflops for 3 days, 10,000 cells 342 109 341

(c) CPU time to solve 3 days, 1 cell 292s 147 s 432s

(d) Megaflops for 3 days, 1 cell 31 109 4.7

(e) CPU time 3 days, 1 cell, at 1 megaflop 9.1s 160 s 203 s

(f) Vectorization speed-up — (d) x 10,000/(a) 124.8 1 55.6

(g) Number of time-steps taken, 1 cell 808 876 10,296

(h) Number of matrix decompositions, 1 cell 211 274 —

(i) Number of matrix back-substitutions, 1 cell 1394 1738 —

(j) Matrix size after fill-ins, 1 cell (day/night) 839/815 839 —
SMOG12 CHEMISTRY

(a) CPU time to solve 3 days, 10,000 cells 4.24 min 458 h 386 h

(b) Megaflops for 3 days, 10,000 cells 342 10.97 340.5

(c) CPU time to solve 3 days, 1 cell 331s 1.65s 624 s

(d) Megaflops for 3 days, 1 cell 3.07 10.97 4.7

(e) CPU time 3 days, 1 cell, at 1 megaflop 102 s 18.1s 293 s

(f) Vectorization speed-up — (d) x 10,000/(a) 130.1 1 449

(g) Number of time-steps taken, 1 cell 915 932 10,472

(h) Number of matrix decompositions, 1 cell 247 317 e

(i) Number of matrix back-substitutions, 1 cell 1531 1925 —

(j) Matrix size after fill-ins, 1 cell (day/night) 839/815 839 —
STRATOSPHERIC CHEMISTRY

(a) CPU time to solve 30 days, 100,000 cells 1.7h 115 h S1.1h

(b) Megaflops for 30 days, 100,000 cells 346.7 9.83 342

(c) CPU time to solve 30 days, 1 cell 71s 414 s 884 s

(d) Megaflops for 30 days, 1 cell 3.61 9.83 4.6

(e) CPU time 30 days, 1 cell, at 1 megaflop 256 s 40.7 s 293 s

(f) Vectorization speed-up — (d) x 100,000/(a) 116.0 1 48

(g) Number of time-steps taken, 1 cell 5188 4548 102,960

(h) Number of matrix decompositions, 1 cell 1743 2044 —

(i) Number of matrix back-substitutions, 1 cell 9008 9776 —

(j) Matrix size after fill-ins, 1 cell (day/night) 334/305 344 —

SMVGEAR solves ordinary differential equations, we multicomponent coagulation, require significant

can include advection, diffusion, emissions, depos-
ition, aerosol growth and evaporation, and many
other physical processes as terms in the equations.
Furthermore, if we include advection and diffusion
terms in the ODEs, we can still vectorize around
grid-cells; but, we need to solve the equations in every
grid-cell simultaneously. For a purely gas-phase at-
mospheric model, solving every process at the same
time, using SMVGEAR, appears feasible, depending
on the speed and memory abilities of the computer.

However, when we add multicomponent, size-re-
solved aerosols to the model, solving all processes
simultaneously becomes a formidable task. For
example, our air pollution model contains on the
order of 70 aerosol species resolved into 40 or more
size bins, and 92 gases. Thus, for a 10,000-cell domain
we would need to solve almost three million ordinary
differential equations simultaneously if we wanted
SMVGEAR to take responsibility for the entire
model. Furthermore, some aerosol processes, such as

matrix fill-in.

Consequently, a more feasible approach to compre-
hensive atmospheric modeling is time-splitting differ-
ent processes. A disadvantage of time-splitting is that,
if we solve some processes with SMVGEAR, we need
to re-start calculations in SMVGEAR every time-
interval under conditions that often differ significantly
from the conditions at the end of the previous interval.
Because of the abrupt transition, SMVGEAR will
often restart with a time-step and order smaller than
those used at the end of the previous interval and the
overall time spent in SMVGEAR will increase.

To test the speed of SMVGEAR in a time-split
model, we ran a 24-h simulation in a 10,000 grid-cell
domain (40 latitudinal cells x 50 longitudinal cells x 5
vertical layers), which we divided into blocks of 500
grid-cells. The model included gas-phase smog-chem-
istry, gridded emissions, horizontal advection, vertical
diffusion, and dry deposition. The resolution of each
horizontal grid-cell was about 4.5x5km, and the
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emissions data, provided by the California Air Re-
sources Board, included emissions rates for 17 gases
and lumped carbon-bond groups that differed in each
surface grid-cell and for each hour. We added the
emissions rates as terms into the ODEs of
SMVGEAR. Because emissions rates during a given
time-step are constant, we added the terms to the
right-hand side of equation (4) but not to the Jacobian
matrix, J.

Every SMVGEAR time-step, we interpolated the
emissions rate in each grid-cell of each species be-
tween the rate for the current hour and that for either
the hour ahead or behind. The reason we interpolated
the emissions was to create a smooth profile. No
matter how small the time-step, we performed this
interpolation. The time taken to recalculate emissions
every time-step was de minimus compared to the sav-
ings in iterations it permitted.

Next, we time-split the advection and remaining
vertical transport terms. The advection code we used
originated from Toon et al. (1988), and the vertical
transport code originated from Turco et al. (1979a,b)
and Toon et al. (ibid.). During the 24-h simulation, we
solved the horizontal and vertical transport using
300-s intervals, and we solved the 92 chemical ODEs
(with continuously changing photorates and emis-
sions) using 1800-s intervals. In other words, every
1800 s, we stopped the calculations in SMVGEAR,
performed six transport steps, and returned to
SMVGEAR for another interval.

For the 24-h simulation over 10,000 grid-cells,
SMVGEAR took a total of 6.7 min at an average
speed of 326 megaflops to perform the chemistry and
emissions calculations. We stress that, during this
simulation, species concentrations differed widely in
each grid-cell. Table 4 displays the speed of the differ-
ent SMVGEAR processes during this application.
The table shows that SMVGEAR performed an average
of 3.97 back-substitutions each time it decomposed
a matrix. Because the ratio of decomposition to back-
substitution operations is about 3:1 (Table 1), we
would expect back-substitution to take more time.
However, the back-substitution coding is about 1.8-
times faster than the decomposition coding; thus,
decomposition took more time.

Finally, if all processes in this simulation had
achieved 420 megaflops (about the speed of the fastest
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routine) SMVGEAR would have taken about 5.2 min,
or 22%, less time than it actually took. Even better, if
some SMVGEAR routines achieved over 600 mega-
flops, the speed of two other routines in the time-split
model, the time to solve would decrease even more.
Thus, a future job is to further increase the speed of
individual processes in SMVGEAR.

In the second application, we used SMVGEAR to
solve both gas- and aqueous-phase chemistry in the
same model. Other processes we included during the
run were horizontal advection, vertical diffusion, con-
densational and dissolutional growth, chemical equi-
librium, and dry and wet deposition. Furthermore, we
resolved the aerosols into 43 size bins. While each size
bin contained 50 species for this simulation, 37 of the
species were active in aqueous chemical reactions, and
almost all of the S0 were included in either gas—aque-
ous transfer or aqueous—aqueous equilibrium reac-
tions. We obtained most aqueous chemical equations
from Pandis and Seinfeld (1989) and Jacob (1986).

Initially, the aerosols contained only solid matter
and some water. We then increased the relative hu-
midity to above 100% and allowed the 43 size bins to
grow to various fog-size drops. Meanwhile, we ini-
tialized the gas-phase with concentrations similar to
those in Pandis and Seinfeld (1989), and allowed
SMVGEAR to solve gas-phase chemistry. Also, in
time-split operations, we calculated the transfer of
gases simultaneously to all size bins, calculated chem-
ical equilibrium among aqueous species in each bin,
and calculated the forward aqueous-phase chemistry
in each bin. We used SMVGEAR to solve the aqueous
chemistry and used codes we developed to compute
the other processes. For this application, we solved all
aerosol processes during 24 3600-s time-intervals, and
calculated 12 transport intervals for every chemical
and micro-physical interval.

While SMVGEAR performed the calculations in
500-cell grid, we extrapolated the results to 10,000
cells. For gas- and 43 size bins of aqueous-phase
chemistry combined, the total time SMVGEAR
needed for a 10,000-cell grid and a 24-h simulation
period was 3.4 h. The gas-phase chemistry required
less than 1.8% of the total time. The average speed of
SMVGEAR on the CRAY-90 computer for this ap-
plication was 348.6 megaflops, and the ratio of back-
substitution to matrix decomposition calls was 5.7.

Table 4. Timing and speed of different processes in SMVGEAR during a 24-h simulation over
10,000 grid-cells. During the simulation SMVGEAR solved 92 ODEs that included chemical and
emissions terms. Horizontal advection, vertical diffusion, and dry deposition were time-split and
solved by other methods. Thus, the timings here are those for the chemical and emissions processes

only
Driver Partial Matrix de- Matrix First Total time/
routine derivative composition back- derivative average speed
evaluation substitution evaluation
Time speed 100 s 50.7 s 95.1s 77.1s 78.7 s 6.7 min
(megaflops) 427 205.7 226.7 4148 308.5 326
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The primary reason SMVGEAR took longer to solve
aqueous reactions than gas-phase reactions is that
aqueous reactions are much stiffer than gas reactions.
A lesser reason is that we solved the aqueous chem-
istry in 43 size bins, compared to the equivalent of one
size bin for the gas-phase.

An important difference between solving gas- or
aqueous-phase chemistry with SMVGEAR is setting
the absolute error tolerance. While we set similar
relative error tolerances with gas and aqueous chem-
istry, the absolute tolerance depends on typical con-
centration values. Since we used units of No. cm ™3 for
the gas-phase and mol £~ for the aqueous-phase, the
concentration values can differ by more than 30 or-
ders of magnitude. Thus, while we usually set the
absolute tolerance to 10% cm ™3 for the gas-phase, we
changed it to between 10”3 M and 1075 M for the
aqueous-phase. If a significant number of aqueous
concentrations decay below the latter value, the aque-
ous error tolerance should be set to even smaller
values.

5. CONCLUSION

We have presented a new sparse-matrix, vectorized
Gear-type code (SMVGEAR). Because SMVGEAR
vectorizes around grid-cells, one can use it on vector
machines to solve multidimensional atmospheric
problems. For problems in single grid-cells and for
problems on non-vector machines, SMVGEAR per-
forms similarly to LSODES, another sparse-matrix
Gear-code. Based on CRAY-90 timing tests,
SMVGEAR can solve chemistry in 102-10° grid-cells
in good speed, and it is much faster than the MIE
(Multistep Implicit-Explicit) method, which is the
method we used previously.

To vectorize around the grid-cell dimension,
SMVGEAR performs the same operations in each cell
of each grid-block, where a grid-block is a chunk of
cells within an overall grid-domain. Thus, the time-
step and order of SMVGEAR in a grid-block are
limited by the grid-cell with the stiffest ODEs. How-
ever, the speed-up from vectorizing over grid-blocks is
far greater than the loss of speed from performing
extra calculations in some cells of a block.

Furthermore, the grid-block concept is ideal for
parallel computing. We can send each block to an
individual processor, and if the processor is vector-
ized, computational time can decrease dramatically.
For example, if a machine has 32 processors, 4 vector
units per processor, and each vector unit achieves 32
megaflops at peak performance. Then, the maximum
speed on this computer would be more than 4000
megaflops. Even if the practical speed of the CM-5 is
1000 megaflops, SMVGEAR would compute almost
three-times faster than it currently computes on the
CRAY-90.

Although SMVGEAR has been optimized, its
speed can be improved. For example, some sections
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of the code do not achieve the same speed as other
sections. By working on the loops of the less efficient
sections, we can increase the program’s speed. Fur-
thermore, we can re-order the grid-cells, each time-
step, by putting cells with the stiffest equations
together in the same grid-block.

Currently, we use SMVGEAR to solve gas-phase
and size bin-resolved aqueous-phase chemistry in an
air pollution model that also computes the effects of
many other processes. A challenge is to include more
terms in the ODEs of SMVGEAR in order to reduce
the discontinuities caused by time-splitting. As com-
puter speed and memory increases, solving gas and
aerosol processes together with transport in large
grids will become more and more practical.
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