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We present a numerical method of simulating the
aerosol processes of coagulation, condensational
growth, and evaporation over a hybrid size grid. In the
hybrid grid, the volume of involatile core material is
constant for each size bin, but the volume of volatile
material fluctuates. Since particles in each bin grow
and evaporate at their own pace, particles from one bin
can obtain the same volume as those from another bin
while maintaining different composition. Similarly,
particles from different bins that grow to the same size
can evaporate back to their respective original core
sizes. Allowing independent growth of particles inhibits
numerical diffusion since particles in each bin grow or
evaporate to their actual sizes. When two particles
coagulate, they form a new particle with core volume
between the core volumes of particles in two other bins.

We partition the new particle and its total volume
between these two bins. Similarly, we adapt other pro-
cesses, such as nucleation, emissions, and transport to
the hybrid grid structure. The condensational growth
equations developed conserve mass between the gas
phase and size-distributed aerosol phase. Because the
equations result in sparse matrices of partial deriva-
tives, SMVGEAR, a sparse-matrix Gear-type integra-
tor, solves them quickly. Furthermore, the semi-im-
plicit coagulation equations used here conserve volume
exactly, are absolutely stable, and require no iteration.
Finally, we compared model solutions to both analyti-
cal and other integrated numerical solutions. To obtain
numerical solutions, we developed and integrated equa-
tions that simulate simultaneous coagulation and
growth of multicomponent particles.

I. INTRODUCTION

Atmospheric models often simulate
aerosol processes such as nucleation, co-
agulation, condensational and dissolu-
tional growth, chemical equilibrium, aque-
ous chemistry, and transport. Currently,
several numerical schemes are available
to treat condensational growth and evapo-
ration. Among these are discrete size bin
(sectional) methods (e.g., Turco et al,
1979a,b; Gelbard and Seinfeld, 1980;
Seigneur, 1982; Warren and Seinfeld,
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1985; Pilinis et al., 1987a; Toon et al.,
1988; Rao and McMurry, 1989), finite ele-
ment methods (Varoglu and Finn, 1980;
Tsang and Brock, 1983, 1986; Tsang and
Huang, 1990), modified upwind difference
methods (e.g., Smolarkiewicz, 1983; Tsang
and Korgaonkar, 1987; Kim and Seinfeld,
1990a), moments methods (e.g., Friedlan-
der, 1983; Whitby, 1985; Lee, 1985; Brock
et al., 1986; Brock and Oates, 1987), the
cubic spline method (e.g., Middleton and
Brock, 1976), and moving (or variable) bin
methods (e.g., Mordy, 1959; Neiburger and
Chien, 1960; Gelbard, 1990; Kim and Se-
infeld, 1990b).

We define a stationary size bin as one
where the volume of each particle in the
bin is constant and the same as the vol-
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ume of each other particle in the bin.
When a particle grows (or evaporates), it
transfers from its current bin to a bin
containing larger (or smaller) particles. A
moving bin, on the other hand, is one
where the volume of each particle in the
bin changes, and changes at the same rate
as the volume of each other particle in
the bin. Thus, when a particle grows (or
evaporates), it stays in its current bin but
increases (or decreases) in volume.

Every growth scheme has advantages
and disadvantages associated with it. A
disadvantage of many schemes is numeri-
cal diffusion, which lowers peak concen-
trations and spreads the distribution over
a wider size interval. Numerical diffusion
occurs in stationary bin models because,
when mass moves to a larger or smaller
bin, it often distributes itself uniformly
throughout the bin. As a result, the dis-
tributed mass can quickly grow or evapo-
rate to the next highest or lowest bin the
very next time step. For a comparison of
the levels of numerical diffusion in dif-
ferent growth models, refer to Tsang and
Rao (1988).

Another problem is numerical disper-
sion, which appears as waves ahead of or
behind the regions of high concentration.
Typically, finite element methods without
“upwinding” create dispersion, while those
with “upwinding” eliminate dispersion but
create diffusion (Tsang and Brock, 1983).

A third problem is the tracking of in-
volatile material in multicomponent parti-
cles after growth. For example, when par-
ticles grow to a narrow distribution (e.g.,
in a fog) in a stationary bin model, the
core material agglomerates into a few bins.
Subsequently, when the particles evapo-
rate, the aggregated materials cannot re-
distribute back to their original sizes un-
less additional information is stored.

A fourth obstacle is conserving mass of
both gas and aerosols during growth. Of-
ten, growth models subtract off the
amount of gas removed by aerosol growth.
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However, subtracting can result in nega-
tive gas concentrations, requiring subse-
quent adjustments. Thus, solving for the
gas and aerosol concentrations together
improves solutions to the growth equa-
tions.

For this paper, we used a moving size
grid for growth and evaporation to over-
come the problems stated above but
maintained a stationary grid structure for
other processes. We also derived and
solved growth equations that conserve
mass when it transfers from a gas to size-
distributed aerosols. Among the first to
use the moving bin method, Mordy (1959)
and Neiburger and Chien (1960) calcu-
lated condensational growth of cloud
droplets. Recently, Gelbard (1990) also
discussed a moving bin growth model that
Kim and Seinfeld (1990b) expanded for
multicomponent aerosols. Advantages of
the moving bin method are that it avoids
both numerical diffusion and dispersion
(Gelbard, 1990; Kim and Seinfeld, 1990b).

For other processes, such as coagula-
tion, emissions, and nucleation, we main-
tained the characteristics of a stationary
grid. In the case of coagulation, we modi-
fied the equations described in Jacobson
et al. (1994a) for the hybrid size grid.
Jacobson et al. expanded upon the semi-
implicit method of Turco et al. (1979a,b)
and Toon et al. (1988) to permit coagula-
tion over any size grid and among any
number of particle types, each with a dif-
ferent size distribution and composition.

While several models have treated
single-component coagulation and con-
densation together (e.g., Middleton and
Brock, 1976; Gelbard and Seinfeld, 1978;
Warren and Seinfeld, 1985; Tsang and
Hippe, 1988; Wu and Flagan, 1988), fewer
have treated multicomponent coagulation
and condensation simultaneously (e.g.,
Bassett et al., 1981; Toon et al., 1988;
Kim and Seinfeld, 1990a; among others).
The model developed here combines mov-
ing bin growth with stationary bin coagula-
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tion for multicomponent and/or multi-
type aerosols.

The next section discusses growth, co-
agulation, and other processes using dif-
ferent size bin structures, and Section III
describes the condensational growth
equations we use. Finally, Section IV
compares results to analytical and numer-
ical solutions and Section V shows appli-
cations of the model.

II. COMPARISON OF SIZE BIN
STRUCTURES

When simulating multicomponent
aerosols, we can use one of several size
bin structures. In this section, we compare
advantages and disadvantages of just
three—a completely stationary grid, a hy-
brid stationary-moving grid, and a com-
pletely moving grid structure.

For all cases, we assume one multicom-
ponent particle type and define the sum
of the volumes of involatile material (e.g.,
elemental carbon, dust, and involatile or-
ganic carbon) in a particle as the core
volume of the particle. Non-core material
can either condense onto, equilibrate with,
or react with core surfaces and can dis-
solve into water after water condenses.
We define all secondary liquids, solids,
and ions that accumulate onto cores as
volatiles, and define the total volume of a
particle as the volume of core plus volatile
material in the particle.

In all three particle grid structures, we
start with any number of distinct size bins
covering any range of diameters. Also,
each bin contains any number of particles,
and the number of particles, summed over
all bins, equals the total number of parti-
cles in the system at a given time. Particle
number in each bin can increase through
nucleation, emissions, and transport and
can decrease through deposition, sedi-
mentation, and transport. Also, particles
can change in size through condensational
growth, dissolutional growth, and evapo-
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ration. Finally, while coagulation reduces
total particle number, it moves particles
to large sizes. Below, we discuss the dif-
ferences between the three grid structures
and how we treat physical processes in
each.

A. Full Stationary Grid

In a stationary grid structure, particles
size bins are initialized in order of in-
creasing total (core plus volatile) volume.
For example, we can initialize size bins
with a geometric distribution, where the
total volume of particles in one size bin
equals the total volume of particles in the
previous size bin multiplied by a constant
(Vrat)- Thus, if we set Vgar =2, then
each particle in size bin B has twice the
total volume of each particle in size bin A
and each particle in bin C has twice the
volume of each particle in bin B, etc.
Further, in the full stationary structure,
each particle in a given bin at a given time
has the same total volume as each other
particle in the bin, and that volume is the
constant, characteristic volume of parti-
cles in the size bin. However, while each
bin contains any number of particles, the
number changes in time as a result of
various physical processes. For example,
suppose we initialize a bin structure with
Vear =2 and the volume of particles in
the smallest bin (A) equal to 1 (generic
units). Then, the volumes of particles in
bins B, C, D, and E equal 2, 4, 8, and 16,
respectively. Each bin contains any num-
ber of particles. Now, suppose one parti-
cle from bin B coagulates with one parti-
cle from bin C. The volume of the one
resulting particle is 6, which is not repre-
sented exactly by either particle bin A, B,
C, D, or E. Thus, to conserve particle
number and volume, we partition half of
the one new particle to bin C (volume of
4) and half to bin D (volume of 8). Conse-
quently, coagulation reduces the number
of particles in bin B by one, in bin C by
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one-half, and increases the number of
particles in bin D by one-half. Further,
coagulation conserves volume of the coag-
ulated particles. However, each particle in
bins A, B, C, D, and E still has its initial
total volume (core plus volatile volume).
Thus, the primary characteristic of a sta-
tionary grid is that particles in a given bin
always have a constant, characteristic to-
tal volume; however, particles can move
to larger or smaller bins.

Similarly, when growth (or evaporation)
occurs over a stationary grid structure,
individual particles move from one size
bin to a larger (or smaller) size bin. For
example, if a particle of total volume 2
(bin B) grows to volume 6, then one parti-
cle is removed from bin B, one-half parti-
cle is added to bin C (volume 4), and
one-half particle is added to bin D (volume
8). Thus, again, the characteristic total
volume of each particle in each bin re-
mains constant, but the number of parti-
cles in each bin changes.

Further, when emission or homoge-
neous nucleation occurs, certain bins gain
additional particles; however, the volume
of a particle in a given bin does not
change. When transport occurs, particles
move to nearby grid cells and replace
particles that have the same total volume;
thus, particles are removed from a given
size bin in one spatial grid cell and added
to the same size bin in an adjacent grid
cell.

A second characteristic of a stationary
grid relates to how components are mixed
within the particles. While the total vol-
ume of a particle in a bin is constant, the
core volume can range from zero to the
total volume. Similarly, while the total
volume of a particle in bin C is greater
than the total volume of a particle in bin
B by a factor of Vg,r, the core volume of
a particle in bin C may be either greater
than, equal to, or smaller than the core
volume of a particle in bin B. Figure 1
illustrates how the total volumes of indi-
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FIGURE 1. Example of sizes and compositions
of representative particles in three size grid
structures. For each size structure, we show three
particles, each representing a different size bin.
Each particle shown has two components—an
involatile core and a volatile secondary compo-
nent. In all structures, each size bin contains any
number of particles, but all particles in a bin
have the same composition and size. Thus, we
represent each bin here by a single particle. In
the case of the full stationary grid, the total
volume (core plus volatile volume) of each parti-
cle in the first bin is smaller than the total
volume of each particle in subsequent bins. How-
ever, the core volume of particles distributes
randomly from one bin to the next. In the case of
the hybrid grid, the core volume of each particle
in the first bin is smaller than the core volume of
each particle in subsequent bins. However, the
total volume of particles distributes without pat-
tern from one bin to the next. Last, in the case of
the full moving grid, both core and total volumes
of particles are initially ordered, but become
distributed randomly from one bin to the next
due to coagulation, growth, emissions, nucle-
ation, transport, and other processes.

HYBRID GRID

vidual particles in three consecutive size
bins (e.g., A, B, O) increase, but the core
volumes are distributed without a pattern.

A stationary grid structure is most use-
ful for simulating coagulation, nucleation,
particle emission, and transport. However,
it often leads to numerical diffusion dur-
ing condensation and evaporation. For ex-
ample, when growth occurred in the
earlier example, half of a particle of vol-
ume 6 was placed in a bin with particles of
volume 8, spreading the distribution arti-
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ficially. Diffusion can also occur with co-
agulation; but, since coagulation rates are
usually much slower than growth rates,
diffusion is less significant with coagula-
tion. Another problem with stationary bin
growth is the loss of resolution when par-
ticles grow. For example, when aerosols
activate into a fog in a stationary grid,
core material from many small size bins
moves into one or two large bins. By
analogy, suppose all particles from bins B,
C, and D grow to bin E. When particles
move to bin E, volumes are averaged so
that all particles in bin E have the same
core and total volume. Upon evaporation,
the core materials that agglomerated in
bin E should evaporate back to the bins
they came from. However, unless infor-
mation is stored, the core materials do
not “remember” whether they came from
bin B, C, or D, and their redistribution
becomes fairly arbitrary.

B. Hybrid Grid

A way to remedy the problems with con-
densational growth is to combine the sta-
tionary size bin structure with a moving
bin structure in a hybrid model. In the
hybrid bin structure, particle bins are ini-
tialized in order of increasing core (in-
volatile) volume (Figure 1) as opposed to
increasing total volume. For example, sup-
pose we define V41, as the volume ratio
of adjacent core bins. Thus, if Viaq. =2
and the core volume of the smallest bin
(A) equals 0.1 (generic units), then the
core volumes of particles in bins B, C, D,
and E equal 0.2, 0.4, 0.8, and 1.6, respec-
tively. All core bins—A, B, C, D, and
E—contain any number of particles of
the same average core size. Also, each
particle in a given bin contains the same
amount of volatile material as each other
particle in the bin; but, this amount is
variable. In sum, while the total volume is
fixed and the core volume is variable for
each particle while it resides in a given
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stationary size bin, the core volume is
fixed and the total volume is variable for
each particle while it resides in a given
hybrid size bin.

When growth occurs in a stationary
grid structure, particles are transferred
to bins where particles have larger or
smaller total volume. However, in a hy-
brid structure, particles are not trans-
ferred; instead, their total volumes in-
crease or decrease to their exact sizes,
eliminating numerical diffusion. For ex-
ample, suppose a particle in core bin B
grows from total volume 0.2 (initial core
volume) to total volume of 1.3 (core plus
final volatile volume). Under the station-
ary structure, the resulting particle would
be partitioned between two size bins—one
with particles of total volume smaller than
and one with particles of total volume
larger than 1.3. However, under the hy-
brid structure, particles keep their exact
volume, and no particles are transferred
to larger or smaller bins during growth.
Thus, when the particle of total volume
1.3 evaporates, it evaporates back to its
original core size of 0.2. Similarly, when a
fog forms, particles in bins B, C, and D
can all grow to approximately the same
size, say volume 16. Upon evaporation, all
particles in bins B, C, and D shrink
to their original sizes of 0.2, 0.4, and
0.8. Thus, the hybrid grid eliminates two
problems associated with the stationary
structure—numerical diffusion and loss
of information upon evaporation.

When coagulation occurs in a station-
ary structure, two particles collide to form
a new particle. The new particle and its
total volume are partitioned between two
bins—one with particles of total volume
smaller than and one with particles of
total volume larger than the total volume
of the new particle. When coagulation
occurs in a hybrid structure, two particles
also collide to form a third particle. How-
ever, in this case, we partition the new
particle and its total volume between two
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different bins—one with particles of core
volume smaller than and one with parti-
cles of core volume larger than the core
volume of the new particle. Thus, the
main difference between coagulating in
the stationary and fixed structures is how
we treat the resulting particle. In reality,
this new particle has unique shape and
size different from those of all other par-
ticles in the atmosphere. However, with
limited computer resources, we need to fit
the new particle into an imperfect model
size structure.

When emission of involatile material
occurs in the hybrid grid, we assume the
new particles enter the bin containing
particles with core volume the same as
the core volume of the new particles. Thus,
the composition of new particles is an
average composition of new and existing
particles of the same core size.

When emission or homogeneous nucle-
ation of volatile material occurs, we as-
sume the new particles enter the bin con-
taining particles with core volume that is
the same as the total volume of the new
volatile particles. By definition, these
volatile particles have zero core volume.
Because we mix particles containing core
material with those without core material
in such cases, the average core volume
in a size bin decreases below the charac-
teristic (initial) core volume of the bin.
However, it never increases above the
characteristic core volume. To simulate
coagulation under these conditions, we as-
sume that, when two particles combine,
they form a third particle of characteristic
core volume that falls between the char-
acteristic core volume of two adjacent
particles.

When transport occurs in the hybrid
grid, and no volatile emissions occur, we
assume particles move and replace other
particles with the same core volume. Thus,
the final core volume in each size bin and
grid cell after transport is always the same
as the initial core volume. When volatile
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emissions or nucleation accompany trans-
port, we assume particles move and re-
place other particles with the same initial
core volume.

C. Full Moving Grid

Finally, in a completely moving bin model,
particles in each bin can have any core
and total volume, and both the core and
total volumes of particles in the bin can
change during the simulation (Figure 1).
For example, we can initialize bins A, B,
C, D, and E with any core and volatile
volume. Each bin contains any number of
particles, and each particle in a bin has
the same size and composition as each
other particle in the same bin. Over time,
however, both core and volatile volumes
of each bin can change.

To treat coagulation over the full mov-
ing grid, we first rearrange particle bins
from smallest to largest total volume each
time step. When two particles coagulate,
we partition the new particle and its total
volume between two size bins—one with
particles smaller than and one with parti-
cles larger than the volume of the new
particle. Growth in a full moving grid
occurs in the same manner as in a hybrid
grid.

However, a full moving bin structure
causes problems with respect to emis-
sions, nucleation, and transport. For ex-
ample, if most moving bins grow to
become fog-sized drops, then few bins re-
main to put newly emitted particles into.
In the hybrid bin case, the new particles
are placed into bins that have the same
core volumes as those of the emitted par-
ticles, and in the stationary bin case, the
new particles are placed into bins that
have the same total volumes as those of
the emitted particles. Also, in the full
moving bin case, when particles from all
bins grow to the same total size, they have
no bin to coagulate into. In a stationary
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grid, particles coagulate to bins with larger
total volume and in a hybrid grid, parti-
cles coagulate to bins with larger core
volume.

Finally, when transport occurs in a
completely moving grid, there is no way to
know which particles replace which other
particles in adjacent grid cells. In the hy-
brid case, particles of a given core volume
replace others with the same core volume,
and in the stationary bin case, particles of
a given total volume replace others with
that volume.

In sum, we use the hybrid structure
because, unlike the completely stationary
structure, it allows growth without numer-
ical diffusion and allows particles to evap-
orate back to their original core sizes.
Furthermore, unlike the completely mov-
ing structure, it permits reasonable treat-
ment of coagulation, nucleation, emis-
sions, and transport of particles. Next we
derive growth equations and describe a
method to solve them.

III. METHOD OF SOLVING GROWTH
EQUATIONS

In an ideal model, we would solve the rate
equations for gas-phase processes simul-
taneously with those for gas-aerosol trans-
fer, inter-aerosol processes, intra-aerosol
processes, and spatial transfer. While such
calculations are possible on a small scale
with an integrator of stiff ordinary differ-
ential equations, they currently require
too much computer time for large spatial
domains and aerosol size grids. A more
practical approach to solving aerosol pro-
cesses is to time-split (solve indepen-
dently) some groups of processes while
solving other groups simultaneously. With
this latter approach in mind, we time-split
condensational growth from coagulation
and other processes.

For the most part, growth equations
usually ignore the reduction in gas-phase
concentrations. Here, we present and
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solve equations that conserve mass be-
tween the gas and aerosol phase. For the
model, we assume any number of aerosol
types and any number of components and
size bins within each type. In the equa-
tions, Ny is the number of particle types
and Ny is the number of size bins, which
is the same for all types. An example of a
system with three aerosol types is one
which contains an elemental carbon-water
type, an organic carbon-water type, and
an elemental carbon-organic carbon-water
type. Jacobson et al. (1994a) give a more
complete description of aerosol types. In
the example here, the core volume of
each type consists of elemental carbon,
organic carbon, and elemental plus or-
ganic carbon, respectively. The volatile
material, water, can condense on all three
types.

For multitype particles and a hybrid (or
moving) size structure, we write the vol-
ume rate of growth or evaporation of a
volatile component over a single particle
as

Vyni

=87 v, D

(1

where v, is the volume (cm® particle ™')
of component V' within a single particle of
type N and bin i. The subscript N de-
notes the particle type (e.g., elemental
carbon-water, organic carbon-water, or the
mixture) and the subscript VN denotes
each volatile component (e.g., water) of
each particle type. For example each of
the three particle types contains one
volatile component. Thus, the Ns refer to
particle types and V'N's refers to individual
volatile components that make up particle
types.

Also, in Eq. 1, A4 is Avogadro’s number
(molecules mol™!), v,, is the volume of a
gas molecule (cm® molec™!), G, is the
ambient concentration and Py is the sat-
uration vapor density (both in moles-gas

X (GV _PBBVNi)’
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cm>-air) of gas V' condensing onto parti-
cle-type N. Furthermore,

DymyniFyni
D,VndNiFvNiL%z,VMlgGV
K,ntNiFtNiRTz

eff __
DVNi -

2

is a modified gas diffusion coefficient
(cm? s™'). Factors that affect the diffu-
sion coefficient, D’,, are the geometry of
vapor collision with small particles (e.g.,
Langmuir, 1944; Rooth, 1957; Mordy,
1959; Pruppacher and Klett, 1978, Toon
et al.,, 1989) and ventilation of heat and
vapor during sedimentation of large parti-
cles containing liquid (e.g., Frossling, 1938;
Keith and Arons, 1954; Beard and Prup-
pacher, 1971; Pruppacher and Klett, 1978;
Toon et al., 1989). In Eq. 2, L, is the
latent heat of evaporation (cm? s~2) and
M, is the molecular weight of the con-
densing gas (g mol™'). Also, R is the
universal gas constant (erg mol™' K1), T
is the temperature (K), K’ is the thermal
conductivity of air (erg cm™' s7! K™'),
and F, and F, are ventilation factors of
condensing vapor and heat, respectively
(unitless). Furthermore,

1.33+0.71Kn 3,
_ {1 + |: dNi

1+Knjy,

-1
41 -
+_(—_M:|Kndm'} (3)

3a,y

and

R EEh 0.71Kn;};
={1+
ntNl 1+I<,lt—Nll

-1
4(1 —
+ 4 Zaw) ]Kn,m} (4)

3 AN

are corrections to diffusivity and thermal
conductivity, respectively, due to collision
geometry and sticking probability (Fuchs
and Sutugin, 1971; Pruppacher and Klett,
1978; Toon et al., 1989). In Egs. 3 and 4

M. Z. Jacobson and R. P. Turco

Kn,y; and Kn,y; are the Knudsen num-
bers of the condensing vapor and of air,
respectively, a, is the sticking coefficient
of the condensing vapor, and «, is the
thermal accommodation coefficient (Prup-
pacher and Klett, 1978 and Toon et al.,
1989).
Next, in Eq. 1,

Le,VMVQrad,Ni
1+ =
dary RT°K'n 5 Fyy;

200M,
rviRTpy

Byy: =

Xexp{ (5)

is a series of adjustments to the saturation
vapor pressure. Surface tension (Kelvin
effect), ion content (solute effect), and
radiative cooling (Barkstrom, 1978; Toon
et al., 1989) alter the saturation vapor
pressure of a gas over a particle. For
example, the Kelvin effect increases the
saturation vapor pressure over small par-
ticles, the solute effect decreases it over
small and medium-sized drops, and the
radiative effect decreases it over large
drops. Equation 5 accounts for the Kelvin
effect and radiative cooling only. The so-
lute effect can be treated either with sim-
ple parameters or with an extensive equi-
librium model. In Eq. 2 o, is the surface
tension (dyn cm ') and p,, is the density
(g cm™®) of the condensed gas. Also,
Q,.q ni I8 the radiative heating rate (erg
s~ '—ibid.) and ry; is the current radius
(cm) of size bin i of particle-type N.
Finally, in Eq. 1

VN = Vyni T Voni (6)

is the volume of a single particle of type
N, in bin i. The volume of the particle is
the volume of the condensed gas in the
particle plus the volume of all other mate-
rial in the particle (v,y,;). We rewrite the
volume of the condensed species as vy y;
= Cyni/Cni» Where C,y; is the aerosol
volume concentration (cm?-aerosol cm™ -

air) of component V' in N, particles, and
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Cy; is the number concentration (No.
cm3-air) of Ni particles. Similarly, the
volume of all other material in one parti-
cle is vyn; = Yoni/Cni» Where Yy, is the
volume concentration (cm?*-aerosol cm -
air) of all other material in Ni particles.
Combining Eq. 1 with the values in Eq. 6,
we write the change in the volume con-
centration of condensed species VN in bin
i as

dCyy;
dt
= C}%/{3(48772)1/3Df/f1fw(Y0Ni + CVNi)1/3
M, 0
XP_(GV—PVBVNi)‘ (7)
1%

To conserve mass between the gas and
aerosol phases, we express the rate of
change of gas concentration as

G, p, ¥ NE dCyy; ®
dt My 2o \iDode |

Thus, the change in gas phase concentra-
tion is proportional to the negative of the
sum, over all size bins and particle types,
of the change in aerosol-phase concentra-
tions.

To obtain gas and size-distributed
volatile aerosol concentrations from Egs.
7 and 8, we need to solve Ny XNy +1
nonlinear, first-order ordinary differential
equations. The equations are even more
nonlinear if we express the radius in the
Kelvin term as a function of condensed
aerosol concentration.

An accurate way to solve the coupled
equations is with an integrator of stiff
ordinary differential equations. The inte-
grator we used, SMVGEAR (Jacobson
and Turco, 1994), speeds the solution to
first order equations in a large grid do-
main because it takes advantage of the
sparsity of the matrix of partial derivatives
and vectorizes around the grid-cell dimen-
sion. Since the matrix of partial deriva-
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tives resulting from Egs. 7 and 8 requires
zero fill in, SMVGEAR takes relatively
little time to solve the coupled sets of
these equations. When solving Egs. 7 and
8 with an integrator, we set maximum
values of dC,,,,;/dt and its corresponding
partial derivative terms during evapora-
tion to prevent negative values of C ;.
The solution to Eqgs. 7 and 8 is an ad-
justed volume concentration of each size
bin and an adjusted gas concentration.
Thus, particles from different bins in-
crease or decrease in size at their own
pace, as we intended with the hybrid grid
structure.

IV. COMPARISONS TO ANALYTICAL AND
NUMERICAL SOLUTIONS

Here, we compare model results for con-
densational growth, coagulation, and a
combination of the two, to results from
both analytical and integrated numerical
solutions. Jacobson et al. (1994a) com-
pared the coagulation mechanism to sev-
eral analytical and integrated numerical
solutions; thus, we focus here primarily on
testing growth alone and growth coupled
to coagulation.

For the first test we compared model
solutions of growth, coagulation, and a
combination of both to an analytical solu-
tion given by Gelbard and Seinfeld (1978).
The analytical solution assumes one parti-
cle type of uniform composition, with ini-
tial number concentration written as

oot iex(_yi) ©)
i p >

where Cy, is the total number of parti-
cles in the distribution, v; is the volume
of particles in bin i, and v, is mean initial
volume of particles. The solution further
assumes both a fixed growth rate and fixed
coagulation kernel. The analytical (sub-
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script @) number concentration resulting
from this system is

4C; o dy, ( 2,

ey - exp| — —
Tt PTG 2)

XeXp(—AT)—A'T), (10)

where 7=Cr( Byt; and A =a/(Cy 4 By).
In these last equations, B, is the coagula-
tion kernel (cm® # s™1), t; is the time
interval (s), and o is a growth rate term
(s71). Also, when plotting the analytical
distribution over a stationary, geometric
size bin structure, we assumed dv;=
2v,(Vgar — 1D /(Vgar + 1), where Vigur =
v,.,/v; (as discussed earlier) is the vol-
ume ratio of adjacent size bins. Also, we
used B, =8kzT/3m, where ky is Boltz-
mann’s constant, T is temperature (K),
and 7 is the dynamic viscosity of air, and
assumed Cj,=10°, T=298.15 K, t,=
21,600 s (6 h), Vgar = 1.2, and A = 1. For
growth alone, B, =0, and for coagulation
alone, A =0.

To obtain a model solution for compar-
ison, we first initialized a distribution of
uniformly composed, volatile particles, as-
suming Viar=1.2. We then ran three
cases: one with coagulation alone, one
with coagulation combined with growth,
and one with growth alone. In each case,
we used thirty-six 600-s time steps. For
coagulation combined with growth, we
time-split (solved separately) the two pro-
cesses.

To compute coagulation for this test,
we modified the semi-implicit method dis-
cussed in Jacobson et al. (1994a). The lack
of involatile material did not impede the
calculations. For example, in the case of
coagulation combined with growth, we as-
sumed that when two particles coagulated,
they formed a new particle with initial
volume equal to the sum of the initial
volumes of the two original particles. We
then partitioned all volume of the new
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particle between two size bins that had
initial volume smaller and larger, respec-
tively, than the initial volume of the new
particle.

Since the analytical solution required a
fixed growth rate, we could not test Egs. 7
and 8 for this particular comparison. We
show results from these equations later.
Instead, to solve for growth over the hy-
brid structure, we used
Clin=Clin (11)
where C/;, is the model (subscript m)
particle volume concentration (cm® cm™>)
in bin i after each Az time step, and o is
the growth term (calculated, in this in-
stance, from the expression for A, above).
Also, C,{m, for the first time step of the
interval (tf), is the initial number concen-
tration from (9). The sum of C; , over all
size bins for the first time step equals Cp.
When no coagulation occurs, both bin-re-
solved and total number concentrations
remain unchanged during an entire inter-
val. However, when coagulation occurs,
the particle number in each bin changes.
To simulate growth under these condi-
tions, we used the value of C;, in Eq. 11
from the most recent coagulation calcula-
tion. Similarly, we used the value of C;,
from the most recent coagulation and
growth updates and the value of v; from
the most recent growth update. Coagula-
tion does not change the volume of indi-
vidual particles in a size bin but it does
change the total volume of material in the
bin.

Figure 2 compares analytical to model
solutions for growth alone, coagulation
alone, and coagulation combined with
growth. It shows that the hybrid grid
(which allows growth with moving bins)
suppressed numerical diffusion during
growth. Furthermore, for the value of
Vear used (1.2), the coagulation equa-
tions suppressed diffusion. For larger val-
ues of Vi,p (lower bin resolution), nu-
merical diffusion slightly increases during

+ C{ ,ov; At,
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FIGURE 2. Comparison of model results (M) to
analytical solutions (A) for the processes of coag-
ulation alone, coagulation combined with growth,
and growth alone. The analytical solutions (Eq.
10) are from Gelbard and Seinfeld (1978). The
time interval for all solutions was 6 h, and the
time step used for the model solutions was 600 s.
Also, Vgar = 1.2 for the analytical solution and
for the initial model size distribution (Eq. 11).
Remaining conditions are described in the text.

coagulation (Jacobson et al., 1994a). Fi-
nally, Figure 2 shows that model results
for growth combined with coagulation
were similar to analytical results for all
sizes.

In the second test, we compared model
results of coagulation combined with
growth to fully-implicit integrated solu-
tions calculated with SMVGEAR. For this
example, we assumed that the size-distrib-
uted aerosol contained two components—
one involatile and the other volatile. We
assigned both components a hypothetical
molecular weight of 150 g mol™! and an
aerosol-phase density of 1.5 g cm 3. Fur-
ther, we started with 10° particles cm 3
and distributed the particles and volume
components lognormally using a geomet-
ric mean number diameter of 0.02 um
and geometric standard deviation of 1.4.
Also, we assumed the gas-phase partial
pressure of the volatile material was 1.3 X
10~* dynes cm~? while its saturation va-
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por pressure was 7.5X 107% dyn c¢cm™?

(e.g., Experiment 23 A of Stern et al,
1989). Finally, we assumed a modified
diffusion coefficient (D*-Eq. 2) of 0.1
cm? s~!, a surface tension of 30 dyn cm ™!,
a temperature of 298.15 K, and a radiative
heating rate (Q,,4) equal to zero.

To obtain the integrated numerical so-
lution, we solved Eqgs. 12—15, written as

dc, 1 X [k v+
R _ e B CC.
dt 2]-:1(1-:21 v, .fl,j,kBl,] i~j
Np
- Ck Z Bl ]C]’ (12)
j=
dt = Zl Zl-fljk ﬁl,jCVliCj
J= 1=
Np
j=
_dt'_ = 21 Zl.fljk Bi,jCVziCj
J= =
-C Ci+ 2 ,
Vzkjgl Bl’] ! ( dt )growth
(14)
aG Py, N (dCVzk)
dt B ]‘41/2 i=1 dt growth’
(15)

simultaneously with SMVGEAR. Equa-
tion 12 describes the evolution of number
concentration (No. cm™?) of particles in
each size bin, k=1 to Ny, due to coagu-
lation only. Equation 13 describes the
evolution of volume concentration (cm?
cm™?) of involatile material (V;), due to
coagulation only. Equation 14 describes
the change in volume concentration of
volatile material (V,) due to coagulation,
condensational growth, and evaporation.
Finally, Eq. 15 describes the change in
concentration of the condensing gas
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(moles cm™?) due to growth and evapora-
tion. Equation 7 shows the growth deriva-
tive referred to in Eqgs. 14 and 15.

In the equations, B;; is the rate at
which particles of size i coagulate with
particles of size j. Also, f; ; is the vol-
ume fraction of new particles i +j that we
partition into bin k. Many values for f are
zero; thus, all calculations involving a
zero-value for f were eliminated. Jacob-
son et al. (1994a) show the formulas for
B;.; and the values for f.

While Jacobson et al. (ibid.) discuss the
fully implicit coagulation equations for a
monomer size distribution and the semi-
implicit equations for a random size dis-
tribution, Equations 12-14 describe the
fully implicit equations for a random size
distribution. An advantage of these new
equations is that we can solve coagulation
over an entire size distribution with fully
implicit equations but with far fewer size
bins than the monomer distribution re-
quires. However, the matrix of partial
derivatives for coagulation is full; thus, we
cannot take advantage of sparse-matrix
computer speed increases like we can with
other processes such as chemistry and
condensational growth.

For the integrated numerical solutions,
we solved Egs. 12-15 over one-half hour
time intervals, using variable time steps
predicted by SMVGEAR. On the other
hand, for model solutions, we time-split
coagulation from condensational growth
and took three 600-s time intervals for
each. For coagulation, the time step
equaled the time interval of 600 s. For
growth, the time step varied within
SMVGEAR. For model solutions to coag-
ulation, we used the semi-implicit method,
discussed previously.

For model solutions to growth, we
solved Egs. 7 and 8 simultaneously with
SMVGEAR. However, model solutions
found with SMVGEAR were different
from integrated solutions in one impor-
tant respect. When time-splitting growth
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from coagulation, the only variables that
we assumed changed during a time step of
growth were the gas-phase concentration
and aerosol volume of the condensing
component. On the other hand, when
solving growth and coagulation simultane-
ously with SMVGEAR, we assumed that
the number of particles and the volume of
involatile material in each bin changed
along with those two parameters. Thus,
the matrix of partial derivatives for the
fully-integrated solution was much more
complex than the matrix for the time-split
integrated solution. The advantage of a
time-split growth solution is large with
respect to computer speed since the ma-
trix of growth partial derivatives is sparse.
On the other hand, since the matrix of
coagulation partial derivatives in the
fully-integrated case is already full, we
cannot take advantage of sparse-matrix
reductions when we add growth partial
derivatives to it.

In sum, the fully-integrated solution is
more accurate than the model solution
because it solves Eqgs. 12—15 exactly under
the conditions provided. However, we de-
sired to test how well a time-split solution
that included a combination of semi-
implicit and fully-implicit techniques com-
pared with the fully integrated result.
Figures 3a and 3b show two of the com-
parisons. For Figure 3a, we ignored the
Kelvin effect while for Figure 3b, we did
not. The figures show that the model solu-
tions for both whole-particle volume and
volatile-component volume matched the
integrated solutions at all sizes.

In the case of Figure 3a, the gas-phase
partial pressure decreased to the satura-
tion vapor pressure before the end of
one-half hour; thus, growth ceased. In the
case of Figure 3b, the partial pressure
decreased to an effective saturation vapor
pressure. Since the Kelvin effect modifies
the saturation vapor pressure differently
for different-sized particles, vapor contin-
uously transferred between the gas and
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aerosol phases. However, after one-half
hour, the saturation vapor pressure
reached a point where particles above
about 0.02 um were growing from
Kelvin-effect transfer and those below had
evaporated down to their original cores.
Finally, these model solutions required
about fifteen times less computer time
than did the fully integrated solutions.

In the third set of tests, we compared
model growth to an analytical solution
shown in Seinfeld (1986). For this solu-
tion, particles are uniformly composed and
initially distributed lognormally. The ana-
lytical number concentration (# cm™?) in
each bin i, resulting from the growth of
the initial distribution, is

Cro d;dd,
C~,+I —
" V2winoy (d?-24pt)
n?((? = 24,,) " /d,,)
Xexp - )

21n? g,

(16)

where d,,, is the initial geometric mean
number diameter (cm) of the distribution,
o, is the geometric standard deviation,
Aj, is a constant growth term (cm? s™')
dependent on the diffusion coefficient,
saturation ratio, and saturation vapor
pressure, d; is the mean particle diameter

(cm) of each discrete bin i, and
Vear— 1
(Vear + D'
is the width of discrete bin i for the initial

bin structure.

In order to compare moving bin growth
solutions to analytical solutions, we fixed
the growth rate of each moving bin as
Citl =C!l .+ Clmr, Ay At, (18)

which is similar to Eq. 11. As with Eq. 11,

we grew each bin for several time steps
during a time interval and updated the

dd, = d2'/? (17)
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FIGURE 3. Comparisons of model (M) to inte-
grated (I) solutions for the processes of coagula-
tion combined with growth. The particles simu-
lated here contained two components—an
involatile core (V}) and a volatile shell (1)
Thus, V; + V, identifies the total particle. Equa-
tions 7 and 8 describe the growth equations used
for both figures. However, the difference be-
tween Figs. 3a and 3b are that 3a ignores the
Kelvin effect while 3b includes it. To obtain the
integrated solutions, we used SMVGEAR to solve
Eqgs. 12-15, simultaneously, over a continuous
time interval. To obtain the model solution, we
time-split the semi-implicit coagulation solution
from the fully implicit growth solution. The time
interval for both analytical and model solutions
was 3 h while the time step for splitting model
processes was 600 s. The text describes additional
conditions for these simulations.
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TABLE 1. Initial Distributions and Final Volumes of Three Model Comparisons to

Analytical Solutions.

dgno” ‘Tgh Cro° Vrod Vrar® VTmff Veat® At tfi

wm - #em™®  pmPem™? pmPem~3 pm’em? — s s
Figure 4 0.2 1.4000 2260%x 107 157x10° 245x105 246X 10° 1.5 1000. 10,000
Figure 5 0.1 1.1447 8796 x 105 5.00x 10°  7.06x 10*  7.05 x 10* 1.2 0.01 5
Figure 6 0.6 13084 6.387x10° 1.00x10° 134x10° 1.34x10° 1.5 100. 10,000

“Mean geometric number diameter of the initial lognormal distribution.

Geometric standard deviation of the distribution.
‘Initial aggregated number concentration.

Initial aggregated volume.
‘Final aggregated volume from the analytical solution.
Final aggregated volume from the model solution.

8Volume ratio of adjacent size bins, used for initializing.

{'Model time step.
'Total time interval for the simulation.

radius and number concentration before
each model time step. Table 1 lists initial
parameter values, time steps, and time
intervals for three model comparisons to
analytical solutions. It also shows the final
aggregated particle volumes from the ana-
lytical and model solutions.

Figure 4 shows the first comparison of
analytical to model growth. The initial
distribution parameters and the growth
rate were from Seinfeld (1986), p. 421.
Figure 4 shows that the moving bin solu-
tion slightly underpredicted the lower ra-
dius bound of the final number concentra-
tion.

Figure 5a shows analytical versus model
growth and Figure 5b shows model coagu-
lation alone and model coagulation
combined with growth. First, the initial
distribution and growth rate for these
simulations were similar to those pre-
sented in Figure 1 of Tsang and Rao
(1988). Because the growth rate was fast,
we reduced the model time step signifi-
cantly and increased the number of bins
per decade in the initial distribution to 39
(by decreasing Vyar to 1.2). Figure 5a
shows that, after five seconds, the moving
bin solution paralleled the analytical solu-
tion. However, it slightly underpredicted
the lower radial end of the analytical dis-
tribution.

Figure 5b, shows coagulation alone and
coagulation combined with growth. We
did not compare these model solutions to
analytical solutions. However, elsewhere
in this paper and in Jacobson et al.
(1994a), coagulation alone was compared
to analytical solutions. The results here
indicate that, under the conditions pre-
sented, both growth and coagulation
pushed particles toward larger sizes. How-

———————— initial
—— - analytical solution
model solution

dN/dlog Dp(N = #cm?)

b I Bty B Bbiien Bibbins B Rikiion Bk Bk |

0.01 0.1 1

PARTICLE DIAMETER (um)

FIGURE 4. Model versus analytical growth solu-
tions. Table 1 lists the initial conditions, some
parameter values, and final volume for this simu-
lation. The constant growth term used was A, =
1.06 X 10~'* cm? s~ . To obtain the moving bin
solution, we used Eq. 18, and to obtain the
analytical solution, we used Eq. 16.
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ever, while coagulation widened the size
distribution, growth narrowed it. Growth
combined with coagulation also narrowed
the distribution but pushed the leading
edge of the distribution further than did
growth alone.

Figure 6 shows plots of simulations sim-
ilar to those in Figure 5, except the initial
conditions and growth rate in the new
plots are like those used in Figure 2 of
Tsang and Rao (1988). The growth rate in
this example is much slower than that in
the previous example. Again, the moving
bin results paralleled those of the analyti-
cal solution. Only at the lower radial end
of the distribution did the moving bin
solution slightly underpredict the analyti-
cal distribution. For this example, we ini-
tialized the distribution with 18 size bins
per decade (V.1 = 1.5) and used a model
time step of 100 s.

Results shown in Figure 6 indicate that
coagulation was more significant than
growth under the conditions provided. The
fact that coagulation alone and coagula-
tion combined with growth gave solutions
similar to each other supports this posi-
tion. Also, because the initial number
concentration was high, we expected coag-
ulation to be important. Finally, because
the growth rate was relatively slow (com-

108 el el
3 — - - — initial E
- 7] . growth (A)
< 10 15 s — — - growth (M) E‘
E 3 / e growth & computation (M) 9
® 106 _; / --------- coagulation only (M) ;_
1 h 3
r 4 / i
< s
5 10°7 I F
°0 ] [ [
s 0 1
- i Vi 3
z ] T i [
AR Ui IR v
i |,_v" G E
102 —L—i T i
0.1 1 10 100

PARTICLE DIAMETER (pm)

FIGURE 6. This graph shows (a) an initial log-
normal aerosol distribution, (b) a comparison of
a model (M) to an analytical (A) growth solution,
(c) a model simulation of coagulation only, and
(d) a model simulation of coagulation combined
with condensational growth. Table 1 lists the
initial conditions, some parameter values, and
final volumes for these simulations. The constant
growth term used here was 4, =1.0 X 10~ '3 cm?
s~ 1. To obtain the moving bin solution, we solved
Eq. 18, and to obtain the analytical solution, we
solved Eq. 16.
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pared with in the previous example) we
expected growth to be less important than
in the previous example.

V. APPLICATIONS

Here, we demonstrate advantages of using
a hybrid grid to simulate growth. Figure 7
shows growth and evaporation of particles
containing two components. The initial
lognormal distribution of particles con-
sisted of only elemental carbon. We al-
lowed m-xylene to condense onto the par-
ticles and assumed the same constant
pressure difference as in Experiment 23A
of Stern et al. (1989). After 6000 s, we
removed all gas and allowed the particles
to evaporate. To simulate each time step
of evaporation, we solved Eqs. 7 and 8
simultaneously. When evaporation oc-
curred, the gas-phase concentration
quickly increased to its saturation vapor
pressure. To allow evaporation to con-
tinue after saturation, we removed all gas
at the end of each 100-s time step. Even-
tually, all condensed aerosol evaporated.
Growth occurred much faster than evapo-
ration because we allowed an endless sup-
ply of gas to condense over a low vapor
pressure. When evaporation occurred, the
partial pressure quickly increased to the
saturation pressure, inhibiting evapora-
tion. To allow evaporation to continue, we
removed gas at the end of a time step.

The purpose of this exercise was not to
demonstrate a real situation, but to show
the ability of multicomponent particles to
grow and then to evaporate back to their
original cores. Achieving the original cores
is difficult with fixed-bin growth methods,
but is straightforward with a moving bin
method.

Figure 8 stresses a point similar to that
made in Figure 7. However, in the new
case, we show results from 12 cycles of
growth and evaporation of a fog. In this
simulation, we started with a trimodal log-
normal distribution of elemental carbon.
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FIGURE 7. Model simulation of condensational
growth followed by evaporation. The initial
aerosol consisted of a lognormal distribution of
elemental carbon only, with d,,,, = 0.129 um and
0, = 2.00. Subsequently, m-xylene grew for 6000
s. At 6000 s, we set the gas-phase partial pressure
to zero and allowed evaporation to occur. To
speed evaporation, we removed all existing gas
every 100 s. This figure shows that particles simu-
lated with moving bins evaporated back to their
original cores.

By alternating the temperature every 600
s, we changed the relative humidity, allow-
ing a fog to repeatedly grow and evapo-
rate. For each growth, the fog achieved
the same distribution as for the previous
growth, and for each evaporation, the fog
shrunk to its initial core distribution.
Achieving the initial core distribution with
a stationary bin method is more difficult
than with a hybrid or moving bin method.
Figure 8 also shows that the Kelvin effect
prevented some particles from growing to
fog-size drops. To obtain the results for
Figure 8, we solved Egs. 7 and 8 with
SMVGEAR over a hybrid size grid.

Next, Figure 9 shows a 4-h model com-
parison of fog growth alone to fog growth
coupled with coagulation. The initial dis-
tribution was the same as in Figure 8, the
initial humidity was about 100.5%, and
the temperature was constant at 287.5 K.
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FIGURE 8. Model results of 12 cycles of growth
and evaporation. The initial distribution of ele-
mental carbon was trimodal and the initial tem-
perature and relative humidity were 290 K and
85.9%, respectively. After 600 s, the temperature
decreased to 287.5 K, causing the relative humid-
ity to increase to 100.5% and water to condense
rapidly onto the core material to form a fog. The
figure shows the volume distribution of the total
particle (elemental carbon plus water). Because
the saturation vapor pressure of particles below
about 0.3 um exceeded the actual vapor pressure
multiplied by the Kelvin effect, these particles
did not grow. After another 600 s we increased
the temperature again to 290 K, causing the
relative humidity to fall back to 85.9% and parti-
cles to evaporate to their original core sizes. We
repeated this growth-evaporation cycle a total of
12 times. The figure demonstrates that allowing
particles with the same core sizes to grow and
evaporate independently of particles with differ-
ent core sizes preserves the initial core distribu-
tion and permits continuous duplication of fog
growth.

In both cases, each of the 24 time-inter-
vals was 10 min. We solved coagulation
with the semi-implicit method, using time
steps equal to the time interval (no itera-
tion required). The coagulation kernel in-
cluded the effects of Brownian motion,
convective diffusion enhancement, gravi-
tation, turbulent shear, and turbulent in-
ertial motion (Fuchs, 1964; Pruppacher
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FIGURE 9. A four-hour model comparison of
fog growth alone compared to fog growth cou-
pled with coagulation. The initial distribution
was the same as that in Figure 8, the initial
humidity was about 100.5%, and the temperature
stayed constant at 287.5 K throughout the simu-
lation. The figure shows the volume distribution
of the total particle (carbon plus water) at the
end of the simulation. The text describes remain-
ing conditions.

and Klett, 1978; Saffman and Turner,
1956). Also, in both cases, we solved
growth with SMVGEAR, which uses vari-
able time steps.

Figure 9 shows that coagulation slightly
broadened the cloud-drop portion of the
distribution and moved unnucleated cores
to slightly larger sizes. While Brownian
coagulation affected particles primarily
less than 1 pum in diameter, differential
fall velocities and turbulent motions were
responsible for most coagulation in parti-
cles larger than 1 pum. Finally, while most
growth occurred within the first few min-
utes of the simulation, coagulation contin-
ued to affect all modes of the distribution
during the entire simulation period.

Figures 10a and 10b show condensa-
tional growth of sulfuric acid and water
and the corresponding conservation of the
gas phase during growth. The initial distri-
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bution of elemental carbon was the same
as in Figure 8. Also, the initial gas con-
centration of sulfuric acid was 10" cm ™3,
the ambient temperature was 287.5 K,
and the relative humidity was 81%. At
this temperature and humidity, the satu-
ration number density of sulfuric acid over
a flat surface is about 10! cm~>. The
difference in ambient versus saturation
densities forced gas-phase sulfuric acid to
condense.

When sulfuric acid condenses, water
condenses simultaneously. As the acid dis-
sociates into ions, each ion attracts liquid
water molecules. A convenient technique
to estimate the amount of water that con-
denses to satisfy the change in ion content
of the aerosol is the ZSR methods
(Zdanovskii, 1948; Stokes and Robinson,
1966; Cohen et al., 1987; Pilinis and Sein-
feld, 1987b). We used the ZSR method
combined with an equilibrium model
(Jacobson et al., 1994b) to calculate both
the amount of water that condensed with
sulfuric acid and the distribution of HSO,-,
SO;-, and H* ions that resulted from the
condensation of acid.

In sum, the processes included to ob-
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tain Figures 10a and 10b were condensa-
tional growth (gas and aerosol phase
solved simultaneously with SMVGEAR)
and chemical equilibrium (including cal-
culation of aerosol water content). Figure
10a shows the growth of the aerosol distri-
bution. The final distribution contained
about 45.3 ug m~? of liquid water, com-
pared with 10.7 ug m~* of HSO,-, 5.4 ug
m~> of SO, -, and 0.1 ug m™® of
H,SO,(aq). Thus, about 74% of the in-
crease in aerosol mass was due to water
condensation although sulfuric acid was
the initial condensing species.

Figure 10a also shows that the resulting
aerosol distribution peaked near 0.65 um
diameter. While this distribution did not
account for gas-phase chemistry, emis-
sions, deposition, transport, and other
processes, the resulting diameter fell
within the accumulation mode. Hering and
Friedlander (1982) measured ambient sul-
fur distributions and found an average
mass median diameter of about 0.54 um
when the maximum humidity ranged from
69%—-100%.

Finally, Figure 10b shows the reduction
in gas-phase sulfuric acid during the pe-
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riod of condensation. Figure 10b shows
that condensation actually ceased after
about 45 min of simulation.

VI. CONCLUSIONS

We discussed an aerosol model that uses
a hybrid size grid that has characteristics
of both a stationary and moving grid. For
the most part, the core volume of parti-
cles in each size bin remains fixed while
the volatile volume of particles fluctuates.
Allowing particles of one core volume to
grow and evaporate independently of par-
ticles of other core volumes eliminates
numerical diffusion. Furthermore, it per-
mits grown particles to condense back to
their exact core sizes and particles of the
same size to have different composition.

For this model, we set up and solved
growth equations that conserve mass be-
tween the gas and size-resolved aerosol
phases. To calculate the solution to the
growth equations, we used SMVGEAR, a
sparse-matrix vectorized Gear-type code.
SMVGEAR exploits the sparsity of the
matrix of partial derivatives to solve the
growth equations. Furthermore, it vector-
izes around the grid-cell dimension, allow-
ing relatively rapid solutions to first-order
ordinary differential equations in large
grid domains.

Next, we modified the coagulation code
of Jacobson et al. (1994a) to permit coag-
ulation over the hybrid grid structure. The
modified code allows us to partition each
coagulated particle and its total volume
between particles of two size bins—one
with particles of smaller core volume and
the other with particles of larger core
volume than that of the coagulated parti-
cle.

To test growth and coagulation over
the hybrid grid structure, we compared
results to analytical and integrated nu-
merical solutions. For the integrated solu-
tions, we devised fully implicit coagulation
and growth equations and solved them
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with SMVGEAR. When computer speeds
increase further, fully integrated solutions
will become more feasible over large grid
domains. However, for now, the time-split
model scheme presented here predicts so-
lutions similar to those of the integrated
solutions while taking much less computer
time.
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