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ARTICLE INFO ABSTRACT

To be competitive in the electricity markets, various technologies have been reported to increase profits of wind
farm owners. Combining battery storage system, wind farms can be operated as conventional power plants
which promotes the integration of wind power into the power grid. However, high expenses on batteries keep
investors away. Retired EV batteries, fortunately, still have enough capacity to be reused and could be obtained
at a low price. In this work, a two-stage optimization of a wind energy retired EV battery-storage system is
proposed. The economic performance of the proposed system is examined concerning its participation in the
frequency containment normal operation reserve (FCR-N) market and the spot market simultaneously. To ac-
count uncertainties in the wind farm output, various electricity market prices, and up/down regulation status, a
scenario-based stochastic programming method is used. The sizing of the equipment is optimized on top of daily
operations of the hybrid system which formulates a mixed-integer linear programming (MILP) problem.
Scenarios are generated with the Monte Carlo simulation (MCS) and Roulette Wheel Mechanism (RWM), which
are further reduced with the simultaneous backward method (SBM) to increase computational efficiency. A
21 MW wind farm is selected as a case study. The optimization results show that by integrating with a retired EV
battery-storage system (RESS) and a bi-directional inverter, the wind farm can increase its profits significantly
when forwarding bids in both of the aforementioned electricity markets.
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1. Introduction

Electrical Vehicles (EVs) have been scoped as the transition trans-
portation technology to replace internal combustion engine vehicles
(ICEVs) [1,2], however, despite academic consensus, the deployment of
EVs remains low with a representation of, less than 1% of the combined
global vehicle fleet [3]. Multiple reasons for the slow transition have
been examined ranging from battery performance [2], vehicle costs [4],
range limitations [5], etc., and are frightening similar as determined a
decade ago [6]. Simultaneously, advocates for EVs have been using the
arguments of vehicle-to-grid (V2G), which enables strategic storing and
exchange of electricity [4]. However, few, if any studies have ade-
quately examined the potential usage of EVs and EV batteries after the
expired lifetime in combination with multi-megawatt wind turbines.

Instead recent studies have focused on the combination of PV and re-
tired EV batteries, and found that (a) residual capacities can be
exploited [7], (b) power management and selection strategies are re-
quired to optimize the value of the retired battery [8], and (c) the en-
vironmental, social and economic profiles of EV batteries are improved
due to a minimization of the recycling rate [9]. Assuming the same
consequences for retired EV batteries, it would inevitably increase the
value of lifetime EVs, and potentially add to the policy mechanisms,
which especially seems to be lacking in Denmark [1]. As a matter of
fact, only 8,746 EVs (plug-in hybrids and all-electric vehicles) were
registered in Denmark by the end of 2017 [10], which is far less than
the Scandinavian neighbours Norway (209,122) [11] and Sweden
(50,304) [12]. This being despite the fact that Denmark has excellent
wind resources [13], a high penetration of wind power in its electricity

* Corresponding author at: SEWPG European Innovation Center, 8000 Aaruhus, Denmark.
E-mail addresses: s181239@student.dtu.dk (S. Zhan), houpeng@shanghai-electric.com (P. Hou), peterenevoldsen@btech.au.dk (P. Enevoldsen),
gyy@elektro.dtu.dk (G. Yang), zhujsh@shanghai-electric.com (J. Zhu), joshua.eichman@nrel.gov (J. Eichman), jacobson@stanford.edu (M.Z. Jacobson).

https://doi.org/10.1016/j.ijepes.2019.105631

Received 29 July 2019; Received in revised form 14 October 2019; Accepted 15 October 2019

Available online 14 November 2019
0142-0615/ © 2019 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2019.105631
https://doi.org/10.1016/j.ijepes.2019.105631
mailto:s181239@student.dtu.dk
mailto:houpeng@shanghai-electric.com
mailto:peterenevoldsen@btech.au.dk
mailto:gyy@elektro.dtu.dk
mailto:zhujsh@shanghai-electric.com
mailto:joshua.eichman@nrel.gov
mailto:jacobson@stanford.edu
https://doi.org/10.1016/j.ijepes.2019.105631
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2019.105631&domain=pdf

S. Zhan, et al.

Electrical Power and Energy Systems 117 (2020) 105631

53

54

55

sup, §down
nch, ndis
i

nup, 77down

NEVB
/linv
EE VB
EP
FCRN
M

pwt

Nomenclature

Indices

w Scenario index

d Day index from 1 to 365 in a year

i Uncertain parameter index

j Interval index

t Hour index from 1 to 24 in a day

Parameters

a Ratio between retired EV battery price and brand new

battery price

Binary numbers indicating if power generation is over
0.3 MW

Binary numbers indicating if FCR-N market price is over
80% of spot market price

Binary numbers indicating if spot market price is non-
positive

Binary numbers used to indicate upward/downward reg-
ulation

RESS charge/discharge efficiency

Inverter efficiency for both directions

Percentages of activated power to bidden capacity for
upward/downward regulation

Brand new EV battery price

Inverter price

Brand new battery capacity

Spot market price

FCR-N market price

Arbitrarily big number in big M method

Power generation

RPP""  Downward regulating power price
RPP"P Upward regulating power price

SoH Ratio between usable capacity of degraded battery and
nominal capacity

T Scenario span, 24 h

Variables

81, 62 Binary variables indicating if bid is made to FCR-N market
§¢h, % Binary variables indicating charging/discharging state of

RESS
€ Random numbers generated in simulation
Vi Scenario probability

Echarge Absolute charge content of RESS

ERESS RESS capacity

N Optimized battery number of RESS

pactiup - Potential electricity inflow into FCR-N market from up-
ward regulation

Ppetdown potential electricity inflow into RESS from downward

regulation
pchup Potential electricity inflow into RESS from upward reg-
ulation
pehwt Power that is used for charging RESS from wind farm
P Charging power for RESS
pdis Power discharged from RESS
pinv Bi-directional inverter power
pspetwt Power traded in spot market generated from wind farm
pspot Bidden electricity in spot market
R Bidden capacity for upward regulation
SoC State of charge of RESS
Z Binary variables indicating options being chosen

mix (44% of the demand in 2017) [14], and several days with a surplus
of electricity and thereby negative electricity prices [15].

Using batteries for electrical storage system (ESS) is not a novel
thought, and especially lithium-ion battery was brought up in several

studies as a prominent technology for load shifting and peak shaving
demands [16-19], and highlighted for its capabilities of low standby
losses and high energy efficiencies (60-95%) [20]. Using batteries to
increases the profitability of wind farms has also been proposed before

pspot,wt
Day-ahead Market
Offshore wind farm RESS(retired Evs)
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Fig. 1. Hybrid wind farm-RESS system schematic layout.
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[21], as several studies demonstrated method for lucrative bidding
strategies on the day-ahead markets when combining batteries and
wind farms [22,23]. Furthermore, applying batteries as the cornerstone
technology in ESS was concluded to be the most profitable approach to
provide primary frequency service in the Danish reserve electricity
market almost a decade ago [24].

This study will investigate solutions to (a) The fluctuations in
Danish electricity prices due to the heavy reliance on wind power, and
(b) The investment opportunities of installing retired EV batteries in
Danish operational offshore wind farms.

In order to examine such challenges, the hybrid wind farm - retired
EV batteries system is expected to participate in both the day-ahead and
the FCR-N market. As a comparison, another case in which the wind
farm only participates in the spot market is also studied, both shown in
Fig. 1. According to the rule of Danish transmission system operating,
the balance responsible parties (BRPs, referring to the hybrid system in
this study) merely need to provide a small amount of energy to mitigate
the frequency deviation and get remunerated mainly by the bidden
power capacity. Therefore, the electricity generated from the wind
turbines can be sold at the spot market or caters for upward regulations
of the FCR-N market, with part energy or the surplus going into the
RESS or possibly both.

Since discharging the battery will incur high cost and reduce the
battery lifetime and performance obviously, the RESS works as down-
ward regulation medium and receives electricity from the FCR-N
market when downward regulation is needed. The upward regulation in
the FCR-N market can be handled by controlling the wind turbines in
the de-rated mode and releasing those when needed.

The research materials and methods are based upon the examina-
tion of the potential profitability of integrating retired EV batteries in a
Danish operational offshore wind farm. Furthermore, web searches
have been conducted to inform about statistics of EVs and the market
prices in Denmark. The following sections describes the methodology
and materials applied for the core elements of this research.

2. Problem formulation

In this work, a scenario-based stochastic programming method is
employed to cope with the inherent uncertainties of the optimization
problem, including the power generation, the spot market prices, the
FCR-N market prices, the regulating market (upward and downward)
prices and the FCR-N service activation states. The framework has been
examined in [25,26] and concluded to be an efficient and effective
method to account uncertainties for scheduling problems. To convexify
the problem, the big M method is adopted to linearize the bi-linear
term. The scenario generation and reduction are specified at the be-
ginning of this part while the mathematical model of the optimization
problem is given in the end.

2.1. Scenario generation

The uncertain parameters listed in the previous paragraph are de-
termined with generated scenarios by Monte Carlo Simulation (MCS)
and Roulette Wheel Mechanism (RWM). Although other methods such
as rejection method [27] and alias method [27] can be used to generate
random variables with discrete distribution, RWM is simpler and does
not require complex set-up procedure. Indeed, RWM has been applied
in [25,26,28]. Numerical results show the capability of this method
[28]. The realization process is summarized as follows.

The Probability Distribution Function (PDF) is used to generate a set
of possible options and corresponding probabilities based on forecast
errors of the power generation and the different market prices, while for
the FCR-N service activation states, the historical frequency is assumed
as the probability for each possible state. As shown in Fig. 2, dis-
cretization and normalization are performed on the continuous prob-
ability distribution, generating 7 segments with an interval of standard
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deviation (o) [25]. The probability distribution of reserve service ac-
tivation states is shown in Fig. 3. To be more specific, the prediction
error of the wind power can be obtained from [29]. In our case, its o is
taken as 5% for Denmark. From [30,31], a 0 of 10% is a reasonable
estimation of the prediction error for day-ahead market price. The
prediction errors are also assumed as 10% for the FCR-N market and
regulating market price.

Afterwards, random numbers (e}, ) ran-
ging from [0,1] are generated for each hour. As in Fig. 4, the intervals
where the random numbers fall in are taken as the corresponding op-
tions for each uncertain parameter. A scenario is therefore defined as a
set of random numbers for each hour within a day:

FCR-N _spot _up _down
€ > €& 5 € s &,

wt FCR—N _spot _up _down R
15 € > € €1, €,

wt FCR—N _spot _up _down R
El,EZ,EZ ,EZ ,EZ,EZ N

w = {e €,

wt _FCR—N _spot _u, down _R
€7, €7 s E7P 5 Epr €r o, ET} (€D)]

A typical scenario is shown in Fig. 5, where the uncertain para-
meters in a day are all determined with certain values. For example, in
the first hour, the power is no more uncertain parameter, but fixed at
just below 15 MWh. With all the scenarios, the stochastic programming
problem is transformed into its deterministic equivalent. It can also be
observed that the spot market prices intersect with the FCR-N market
prices indicating profitability of biding in the FCR-N market.

In order to obtain the probability of each scenario, Z,,;; is in-
troduced to indicate the MCS results where i is the uncertain parameter
index and j is the interval index. The rule is that originally Z,,, ; ; are all
set as 0. When the corresponding interval is taken in the simulation, the
related Z,;;; is changed into 1. Suppose 7;; is the probability of the
corresponding interval being taken, which is neither time nor scenario
dependent, the normalized probability [25] of scenario w is then:

C LTI B Zanymy)
ZS HtT=1 Hi1=1 Z;=1 (Zo1j75) 2)

w

2.2. Scenario reduction

Large number of scenarios usually indicate better approximation of
the original problem, but also with longer computation time and larger
complexity. In this research, the simultaneous backward method (SBM)
which concurrently considers scenario distance and scenario prob-
ability is employed. Numerical tests have shown that SBM provides
accurate solutions to the optimal reduction problem [32] and it is also
used in researches such as [25]. The principle of scenario reduction is to
reduce the scenario amount by deleting scenarios with lower prob-
ability and bundling similar scenarios, while keeping the characteristics
as much as possible. The SBM is described as follows:

1. Consider Q as the initial scenario set. The distance matrix DT is
defined where w, o’ € Q:

0.4
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Fig. 2. Discretization of forecast errors distribution.
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Fig. 3. Reserve service activation state probability distribution.
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Fig. 4. Accumulated probability distribution. (1) Power generation, FCR-N
market prices, spot market prices and regulating market prices. (2) Reserve
service activation states.
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Fig. 5. A typical scenario for 2nd November, 2017 with 1 indicating upward
regulation, —1 being downward and 0 being reserve services not activated.
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2. Define probability-distance matrix PD as:
PDru,ru’ = ﬂmDTr'u,m’ (4)

3. Select d, r where PDy, is the smallest entry in the matrix PD. Delete
scenario d in scenario set Q, 7, = 7, + 7.

4, Delete the row d and column d in distance matrix DT.

5. Repeat the steps 2—4 until the required scenario amount is obtained.

2.3. Mathematical model

In order to verify the financial benefit of integrating the RESS and
participating the FCR-N market, three cases are studied. In the base
case, the wind farm without the storage system participates the spot
market only and bids all the predicted power generation into the spot
market, the revenue of which for a whole year is as Eq. (5). In case 1,
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the wind farm purchases RESS and participates the spot market, while
bids are made in both the spot market and the FCR-N market in case 2.

D Q T
Rbase — Z Z Tlo,d z {Eg,cu,dpt‘:vcz,dl}

d w=1 t=1 (5)
2.3.1. Case 1

After the RESS is introduced into the system, the wind farm can
perform arbitrage in the spot market. The yearly revenue is:

T

D Q
Reasel — Z Z Tleo,d z {EE,w.dPts,gffi 3
d w=1 =1 ©

The benefit is considered as revenue difference before and after
RESS introduction. The economic analysis is performed with 20 year’s
period since this is the wind turbine’s lifetime. The net present value
(NPV) of benefit is:

20
NPV — B'=NPV —R - NPV - R0 =
y=1

Rcasel _ Rbaxe
a+d)? )

where the superscript b and 1, 2 (in following section) stand for the
base case, case 1 and case 2 respectively.

The cost is considered as three parts: the initial investment of the
RESS and the bi-directional inverter, the replacement cost (the cost of
replacing the RESS and inverter with new one at the end of their life-
time), and the operation and maintenance cost (1% of investment each
year for both) [33]. In case 1 and 2, two scenarios are considered
concerning the price of retired battery, which is 15% of the brand new
EV battery price in the optimistic scenario and 30% in the pessimistic
scenario. The NPV of the cost is therefore:

20
ro&M
+ E (1+dr)y’1]
y=1
20
ro&M
+ E (1 +dp)y1
y=1 (®

NPV — C = P[] +

1
1 +dpto

NFEVB)EVB 1 1
+ o; NEEVBAEVE[1 + iy + Axd)®

where the inverter is assumed to be replaced after 10 year’s operation,
while the replacement for the RESS is done each 7 years, as specified in
Table 1.

Obj.
Max. NPV — P =NPV — B! — NPV — C %)
S.t.
Pinv > 0 (1 0)
Table 1
Economical analysis parameters.
Parameter Values References
Wind turbine lifetime 20 years
Bi-directional inverter lifetime 10years [39]
RESS secondary service lifetime 7 years [40,41]
Discount rate d, 5%
O&M ratio rpg for RESS and inverter 1%/year [33]
Bi-directional inverter price/kWh 1000 DKK
Brand new EV battery price/kWh 1787 DKK [42]
Brand new EV battery stack capacity 24kWh
SoH" of retired EV batteries 80% [43-45]
Maximum charging/discharging rate By inverter
Charging/discharging efficiency 95% [43]
Inverter efficiency 98% [46]
Maximum SoC 80%
Minimum SoC 20%
Initial(End-of-day) SoC(case 1) 20%
Initial(End-of-day) SoC(case 2) 35%

* State of health, the ratio between usable capacity and nominal capacity.
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Ec® = NEFVBSoH, N > 0 an
PO = POV 4 pIS Y,V w,V d 12)
Pigd + P = Rua V.YV @, Vd (13)
P =PY Y Y,V d (14)
PdlS
Ese, = B 4 (hyimpeh | — nd;‘”ivn ViV, Vd as)
S0Cimin EP < B < S0Cmax B, ¥ 1,V 0, ¥ d (16)
EfE = Bif% = B » Y @,V d a7
0SPLG" S BV 6VoVd 18)
OsP <SP, VtVao,Vd 19)
0< P;j;,d <P™ Yt Vao,Vd (20)
0P, <P™ Vi,Vo,VYd @D
PP =0,V 1, Y0, ¥d (22)

The objective function is maximizing NPV of profit of the wind farm
owner. In (10) and (11), the capacity of inverter and RESS are con-
strained as continuous and discrete variables respectively. (12) states
the bidden electricity in the spot market while (13) shows the elec-
tricity balance of the wind farm. (14) indicates that wind power is the
only charging source. The SoC balance, and upper/lower limits of SoC
are shown in (15) and (16). To guarantee the energy will be used out at
the end of each day, (17) is applied as boundary conditions. (18) and
(19) ensures the energy that flows into the spot market or the RESS is
less than the generated energy. In (20) and (21), the constraints from
inverter size are applied. By nature, the RESS cannot be charged and
discharged simultaneously, which is stated in (22) as a combinational
constraint.

Binary pair of variables, 5&, dal 5td§j 4 are introduced to help linearize
(22), which represent the charging/discharging state of the RESS. The
big M method is implemented in this work to linearize the bi-linear
term, where M; and M, in later paragragh are arbitrarily big number,
which substitutes (22) with:

5 4 0% € (0,1}, 8 4+ 6% <1,V YV, Vd (23)
0SPH <M 4V t,Vw,Vd (24)
0< P <M, Vi, Vw,Vd (25)

2.3.2. Case 2

In case 2, the yearly revenue for the wind farm owner comprises the
revenue from the day-ahead electricity market, from the bidden capa-
city in the FCR-N market and from the FCR-N service activation energy
which is settled per MWh with the regulating power prices (RPP) [34].
For the FCR-N market, the Danish TSO Energinet requires simultaneous
and symmetrical upward and downward regulation reserve bid [34].
Therefore, the upward bids and downwards bids can be described with
one term R;, 4.

Rcasez
D Q T
=D D 7w Dy (ERWaP%1 + Ry qFCRN, g + PL%PRPPY |
d w=1 t=1
1— Pch downRPPtdg\zn 1} (26)
Obj.

Max. NPV — P =NPV — B2 — NPV - C 27)
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S.t.

(10)-(12)

Pt 4 PO = P — Riwa, VLV @,V d (28)

Pl = PESS 4+ PSP 4+ PELA W £,V @,V d 29)

15)-(17)

P = 1S Rywa, ¥ 1Y @,V d (30)
SPEP <A - 9% yRiwa Y1,V 0,V d (31)

P = oSO Ry, V 1,V @,V d (32)

Riwa>03VRia=0,Vt,YwVd (33)

Riwa <B%sViLVao,Vd (34

Rigl < Min{SoCpaEP — B8 P11}V 1,V 0,V d (35)

(18)-(21), (23)-(25)

The objective function is the net present value of profit, where the
NPV-C can be calculated as (8), and R4 has to be replaced as R s, for
the NPV-B in Eq. (7). (28) sets the new electricity balance of the wind
farm considering the reserved capacity for upward regulation. The
charging power is stated as (29) where P[C’Z” and Pfh down denoting the
potential inflow of electricity from the activated wmd turbines if up-
ward regulation is needed and from activated RESS if downward reg-
ulation is needed, respectively. (30)-(32) defines aforementioned
Pt ph and PA | where, 612, and 69" are a set of known
binary numbers indicating if the TSO requires upward/downward
regulations, and 7*? and 7", both assumed to be 10%, are the per-
centages of electricity flowing into or receiving from the FCR-N market
since the capacity is what the FCR-N market really needs to maintain
the frequency stability. When secondary frequency reserves (aFRR) are
activated, the TSO releases the FCR-N reserve services, which happens
150 s [34] after the frequency deviation, and the wind farm owner can
collect the rest electricity generated from the wind turbines with the
RESS. The minimum bidden FCR-N capacity is 0.3 MW [34], which is
constrained as (33). Hourly bidden upward and downward regulation
capacities are constrained as (34) and (35) respectively. The constraints
(10)-(12), (15)-(21) and (23)-(25) still apply to case 2.

Likewise, the big M method with binary variables &, 4/62, 4 in-
dicating whether is forwarded to the FCR-N market is performed on
constraint (33). Then, it can be rewritten as:

6t1.cu,d’ 6t%cu,d € {0, 1}, 6ll,cu,d + 6t%cu,d = 1’ v t’ v @, v d (36)
~My(1 -8 0) SRwa < MA =8, Vt,Vw,Vd (37)
- M(Q =644 +03< Rya,VE,Vw,Vd (38)

The aforementioned model can be implemented by the wind farm
owner for daily operations with a much shorter optimization span.
However, for the strategy maker who needs to include the equipment
sizes as the optimization variables and usually performs the optimiza-
tion with a year’s span (with constraint (17) as daily boundary condi-
tions), such binary variables with high dimensionality in the model will
severely undermine the computation efficiency and can even cause the
model untractable with existing commercial solvers. In order to en-
hance the implementation performance of the large-scale MILP pro-
blem, following assumptions concerning the wind farm owner’s beha-
viours are made to avoid the binary variables in the model: (a) Always
and only forward bids in the FCR-N market when power generation is
over 0.3 MW and the predicted FCR-N market price is higher than 80%
of spot market price and (b) Never bids RESS-stored electricity in the
spot market if predicted price is non-positive.
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The first assumption is made with respect to the minimum bids
requirement in the FCR-N market and taking into account the potential
electricity inflow and revenue from the reserve service activation.
Afterwards, constraint (33) can be transformed as:

Riwg>03 6,46 ,4=1
t,w,d Z ts,m,d t:o,d , v [, v w, v d
Rt,w,d =0 5t,w,d5t,w,d =0 (39)

with 82, 4 indicating if the power generation is over 0.3 MW, &/, , in-
dicating if the FCR-N market price is over 80% of the spot market price.

Simultaneous charging and discharging will incur electricity waste
due to inefficiency, which definitely results in revenue loss when the
spot market price is positive [21]. Therefore, the constraint (22) can be
decoupled naturally with the above assumptions. As a result, the con-
straints (23)—(25) can be replaced with:

Ptl,icij,d < M3{[1 - 5[?w,d5tz,‘w,d (5;,‘5,(1 + 5tdg)1’121n ]V(l - 5t5,w,d)}’ v L, v @, vd
(40)

where &, ; will be zero if the spot market price is non-positive. In es-
sence, the constraint (40) limits that the RESS cannot discharge if the
spot market price is non-positive or if the reserve services are activated.

2.4. Assumptions

Apart form the assumptions made above, some other assumptions
are made in the follows.

(a) The predicted values for the power generation, the spot market
prices, the FCR-N market prices, the regulating market prices, and
the reserve activation states are assumed to be based on historical
data for scenario generation.

(b) The wind farm is assumed to be able to make predictions before the
market closure, which is usually a day before real-time transaction.

(c) The bids in the spot market and the FCR-N market are both assumed
to be fully accepted.

(d) To account for the impacts on performance of retired EV battery,
the capacity, and the maximum and minimum charging/dischar-
ging is limited to short range in this work. The retired batteries are
not designed to perform market arbitrage either, which means
electricity from the day-ahead market is not used to charge the
RESS.

3. Case study

In this part, several cases are studied to demonstrate the proposed
method. The FCR-N market prices are from Energinet [35] while the
spot market and regulating market prices are from Nordpool [36]. The
mathematical model is solved with CPLEX [37] based on YALMIP [38]
toolbox on MATLAB.
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3.1. Reference wind farm

The wind farm near the Danish island Sprogoe consist of seven
Vestas V90-3 MW wind turbines. Using WindPro and the mesoscale
wind data from ERAS5, the hourly electricity production from each of
the wind farm has been calculated between November 1, 2017 and
October 31, 2018. The expected lifetime of an offshore wind farm is
20-25 years [47]. The location of Sprogoe is in the middle of the Great
Belt of Denmark, which had 11,357,037 personal vehicles passing by in
2018 [48], making it an ideal position for a nearby EV charging station.

3.2. Retired EV battery

Nissan Leaf is the bestselling EV model in Norway (over 50,000 in
total) [49], and had a market share of 50% of the Danish EV market in
2018 [50]. The first 24kWh Leaf model entered the Danish market
around 2011 and was warrantied for 8year’s life span or 100,000
mileage [51], which makes today around the peak of retirement for this
model. The retired EV batteries are connected in stack to work as a
RESS for the hybrid system, the capacity of which (i.e. number of
connected batteries) and the installed inverter capacity are optimized to
achieve maximum profit. The specification of the RESS and inverter can
be found in Table 1. Two scenarios concerning the price of retired EV
battery are considered. In the optimistic scenario, the price is 15% of its
brand new model price. While in the pessimistic scenario, the price is
considered as 30% of that.

3.3. Optimization results

In the implementation of the stochastic programming framework, to
account the uncertainties in the model, a large number of scenarios
(1000 in this case) have been generated with MCS and RWM. A SBM is
afterwards applied to reduce the generated scenarios to 20 remained, in
line with [28]. A sensitivity analysis is provided in Section 3.4 to in-
vestigate the influence of the amount of the remained scenarios on the
final results.

In this study, two cases with both the optimistic and pessimistic
scenarios are examined. As in Table 2, the wind farm cannot recover its
investment introducing a RESS and an inverter even in the optimistic
scenario in case 1, where the wind farm only forwards bids in the spot
market, which is primarily due to the high inverter and battery prices
considering the spot market prices are highly variable as in Fig. 6, with
a daily average standard deviation of 66.8 DKK/MWh.

While in case 2 under the optimistic scenario, the wind farm would
like to install 1615 single retired batteries to form a RESS with a dis-
posable capacity of 30.0 MWh due to battery degradation and an in-
verter of 13.9 MW, which would lead to an annual revenue increase of
6.4 MDKK. As the result indicates, the wind farm will recover its initial
investment after 4.3 years, with a overall return on investment (Rol) of
72.1% over 20 years. In the pessimistic scenario, the wind farm would
purchase a much smaller system with 895 single retired batteries and a
9.4 MW inverter. Even though with the yearly revenue dropping down

Table 2
Optimization results.
Scenario® Battery Number Inverter Size Yearly Revenue NPV-C NPV-P Rol” PBY®
Base case 18.20 M
Case 1(optimistic) 0 0 18.20 M 0 0
Case 1(pessimistic) 0 0 18.20M 0 0
Case 2(optimistic) 1615 13.88 MW 24.59M 48.60 M 35.04M 72.10% 4.27
Case 2(pessimistic) 895 9.41 MW 22.75M 43.44M 16.10M 37.07% 5.34
@ The optimization span is a year with the daily boundary conditions and a time resolution of an hour.
b NPV - B
Return on Investment, Rol = NPV _C"

Payback Year: time when the net present benefit equals investment.
4 Million DKK.
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Fig. 11. Charging power source in the optimistic scenario.

by 1.8 MDKK, payback year increasing by 1.1 year, and almost halved
Rol, the hybrid system is still on a financially competitive level.

The bids forwarded in both the spot market and the FCR-N market
are taken as scenario-weighted mean values. In a typical day the spot
market prices cross the FCR-N market prices, which is usually the case
as shown in Fig. 7 where the FCR-N market prices show a strong reg-
ularity of starting at a high level, dropping down drastically and
bouncing back a little within a day. As a result, the bids made in the
FCR-N market shows a similar pattern as in Fig. 8, being on a high level
during the start as well as end of the day and around 0 in the middle of
the day, when most of the wind power is transmitted to the spot market.
Despite of this, the wind farm still receives a NPV of profit increase of
35.0 MDKK over 20 years in the optimistic scenario, verifying the high
profitablity of participating the FCR-N market.

In Fig. 9, the reserve service activation is depicted in two different
directions, indicating upward regulation and downward regulation for
a certain scenario respectively. In the hours (3rd, 5th 6th, 22nd and
24th), the reserve services are not activated, though bids are forwarded
to the market, which incurs loss in the revenue since the FCR-N market
prices in the 22nd hour (334 DKK/MW) are lower than that of the spot
market (344 DKK/MWh). However, this does not indicate the model is
defected, since assuming the wind farm can precisely predict the fre-
quency regulation directions a day before to make decisions as dictated
in the model with binary variables is far too idealistic. The assumption
that the wind farm always bids in the FCR-N market as long as the price
is over 80% of the spot market price is a compromise between situations
when service is upwards activated so extra electricity can be reserved
thus with extra revenues and cases when there is no activation so with
economic losses, which makes the model more down to earth and the
profit result more reliable.

In a typical scenario, the electricity flow profile of the RESS is as
Fig. 10, where the RESS discharges with a high rate at some moment in
order to level off the charged energy within a day to satisfy the
boundary conditions, which results in a high-capacity inverter. The
charging profile is further divided in Fig. 11 indicating that the wind
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Table 3
Sensitivity analysis results.
Remained scenarios Battery Number Inverter size NPV-P Normalized computation time
Non-stochastic 1622 12.99 MW 30.96 MDKK 0.015
5 1640 13.83 MW 34.98 MDKK 0.09
10 1615 13.89 MW 35.08 MDKK 0.25
20 1615 13.88 MW 35.04 MDKK 1

power and the reserve service activation by upward regulations are the
major sources of battery charging power.

3.4. Sensitivity analysis

In this section, a sensitivity analysis is employed to investigate the
influence on the planning and financial results of the remained sce-
narios number after applying the SBM. We specifically focus on case 2
for the optimistic scenario. The case when the stochastic framework is
not applied is also included, in which the markets prices, wind power
and regulating statuses are all historic data. The solving time is nor-
malized based on the case where 20 scenarios remain after the scenario
reduction technique. The equipment sizes and the normalized solving
times are shown in Table 3.

From the sensitivity analysis results, following conclusions can be
obtained: (1) The computation time is highly influenced by the number
of remained scenarios. When the scenario number doubles, the solving
process takes 3-4 times longer. (2) The planning results stabilise at
larger number of scenarios. In this case, 10 remained scenarios give
almost the same results as 20 scenarios. (3) In this case, 10 remained
scenarios gives the best performance in terms of optimization accuracy
and computation time.

4. Conclusion

In this study, a hybrid wind turbine-retired battery storage system is
proposed to participate both the spot market and the FCR-N market to
increase the wind farm owner’s profit. The uncertainties are modelled
with a scenario-based stochastic programming method. The scenarios
are generated with MCS and RWM. Afterwards, they are applied to SBM
to be reduced to enhance the computational efficiency. The hybrid
system are investigated in two cases. In the first case, the wind farm
participate in the spot market only. While in the second case, the wind
farm also forwards bids in the FCR-N market. Two scenarios (opti-
mistic/pessimistic) are raised in terms of the price of retired EV bat-
teries to examine its influence on the planning. A sensitivity analysis is
performed at last to provide insights regarding the influence of re-
mained number of scenarios on the optimization results.

The optimization results show that by integrating the retired EV
batteries and forwarding bids in the FCR-N market, the system can
increase the net present value of profit by 35.0 MDKK in the optimistic
scenario and 16.1 MDKK in the pessimistic scenario. Compare case 1
with case 2, participating FCR-N market is the major reason of the in-
creased profit when the wind farm integrates retired EV batteries. The
sensitivity analysis concludes that 10 remained scenarios would have
the best performance regarding optimziation accuracy and computation
efficiency. Considering the fact that brand new EV battery price was
dropping dramatically over the years (73% drop from 2010 to 2016)
[42] and is expected to be further decreased down to 109 $/kWh in
2025 and 73 $/kWh in 2030 [42], the proposed system is highly fi-
nancially favourable and provides an alternative to repurpose the re-
tired EV batteries.
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