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a b s t r a c t 

Like most northern settlements, Kluane Lake Research Station (KLRS) in Yukon Territory, Canada, is an islanded 

microgrid dependent on diesel generation and subject to high fuel costs. To reduce diesel costs, the station has a 

48 kW solar photovoltaic (PV) array alongside a 27 kW/171 kWh lead-acid battery system to store solar energy for 

nighttime use, primarily during summer. However, substantial solar energy is often curtailed when the battery 

becomes full due to prior charging with diesel-generated electricity. The goal of this analysis is to determine 

how to best operate the diesel generator to maximize solar PV generation, and thus minimize diesel costs. On a 

monthly basis, solar PV plus batteries can meet 96% of load during June, but only 3% during December, and 67% 

year-round. This study also analyzes how demand-side management of new food and water infrastructure can 

aid this objective while providing a constant source of electricity, locally-grown food, and clean water. Findings 

demonstrate that optimizing the KLRS diesel generator, battery management, and solar energy conversion may 

reduce diesel generation by up to 100% during June, 31% during the field season (mid-April to early October), 

and approximately 31% year-round (due to limited solar PV generation during the winter), compared with past 

operational data. 
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. Introduction 

Like with other Arctic and sub-Arctic regions across the globe,
anada’s northern territories experience some of the highest energy
osts in the world. This stems from the need to truck, barge, or fly in
iesel fuel to generate electricity, costing over $2.1/L (Canadian dollars
CAD) as of September 2021) in the most remote regions only accessi-
le by plane [1] . To reduce reliance on diesel, solar photovoltaics (PV)
ave become a popular option since they provide renewable electricity
rom solar energy during long summer days. For example, the village
f Old Crow, Yukon, Canada has saved over $400,000 and 189,000 L of
iesel per year by installing a 900 kW solar PV array [1] . Adding energy
torage in the form of batteries can extend the use of solar PV electric-
ty into the night; however, upfront capital costs and cold weather are
ormidable barriers to complete independence from diesel fuel using so-
ar and batteries alone [2] . As communities add technologies to improve
ood, energy and water (FEW) security, energy demand will only in-
rease [3] . Demand-side management (DSM), or modifying electric load
ccording to intermittent renewable supply, can utilize otherwise excess
enewable electricity and consequently reduce diesel generation [4] . 

The Kluane Lake Research Station (KLRS) in the Yukon Territory of
anada is attempting to become independent from diesel fuel and its
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igh cost of $1.85/L (in 2021). The station is similar in size to a typi-
al village in remote, northern regions of North America (henceforth re-
erred to as “the North ”). The station, though, is relatively accessible be-
ause it is connected to the continental road system. KLRS is located on
he traditional territory of the Kluane First Nation, Champagne-Aishihik
irst Nation, and White River First Nation of the Yukon Territory. The fa-
ility serves hydrologists, ecologists, and glaciologists studying the sur-
ounding watersheds, boreal forest, tundra, and icefield ecosystems. The
tation is operated by the Arctic Institute of North America (AINA) at the
niversity of Calgary and includes a mess hall, a washhouse, four labo-

atory buildings, an office building, a headquarters building, and a large
abin. There are ten other small cabins not connected to the microgrid
nd thus not included in this analysis, as they are powered electrically
y individual solar PV systems and heated with wood. 

The station’s electric energy system is a hybrid solar-battery-diesel
icrogrid, discussed in more detail in Section 2.1.1 . KLRS has also re-

ently installed more sources of electric demand to study FEW security
s a living laboratory in the North. This includes a container farm (CF) to
row salad greens and herbs to sell in neighboring communities; and a
esidential above-ground modular wastewater system, or Sewage Treat-
ent Plant (STP), for the large cabin. KLRS is also considering a water

euse (WR) system for graywater recycling. These technologies are an-
 2023 
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lyzed here as to their potential for DSM and the subsequent impact on
educing diesel fuel combustion. DSM can minimize the effect of renew-
ble resource uncertainty on a microgrid by shifting demand around
upply [5] . 

Whereas substantial literature exists in the field of microgrid and
enewable energy optimization [6–9] , and many analyses utilize DSM
10–14] , there are no studies that optimize DSM of multiple FEW infras-
ructure loads and energy generation simultaneously in a real microgrid
n the North. Some studies analyze container farming and wastewater
reatment in isolation; however, a common limitation is that individual
oads are not analyzed in sufficient detail to be optimized with DSM
15–18] . For example, Kirchem et. al, 2020, demonstrate in their re-
iew article that there are no studies that examine the effect that DSM
as on both the operations of water treatment infrastructure and micro-
rid stability simultaneously [18] . In other words, a balance must be
aintained between modifying loads to improve energy management

n the microgrid, such as raising thermostat settings of heating water
hen there is excess solar energy, as well as the effect that changing

hose loads may have on the infrastructure’s ability to serve its purpose,
or example ensuring sufficient hot or treated water when demanded.
eviews of field studies of power-to-heat DSM have not demonstrated
pplications to both small-scale container farming and water treatment
 19 , 20 ]. Overall, there is a need for DSM studies to consider these new
EW technologies [21] , for new indicators quantifying the benefit of
SM in energy islands [22] , and for additional field studies demonstrat-

ng DSM applications [23] . The specific microgrid settings and controls
t KLRS also have not been studied by any existing computer model. 

The contribution of this paper is both the development of a novel mi-
rogrid energy optimization model for DSM of FEW infrastructure and
ts real application to an islanded microgrid at KLRS. To our knowl-
dge, no other study has been performed to simultaneously optimize an
slanded microgrid in the Arctic/sub-Arctic and then implement find-
ngs as part of a living laboratory setting. Thus, this paper addresses
alls in the literature for more real applications of DSM in renewable
icrogrids. The model can optimize diesel generator operation (binary

peration and continuous dispatch), solar electricity generation, battery
harge and discharge schedules, and the shifting of FEW infrastructure
emand with the objective of minimizing energy generation costs. This
tudy builds on prior work analyzing DSM of infrastructure [ 24 , 25 ] and
ork studying infrastructure across the FEW nexus in indigenous, north-

rn communities [26] . The goal of this paper is to optimize KLRS micro-
rid operations to reduce costs of diesel fuel, compared with historical
osts, using DSM of FEW infrastructure to inform station management
ow to achieve 100% renewable electricity generation for demand at
ore hours of the year. 

The paper is structured as follows. In Section 2.1 , the methods of data
ollection, modeling, and analysis of each component of the study are
iscussed, first with an introduction to the station microgrid and then
ith additional detail of the CF, the STP, and the solar energy system.

n Section 2.2 , the optimization model is described, and is followed in
ection 2.3 by a description of the model simulations to be performed.
2 
he results of the simulations are discussed in Section 3 , with a focus
rst in Section 3.1 on optimization of the solar PV, battery, and diesel
nergy systems without DSM, and then in Section 3.2 considering DSM
f FEW infrastructure. Finally, conclusions are made in Section 4 , along
ith a discussion of future work. 

. Methods 

.1. Station Energy Models 

.1.1. KLRS Microgrid 

KLRS is powered by its own islanded renewable microgrid and thus
ot connected to any other regional or continental electric grid infras-
ructure. A 48.3-kW solar PV array and a 171-kWh lead-acid battery
torage system is currently installed, as shown in Fig. 1 . The solar ar-
ay has eight charge controllers, which feed into the battery system. The
attery system has four 6.8 kW inverters to satisfy peak station demand,
hich can reach 20 kW. At an average station demand of 10 kW, the
atteries can power KLRS for approximately 10 h. If solar PV cannot
eet demand and the battery falls below its minimum state-of-charge

SOC), a 21-kW diesel generator supplies the electric demand. When
he diesel generator is operating, it meets load first, and excess gener-
tion charges the battery second, until its maximum SOC set point is
eached. The generator is capable of ramping to meet any change in
emand. 

Energy data were downloaded from the KLRS microgrid cloud mon-
toring system at 10 min intervals (extrapolated from the instantaneous
ower based on the first data point of each interval) for station electric
emand, solar PV generation, diesel generation, and battery charging
nd discharging. All energy data consist of electricity use connected to
he microgrid only, and thus any energy demand met by propane com-
ustion or wood stoves (cooking, hot water, space heating) are excluded
rom this analysis. The microgrid has been collecting data since Febru-
ry 15, 2020; however, due to the COVID-19 pandemic, the 2020 field
eason was limited with substantial portions of missing data until a typ-
cal field season began in late April 2021. 

The normal KLRS field season occurs from mid-April to early Octo-
er, though it also operates in the winter (offseason) at lower energy
emand ( Fig. 2 ). Over the 2021 field season, electricity demand gradu-
lly increased as more clientele arrived and the CF was commissioned.
n a diurnal basis, power use can be averaged by day, and is shown for

elect months in Fig. 2 . 
A majority of the station electricity demand is from the CF, manu-

actured by CropBox. This is shown in Fig. 3 for a select week in August
or the total station electric demand with and without the CF. The CF is
iscussed in more detail in Section 2.1.2 . 

Aside from the CF, the station electric demand is from laboratory,
ffice, and communal buildings. There is a baseload of 1-2 kW at all
imes from information technology (IT) devices, refrigerators/freezers,
nd laboratory equipment. Additional demand includes water pumping,
ishwashing, clothes washing/drying, and office/laboratory equipment.
Fig. 1. KLRS microgrid diagram with buildings 

served and energy systems, with solar PV arrays 

shaded (two 11.8 kW rooftop arrays and four 5.9 

kW ground-mount arrays). 



D.J. Sambor, H. Penn and M.Z. Jacobson Energy Nexus 10 (2023) 100200 

Fig. 2. Average KLRS power use over a day during several months in 2021. The 

pattern in March is typical of all winter (offseason) months. Energy demand 

increased over the year as the CF was commissioned to full production. 

Fig. 3. Electric load for total station demand including the CF, and for station 

buildings only, over a week in August (Aug 13-19, 2021), plotted at hourly 

temporal resolution. 
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Fig. 4. Six clustered representative diurnal profiles of the station load (without 

the CF) from June 20 to Aug 24. 
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otal station power use during the field season is typically 6-10 kW dur-
ng the day, though it can peak higher during mealtimes and full station
ccupancy, and 1-3 kW at night. For reference, there is approximately
00 m 

2 (7,500 ft 2 ) of building area responsible for energy consumption
n the KLRS microgrid. 

The station continues to operate during the offseason through the
inter, though at lower power use of approximately 1 kW constant
ower. Most buildings are closed, except for a large cabin used for win-
er research and occasional use of the main station buildings. Small
itchen appliances, lighting, equipment charging, and supplementary
pace heating are typical sources of electric demand. There are occa-
ional peaks to 2 kW for very cold days when supplementary electric
eating is used or additional winter research is performed (see Fig. 2 for
arch, which is typical of winter electric demand). 

The station field season is assumed to be April 15 – October 14.
owever, the station load profile was only able to be analyzed separately

rom the CF from June 20 to August 24; thus, any analysis of the research
tation electric demand alone is performed on this time period. The field
eason electricity use data for the research station (excluding the CF)
ere clustered into six representative days using k-means algorithms
 Fig. 4 ). 

Each day type in Fig. 4 is defined in Table 1 . Days 2-3 exhibited
ower energy use with a relatively flat shape, given their occurrence in
able 1 

ttributes of representative days of KLRS electric demand. 

Name Percent of Data Temporal Occurrence Shape 

Day 1 10.5% Throughout Mid-morning peak 

Day 2 23.0% Early Summer Flat 

Day 3 26.0% Early Summer Flat 

Day 4 14.0% Late Summer Midday and evening peak 

Day 5 16.0% Late Summer Evening peak 

Day 6 10.5% Throughout Evening peak 
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3 
arly summer when the CF used less power and less clientele resided
t the research station. Most other days had an evening peak, given
ll clientele would return from daily field work for dinner. Otherwise,
eaks in power demand may be attributed to typical times of laundry
se. Based on the probability of each day occurring in the time period
f collected data, these days were randomly selected to fill periods of
issing sections of the station electric load profile. 

.1.2. Container farm (CF) 

F energy use. The CF energy demand consists of baseload equip-
ent, lighting, and the heating, ventilation and air-conditioning sys-

em (HVAC). These three categories are detailed below. The CF operates
onstantly year-round, with a programmed schedule for equipment and
ighting, though with a variable HVAC demand based on weather con-
itions. Overall, the CF uses on average 8.4 kW of power during the day
lighting on) and 2.5 kW at night (lighting off), for a total of 155 kWh
f energy per day (56,590 kWh/year), or the equivalent of five typical
omes [27] . Depending on ambient conditions, power demand can peak
t 10.5 kW during daytime periods and use 177 kWh per 24 h period. Of
his peak power use, 6 kW is attributable to lighting, 2.5 kW for baseload
lectric equipment, and ∼2 kW for HVAC (peak use is for cooling dur-
ng summer —heating is met by propane). The CF is a standard 40-foot
hipping container with a floor area of 12.2 m by 2.4 m and a height
f 2.6 m (40 ft x 8 ft x 8.5 ft). The typical interior growing temperature
ange is 17-21 ̊C; energy optimization of the proper temperature setting
ithin this range is analyzed in Section 3 . 

Lighting is responsible for a majority of the CF electricity use. Sub-
tantial grow lighting is needed because the container is fully opaque
nd all lighting must be artificial —unlike a greenhouse —given limited
unshine in the sub-Arctic winter. LED strip lighting is used, and despite
ts relative energy efficiency, the total electric demand is high with four
ertical grow shelves. Lighting operates 16 h per day with a power draw
f approximately 6 kW. The lighting in the CF is scheduled from 8am to
2am year-round (based on initial commissioning). This schedule is as-
umed constant for the entire year; however, optimization of this sched-
le for the purpose of reducing diesel generation is discussed further in
ection 3 . 

Baseload equipment uses approximately 2-2.5 kW of electric power
t a fairly uniform, constant schedule over time. This includes a nutri-
nt doser (230 W), water circulation pumps (540 W), dehumidification
850 W), and circulation fans ( ∼200 W). Other loads may operate inter-
ittently, including the water pump feed to the main storage tank runs

90 W for approximately 4 h per day) and an exhaust fan (115 W when
ighting is on). 

The HVAC system consists of an external fan-coil unit that uses
ropane heating and electric forced-air cooling, as well as an economizer
or cooling when ambient temperatures are less than 10 ˚C. Propane
ombustion is only needed on very cold winter nights and uses a 400-W
lectrical fan to blow the hot air into the container; given it is predom-



D.J. Sambor, H. Penn and M.Z. Jacobson Energy Nexus 10 (2023) 100200 

i  

l  

n  

w  

p  

o  

h  

e
 

p  

l  

(  

t  

p  

v  

e  

e  

d  

fl  

d  

e

 

 

e  

(  

c  

C  

w  

fi  

t  

i
 

f  

c  

o  

f  

m  

i  

e  

o  

u
t  

l  

f  

a  

u  

m
 

d  

A  

i  

t  

h  

t  

n  

a  

d  

o  

f  

a  

c

C  

m  

b  

Fig. 5. Example time period in late summer (July 31 – August 12, 2021) of 

modeled forced-air cooling operation compared with real cooling operations 

from collected data of the CF. 
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Table 2 

Relevant costs for operating a CF at KLRS including diesel fuel and O&M cost 

for electricity generation to grow a variety of produce (salad greens and herbs) 

in 2021. 

Season Fuel Cost 

($/mo) 

O&M Cost 

($/mo) 

Total Energy 

Cost ($/mo) 

Energy cost of 

produce ($/kg) 

Summer 300 200 500 6.25 

Winter 3,300 200 3,500 43.75 
nantly non-electric, it is not considered for DSM in this study. When
ights are on, their 6-kW power draw is a source of substantial inter-
al heat gain that typically triggers mechanical cooling. On warm days
ith lighting on, the cooling system can operate at up to 2.1 kW of
ower nearly continuously, or an energy use of 25 kWh/day. Otherwise
n mild days, it may run at ∼1.7 kW and cycle off for 15 min every two
ours, for a total of 20 kWh/day. When ambient conditions are cold
nough, the economizer provides cooling using a 260-W fan. 

The amount of heating and cooling energy required to maintain
roper growing conditions over the year can be modeled based on col-
ected weather data. The amount of heating energy ( Q furnace ) required
propane furnace with electric blower) in each hour on cold days is de-
ermined by the heat transfer out of the container via conduction ( Q cond )
lus any heat loss through exhaust of stale air ( Q fan ), less any heat pro-
ided by internal gains of electric equipment ( Q baseload ). The cooling en-
rgy required ( Q cool ), provided by mechanical cooling, economizer, or
xhaust fan, is determined by any heat gain during warm ambient con-
itions via conduction plus internal heat gains. These thermal energy
ows, assuming steady state, in the CF are summarized in Eq. (1 ) (and
iscussed in more detail below), which is used to determine the hourly
lectric demand of the HVAC system for the entire year. 

𝑄 furn ace + 𝑄 base load = 𝑄 cond + 𝑄 fan + 𝑄 cool (1)

Conductive heat loss is determined by the UA-value, or heat-loss co-
fficient, of the container. The UA-value is the product of the U-value
inverse of the R-value), and the surface area (A) of the container. The
ontainer insulation is assumed to be R16 for walls, based on typical
F specifications [28] . In this analysis, convective heat loss is included
ith conductive heat loss by determining a UA-value associated with in-
ltration, primarily due to air leakage around doors. With infiltration, a
otal of R13 is assumed for the entire container (radiative heat transfer
s assumed negligible). 

Other modes of heat loss include running a fan to exhaust hot air
rom the container, with subsequent make-up air to be replaced and
onditioned based on thermostat setpoints. The exhaust fan primarily
perates when lighting is on, given that substantial internal heat gains
rom operating electric equipment can lead to cooling demand even on
oderately cold days (assuming all electric energy is converted to heat

nside the container). For example, consider September 14, 2021, a mod-
rately cold day with a temperature range of ∼0-10 ̊C. The lights turned
ff at midnight, and the exhaust fan continued to operate to cool the
nit to a minimum interior setpoint of 17.4 ̊C. The fan then turned off
o keep the container from cooling further. During overnight hours with
ighting off, the baseload electric power was 2 kW. With the exhaust
an off, this power draw was sufficient to heat the unit back to 18.1 ̊C,
nd the exhaust fan turned on again to cool the unit. The cycle repeated
ntil lights turned on later in the morning, which triggered substantial
echanical cooling to balance the internal heat gain. 

Using Eq. (1 ) and weather data, a thermal energy balance model is
eveloped to determine the hourly heating and cooling energy required.
 visual example of the model compared with actual operation is shown

n Fig. 5 . On the warmest days the modeled cooling operation is higher
han the actual data. This occurs because the cooling system installed
as less capacity than required to cool the container completely. Over
he course of a year, mechanical forced-air cooling of the CF is only
eeded from April to October, and the economizer can provide cooling
t other times of year as needed. The model excludes economizer use
uring the field season given site observation determined that the econ-
mizer alone was insufficient to keep the container cool. The CF began
ull operation in August 2021 after several months of commissioning
nd variable schedules; thus, this is the only month available for direct
omparison between collected and modeled data. 

F energy costs. Based on the data from the 2021 field season and energy
odeling of the CF for the rest of the year, the energy operation costs can

e compared with the revenues of produce sales. The CF is scheduled to
4 
perate year-round at the same produce yield. Produce grown in the CF
namely salad greens and herbs) are primarily sold to neighboring com-
unities, with the remainder consumed on site. During the field season,

pproximately 15-20% of electric demand is met by the diesel genera-
or, and the rest by solar PV. Meanwhile, in the winter about 90-95% of
oad is powered by diesel generation. Based on energy costs (discussed
n Section 2.2 ), the cost of operating the CF during the field season is
$300/month ($0.06/kWh). In a winter month, the CF is modeled to
se ∼5300 kWh/month and nearly all is met by diesel fuel combustion
 ∼2200 L) for a cost of ∼$3300/month ($0.63/kWh). Costs are much
ower during the field season given that most of the energy demand is
et by solar PV and battery. In addition to fuel costs, there is also an

perations and maintenance (O&M) cost of approximately $2400/year
r $200/month to run the diesel generator. 

Produce can sell at $40/kg ($18/lb), or ∼$800 total per weekly har-
est. In the summer, energy costs are small due to high solar PV produc-
ion and low diesel generation, or only 15% of revenue. However, in
he winter with minimal solar generation, the cost of operating the CF
s nearly equal to the revenue of harvests. The total costs of a summer
onth and winter month of food production are shown in Table 2 (with

pring and fall lying in between the two extreme cases). 

.1.3. Wastewater treatment 

This study analyzes two forms of water treatment systems at KLRS
sing DSM. One is a residential above-ground modular sewage treatment
lant (STP) that is currently in operation for blackwater and graywater
reatment with disposal to the landscape. The other is a water reuse
WR) system for recycling graywater that may be installed in the future.
hese two systems are discussed below. 

The STP has been installed at the large cabin on-site used year-round.
raywater and blackwater from the cabin drain into a lift station hold-

ng tank. The sewage is then pumped, operated by a float switch, to
he STP system, capable of treating 1,135 L/day (300 gal/day). It enters
 sedimentation chamber and then a main treatment chamber, where
n aerator provides oxygen for bacteria. Ultraviolet (UV) light then dis-
nfects the water. An effluent pump, also controlled by a float switch,
umps the water out periodically (in this case to an existing outhouse
olding tank). Given the short duration of operation, the pumps use a
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Table 3 

Electric loads within a STP modular sewage treatment plant. 

Load Power (W) Time per day Energy Use per day (kWh/day) 

Lift Pump 400 5 min 0.0 

Lift Heat Trace 400 As needed To 10 ̊C setpoint 

Aerator 46 24 hr 1.1 

Main Heat Trace 400 As needed To 10 ̊C setpoint 

UV Lamp 40 24 hr 1.0 

Controls 10 24 hr 0.2 

Effluent Pump 400 5 min 0.0 
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Fig. 7. Hourly power demand for the STP system including the lift station, sep- 

arated between electrical components (aerator, UV, pumps), and electric heat 

trace over a year. 
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egligible amount of energy. These loads are shown in Table 3 . There is
n average baseload power of 125 W, or 3 kWh/day. 

Heat trace must be used during the winter in the lift station and STP
nit to keep the water from freezing and enhance aerobic bacteria func-
ions. The thermostat setpoint is 10 ̊C. This setpoint will be subject to
SM in this study to optimize use with renewable energy ( Section 3.2 ).
eating season is approximately aligned with the field season at KLRS,
hen the average temperature is below 0 ̊C from mid-April to early Oc-

ober ( Fig. 6 ). 
A thermal model can be developed for the STP system to determine

lectrical energy required for the heat trace. The STP system is a 1.5 m
y 2.4 m box with a height of 1.5 m. The unit sits on a platform frame to
void ground thaw; thus, heat loss occurs via conduction and convection
rom all sides to the ambient air. The lift station is a 1.1 m diameter and
.2 m high cylinder, partially buried into a gravel pad; therefore, only
onductive heat loss is assumed given snowpack would likely insulate it
rom the air above. 

The combined heat loss rate ( q loss ) is proportional to the total UA-
alue and the temperature difference between the unit interior and the
mbient ( Eq. (2 )). Heat loss is assumed to be only through conduction
nd convection, and infiltration can be neglected given the system is
ightly sealed. Granted, fresh air from the aerator must be heated and
umidified from the cold, dry ambient; however, thermal gains from
he electric equipment and humid environment inside the STP approxi-
ately offset this heat loss. Wastewater from the house is also relatively
arm and provides additional thermal gains. 

𝑞 𝑙𝑜𝑠𝑠 = 𝑈𝐴 ( 𝑇 𝑖𝑛 − 𝑇 𝑎𝑚𝑏 ) (2)

In the most extreme case with an ambient temperature of -50 ̊C, the
eat loss is ∼300 W each for the STP and lift station. Therefore, the
eat trace rated at 400 W and installed in each should be sufficient,
ith a maximum of 800 W if both are operating simultaneously (though

ypically run in alternating mode). 
Thus, the typical power draw of the entire system in the heating sea-

on would be 925 W, with a baseload of 125 W and occasional pump
ower spikes for one-minute intervals. The energy demand for non-
eating electric loads is modeled to be 1115 kWh/yr ( ∼3.1 kWh/day)
nd the total energy for heating (met by electric heat trace) is 391
Wh/yr ( ∼2.2 kWh/day during the 181-day long heating season from
Fig. 6. Average daily temperature ( ̊C) from July 2019 to Aug 2021 at KLRS. 
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ctober 6 to April 11), as shown in Fig. 7 . So, in winter with primarily
iesel generation, the STP would cost $3.29/day to operate. 

The STP also has significant thermal mass associated with water stor-
ge that can allow for variable setpoints in order to utilize DSM; this
ill be subject to optimization in Section 3.2 . The STP has a capacity of
2500 L (670 gal) and the lift station can store 379 L (100 gal). Given

he high specific heat capacity of water, the system has a total thermal
apacitance of 3.4 kWh/ ̊C. 

KLRS is also interested in installing a WR system at the same cabin in
rder to recycle graywater. The WR system has been developed at Uni-
ersity of Alaska Anchorage and is a modular system capable of treat-
ng up to 227 L (60 gal) per day of domestic wastewater from sinks,
howers, and laundry to be reused for these purposes [ 29 , 30 ]. The main
reatment processes consist of cartridge filtration, nano-filtration, and
everse osmosis, which each draw about 400 W of electric power. Along
ith supplementary processes, including UV and ozone treatment, the

ystem uses on average 3.4 kWh/day. Space heating of the 10-foot ship-
ing container that houses the system and domestic hot water heating
ach draw about 1 kW of power and 2 kWh/day in the winter. Given
here are water storage tanks in between each treatment process, the
reatment processes can be dispatched using DSM, subject to treatment
rocessing and water storage constraints. Heating can also be dispatched
y varying thermostat settings for the container and the hot water tank.
ptimization of these processes is discussed in Section 3.2 . For more
etail of the WR system processes and constraints, please see Sambor
t al. [24] . 

.1.4. KLRS solar and weather model 

KLRS has a total of 48 kW (DC, rated peak power) of solar PV in-
talled. Approximately half (24 kW or 64 modules) are Hanwha Q.Peak
70-W panels and the other are Canadian Solar 385-W panels. Half of the
olar PV capacity is ground-mounted and the other half is roof-mounted.
here are four 5.9-kW ground-mount arrays, or two arrays of each type
f panel. The ground-mounted arrays face due south (azimuth of 180 ̊)
ith a tilt of 35 ̊. The roof of the mess hall has 11.8 kW of solar PV (four

trings of 8 Hanwha panels) and the operations building has the same
rray but of Canadian Solar PV panels. Both rooftop arrays are tilted at
5 ̊, though the mess hall roof has an azimuth of 220 ̊and the operations
uilding roof has an azimuth of 190 ̊. 

Weather data were collected at an on-site weather station for short-
ave solar irradiance (W/m 

2 ), temperature ( ̊C), and snowpack thick-
ess (relevant for modeling reflected solar irradiance). Electricity gen-
ration was modeled given that collected solar generation data also ac-
ounts for substantial curtailment when the battery is full, thus not rep-
esentative of potential generation. Typical meteorological year (TMY)
ata does not account for the fact that the Kluane Ranges to the south
lock all direct solar irradiance (albeit weak) between late October and
id-February. 

To determine the irradiance striking the tilted collector surface, the
tation pyranometer data for global horizontal irradiance can be approx-
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Fig. 8. Solar generation model versus actual solar energy used at KLRS for a 

week in July at hourly resolution. 
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mately divided into beam irradiance (direct rays) and diffuse irradiance
scattered rays from clouds and surfaces). The percentage of global irra-
iance that is diffuse irradiance can be approximated to be proportional
o beam irradiance based on a diffuse sky factor, as shown in Eq. (3 )
31] , where n is the day number of the year. 

 = 0 . 095 + 0 . 04 sin 
[360 ◦
365 ◦

( 𝑛 − 100 ) 
]

(3)

It is assumed that when the solar altitude angle is below 15 ̊, or be-
ween October 25 (day of year: n = 299) and February 15 ( n = 46),
ll radiation is diffuse. The diffuse sky factor can then be used to de-
ermine the approximate proportion of global irradiance that is beam
ersus diffuse irradiance. 

The amount of diffuse irradiance that a tilted collector obtains is a
raction of the total horizontal diffuse irradiance because it only faces a
ortion of the sky, as defined in Eq. (4 ) by the tilt angle ( 𝜃). 

 𝑑,𝑡𝑖𝑙𝑡 = 𝐼 𝑑,ℎ𝑜𝑟 (1 + cos 𝜃)∕2 (4)

The beam irradiance on a collector surface can be determined using
eometric relationships based on the altitude angle of the sun, the az-
muth angle of the sun, and the tilt of the collector surface. The altitude
ngle ( 𝛽) is defined by Eq. (5 ), where ɸ is the latitude (61 ̊ for Silver
ity, Yukon). 

= 90 − 𝜙 + 23 . 45 sin 
[360 ◦
365 ◦

( 𝑛 − 81 ) 
]

(5)

The beam irradiance on the collector surface can then be expressed
n Eq. (6 ), where ɸ c is the azimuth angle (orientation) of the collection
urface with respect to south (0 ̊) where east of south is positive. 

 𝑏,𝑡𝑖𝑙𝑡 = 𝐼 𝑏,ℎ𝑜𝑟 ( cos 𝛽 cos 
(
0 − 𝜙𝑐 

)
sin 𝜃 + sin 𝛽 cos 𝜃)) (6)

In a snowy climate like the Yukon, the reflected solar irradiance off
nowpack can also increase the total irradiance on a collector surface.
he reflected irradiance is given by the reflectance, the total horizontal

rradiance, and the fraction of reflected irradiance available given the
ollector tilt angle, as shown in Eq. (7 ), where the reflectance ( 𝜌) is 0.8,
ssumed only for when the weather station records a snowpack greater
han 2 cm. Increased reflected irradiance is only available to the ground-
ount arrays and not the roof-mount arrays. 

 𝑟,𝑡𝑖𝑙𝑡 = 𝜌( 𝐼 𝑏,ℎ𝑜𝑟 + 𝐼 𝑑,ℎ𝑜𝑟 )(1 − cos 𝜃)∕2 (7)

Finally, solar modules lose power if they increase in temperature.
hus, ambient temperature data from the weather station was used to
alculate the cell temperature of the Hanwha and Canadian solar PV
anels, as in Eq. (8 ), where NOCT is the nominal operating cell temper-
ture, rated for each panel ( Table 4 ). 

 𝑐𝑒𝑙𝑙 = 𝑇 𝑎𝑚𝑏 + 

𝑁𝑂𝐶𝑇 − 20 
0 . 8 

(8)

At the site, it is predicted that the hottest cell temperature for the
anadian Solar module is 53.7 ̊C and for the Hanwha panels a maximum
emperature of 57.4 ̊C. When the cell temperature is above 25 ˚C, this
educes the power production below the theoretical maximum, per Eq.
9 ), where P loss is the percentage of power reduction per ̊C above 25 ̊C,
hich is different for each panel ( Table 4 ). 

 𝐷𝐶 = 𝑃 𝐷𝐶,𝑟𝑎𝑡𝑒𝑑 
[
1 − 𝑃 𝑙𝑜𝑠𝑠 

(
𝑇 𝑐𝑒𝑙𝑙 − 25 

)]
(9)

Temperature losses account for 10.3% reduction at the hottest time
f year for the Canadian Solar panels and 12.6% reduction for Hanwha
able 4 

pecifications of the solar PV modules at KLRS. 

Solar Module NOCT ( ̊C) P loss (%/ ̊C) Efficiency (%) 

Canadian 42 0.36 18.6 

Hanwha 45 0.39 19.4 

c
 

c  

(

m  

 

c  

6 
anels. The effect of wind speed on cell temperature can be neglected
ue to relatively low wind speeds during summer at KLRS. 

Each solar PV array at the station can be modeled to determine the
nal DC power available based on the total collector solar irradiance,
nd then aggregated among arrays. A conversion efficiency of ∼95% to
ccount for inverter losses is assumed in order to provide AC power to
he station. A qualitative evaluation of the model ( Fig. 8 ) for a random
eek in July 2021 compares modeled solar production with actual so-

ar generation absorbed by the microgrid. Note that there is a disparity
uring afternoons with high solar resource because, in actual operation,
olar generation had been curtailed when the battery reached full ca-
acity in the late afternoon; thus, a direct quantitative evaluation is not
ossible because curtailed energy is not measured. The question of how
o minimize curtailment is addressed in Section 3.1 . 

This qualitative comparison is similar for the rest of the field season.
o be clear, solar generation is nearly negligible from late October to
id-February. Data collection is ongoing at KLRS for further model val-

dation with pyranometers installed at the plane of the solar arrays in
ate August 2021. Additional ground-mount solar PV may be installed
n the future; however, many other innovative solar PV options, such as
oating PV (FPV) or agrivoltaics, would prove too challenging to install
iven the long, severe winter at Kluane Lake. 

.2. Optimization model 

An optimization model has been developed to determine how KLRS
an reduce diesel fuel use compared with historical operation through
ptimal microgrid management of solar PV, battery energy storage, and
SM strategies. The model is mixed-integer linear developed in Ju-

ia/JUMP (Version 1.1.0) at an hourly temporal resolution [32] . The
odel inputs hourly annual profiles of electric load demand at the sta-

ion, including the CF and STP, as well as weather inputs, assuming a
erfect forecast (see Appendix A for all model inputs). The model has
urposely been simplified to improve computational speed and allow
or application to other communities in the North. 

The model optimizes three groups of decision variables: (1) hourly
ispatch of energy generation (solar energy to curtail, diesel dispatch
ower ( G t ), and diesel binary variable ( D t ); (2) battery storage manage-
ent (hourly charging and discharging with associated state-of-charge);

nd (3) hourly DSM of dispatchable loads (amount of heating for sewage
reatment, WR system dispatch, and cooling of the CF with temperature
ontrol). 

The model objective is to minimize total diesel generator costs asso-
iated with powering the station, summed over each hourly time step
 t ), in present Canadian dollars, as shown in Eq. (10 ). 

in 
∑
𝑡 

𝐶 𝐺 𝐺 𝑡 + 𝐶 OM 

𝐷 𝑡 | 𝐷 𝑡 − 𝐷 𝑡 −1 | 𝐶 𝑑 (10)

Diesel generator costs include fuel costs of $1.59/L ($6/gal), O&M
osts of $2 per hour of generator runtime, and start-up/shut-down costs
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 C D ) of $0.16 per event, based on costs from September 2021. The
ffective cost of diesel-generated electricity is $0.67/kWh ( C G ) plus
0.10/kWh ( C OM 

) O&M cost for a total of $0.77/kWh, based on a 2.4
Wh/L generator fuel efficiency. O&M costs for the solar PV and battery
nergy storage systems are negligible based on an agreement between
he solar installer and the research station for lifetime warranty service.

The objective is subject to standard constraints on energy flow bal-
nce as well as generation, storage, and load capacity limits. Of partic-
lar note here are the constraints that diesel generation must turn on at
 battery SOC minimum level ( SOC min ) and turn off at a maximum level
 SOC max ) in Eqs. (11 ) and (12) , respectively. 

 𝑡 + 𝑆𝐸 𝑡 ∕ 
(
𝐸 

(
SO 𝐶 min 

))
< 1 (11)

 𝑡 + 𝑆𝐸 𝑡 ∕ 
(
𝐸 

(
SO 𝐶 max 

))
< 2 (12)

Where SE t is the stored energy in battery at time step t , and E is
he battery storage capacity. Also of significance is a finite-difference
emperature ( T ) constraint to allow for optimizing the amount of heat
r cooling ( Q ) to provide for DSM programs in the CF, STP, and WR
ystem container and hot water tank, as shown in Eq. (13 ). 

 𝑡 +1 = 𝑇 𝑡 + ( 1∕ 𝐶 ) 
[
𝜂𝑄 − UA 

(
𝑇 𝑡 − 𝑇 amb 

)]
(13)

Where C is the thermal capacitance of either the structure or water
tored, UA is the heat loss coefficient of the respective thermal envelope,
nd 𝜂 is the efficiency of the heating/cooling systems. Complete model
athematical form is shown in Appendix A . The two different parts of

he optimization procedure and their respective time periods of inputs
nd outputs are discussed in the following section. 

.3. Simulations 

The first section of the modeling procedure is to analyze the current
peration of the station microgrid without DSM. The results of this set of
imulations is discussed in Section 3.1 . The model simulations are per-
ormed only for four individual months of the year (May 3 – August 24,
021), given the authors were only able to reside and collect the station
uring this time period for the most reliable comparison. Energy data,
ollected at 10 min intervals and summed to hourly intervals, included
otal station electric demand and diesel generation, solar generation,
nd battery discharge to meet this demand as well as electricity gen-
ration for battery charging. In the status quo, the microgrid operates
y utilizing solar generation directly to meet load and using any excess
eneration to charge the battery. Otherwise the battery meets load until
ts SOC reaches a minimum setpoint, then the diesel generator operates
o meet load and raise the battery SOC to a maximum setpoint, and
he generator is turned off. At the start of the field season, the mini-
um and maximum setpoints were 60-80%; changing these parameters

s discussed in Section 3.1 . 
In this first section of simulations, the model is used to optimize how

he diesel generator should operate as well as battery dispatch with
vailable solar generation. In this way, the optimized case can be di-
ectly compared to the actual data. Granted, the model performs with
erfect forecast; while the results presented are thus an optimistic esti-
ation of savings, the authors noticed that their own forecast at least

or day-ahead weather conditions for predicting solar irradiance were
Table 5 

Monthly model runs of actual versus modeled KLRS microg

Actual 

Month Diesel (kWh) Diesel Operation(h) Solar (kWh)

May 169 18 4,010 

June 8 2 5,008 

July 605 71 5,865 

August 1,735 141 3,548 

7 
ather accurate based on knowledge of the local microclimate. Com-
utational time varied from approximately one hour to a day, mainly
elative to the amount of diesel generation required to balance load. 

The second section of the modeling procedure is for optimization
f the entire microgrid including DSM. This analysis is performed in
ection 3.2 . The model is used to analyze dispatchable load integration
y incorporating models of how each load (CF, STP, and WR system)
ould have performed differently had their operations been optimized

e.g. controlling thermostat settings), in addition to optimizing energy
eneration and storage. Given the water treatment systems were not yet
n operation and the CF was not yet suitable for DSM, this is a more
ypothetical analysis compared to the first section of simulations. 

The optimization is compared to actual microgrid operations data for
he time period above (May – August 2021), and collected plus modeled
ata was used to form an entire year (September 2020 – April 2021).
he dispatchable FEW loads were initially modeled for operation in the
tatus quo (i.e. constant thermostats). Some time series data during the
ff-season had substantial missing data that required modeling to fill
aps. This was done by repeating prior or subsequent sections of col-
ected data; this procedure for missing data was deemed appropriate
ecause the off-season demand is relatively constant. Based on avail-
ble data and computational capacity, models for different months were
un at different temporal resolutions: weekly periods (January – March
nd September) and four-day periods (October – December). In order
o determine these periods, four representative days per month were
lustered using k-means algorithms; the representative days were cho-
en to fill the modeling time period based on their likelihood to occur
n the given month. Clustering by diurnal periods was deemed appro-
riate given there is no optimization of capacity variables, and battery
torage cycles are confined to approximately a day of station operation.
his modeling procedure also reduced computational capacity required
o solve the optimization. 

Two sub-sections of simulations are performed in this second section
 Section 3.2 ): in the Base Case, modeled dispatchable load profiles are
xed, and then in a Dispatchability Case, the model can optimize how
ach of the technologies would operate using DSM. The specific loads are
easonal with respect to their flexibility: the CF cooling dispatch season
ligns approximately with the field season from April to September, the
TP heat trace is off during the field season from May to September, and
he WR system is assumed to operate year-round. 

. Results and discussion 

.1. Microgrid energy system optimization 

The optimization model is used to determine how much diesel fuel
an be saved if the microgrid energy generation and storage systems
ere optimized to utilize as much solar generation as possible, com-
ared with actual operations data. In this simulation, the generator dis-
atch, solar PV generation, and battery charging/discharging can be op-
imized. Results are shown for the 2021 field season in Table 5 . 

After modeling and analysis of microgrid operations during experi-
entation on site May – July, 2021, simulations were performed to de-

ermine a more optimal battery SOC range for diesel generator charging.
t was observed that substantial diesel fuel was used and solar energy
rid dispatch. 

Model 

 Diesel (kWh) Diesel Operation(h) Solar (kWh) 

22 2 4,125 

0 0 4,875 

327 19 5,877 

1,383 67 4,534 
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Fig. 9. Actual KLRS operations data for July 20 (left) versus optimized microgrid dispatch with no diesel generation. Discharge means energy from the battery to 

meet load. 
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urtailed because the generator had already charged the battery to a
igh setpoint by the time of day when solar resource was high. Based on
odeling, the SOC range was changed on site from 60-80% to 40-60%

n August 2021, in order to leave more battery capacity available for
olar charging while maintaining the same 20% SOC range for diesel
harging. The results of comparing actual to optimized hourly opera-
ions of the microgrid demonstrate that in July, the percent reduction
n diesel energy was 46% and in August it was 20%. Similarly, in July
he percent reduction in diesel operation hours from historical opera-
ions to the optimization model results was 73%, and in August it was
2%. This demonstrates that the new SOC range was more effective at
educing fuel given the optimization model had less of an effect in de-
reasing diesel use. The effect of this change on a daily basis can be seen
n Fig. 9 . 

Over the 2021 field season, diesel would be reduced by 31%, or ap-
roximately 327 L, if optimally controlled compared with past data.
ranted, the model has perfect forecast and thus savings in reality would
e less, though solar cloud forecasters in weather models have improved
n recent years [33] . In the model, 62% fewer hours of diesel run time
ould be required or 144 fewer hours total. During this time, the to-

al electric demand was 19,141 kWh, 13% of which was met by diesel
n actual operation. If optimized, 9% of load would be met by diesel.
 sample day in July contrasting the differences in microgrid dispatch
etween actual and optimized microgrid dispatch is shown in Fig. 9 . 

In Fig. 9 , all energy generation above load is either charged to the
attery or curtailed. In the actual historical data ( Fig. 9 a), curtailed solar
s already included in solar generation data, hence the steep decline in
olar generation during early afternoon on an otherwise sunny day. This
ccurred because the generator turned on at 6am when the battery SOC
ell to 60%, then the generator powered the station and charged the
attery to 80%, and finally the generator turned off at 12pm. Solar PV,
n a high solar resource day, then charged the battery to 100%, while
ost of the day’s subsequent solar PV generation was curtailed. In the

ptimized case ( Fig. 9 b), the battery dispatch is optimized such that the
attery SOC did not decline to the minimum setpoint and thus did not
rigger the generator to turn on in the morning, thus allowing the solar
V to charge the battery completely to 100% by evening. 

Overall, simply by understanding patterns in load and operating the
iesel only as much as necessary, KLRS could get substantially closer to
ts goal of 100% renewable energy during the field season. With opti-
ization of the microgrid, KLRS could operate at 100% solar PV gener-

tion for the month of June. This analysis is only performed for the field
eason given the availability of quality data with which to compare to
ctual operations; limited improvements can be expected during offsea-
on months. 
r  

8 
.2. FEW infrastructure demand optimization 

The operation of FEW infrastructure components as dispatchable
oads can be analyzed for further diesel savings. Given the collected
istorical data are not broken down by individual load, the electricity
se of each dispatchable load must be modeled for an entire year. Then
his modeled load profile is removed from the collected load data so
hat its operations can then optimally be added back in by the computer
odel. 

The optimization is performed first using the modeled profile with-
ut DSM (Base Case). In other words, heating and cooling systems are
ssumed to have fixed thermostat setpoints. Then, the load profiles for
ach dispatchable load are removed from the total load profile and op-
imally dispatched back in (Dispatch Case). Dispatch is performed with
espect to constraints: the CF thermostat is allowed to vary from 17 to
1 ˚C for cooling, and the STP thermostat from 10 to 21 ˚C for heat-
ng. The simulations are performed for each month and presented in
able 6 . 

Allowing CF cooling and STP heating to be dispatched flexibly using
SM results in modest reductions of diesel generation. The Base Case has
een optimized with respect to energy generation and storage compared
ith the collected data. Then in the Dispatch Case, DSM is allowed to
ptimize the select loads, though these loads are small compared with
he entire microgrid. Over the annual time horizon, diesel fuel use is
educed slightly by 27 L and runtime is reduced by 14 h for a cost savings
f $70. However, a more substantial reduction of 6% in solar curtailment
ccurs due to flexible load dispatch. The cooling system for the CF, while
 large load at 2 kW, already occurs mostly during solar hours and in
he summer when diesel use is limited. STP heating occurs during the
inter when diesel use is predominant, though it is a smaller load of

ess than 0.5 kW. 
Other than fuel savings, there are notable changes to microgrid oper-

tions when the optimization model is applied. In April, the STP sewage
reatment system is dispatched much more during the daytime to take
dvantage of otherwise excess solar energy, than if the thermostat was
xed. This is shown in Fig. 10 with the STP heat line (purple) above
he base load profile (black). If the thermostat is fixed, only small incre-
ents of heating are called for during the day, resulting in substantial

mounts of solar curtailment. The case of flexible dispatch allows for
toring the solar energy as heated water, as opposed to storing in a bat-
ery or curtailing. 

The effect of having a dispatchable setting can also be analyzed
ith respect to battery storage levels. Over the course of a day in April
 Fig. 11 ), the STP heating system did not start because it acquired
nough heat in the prior period to coast down in temperature without
eaching the minimum thermostat setting. In the Base Case, however,
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Table 6 

Monthly simulations of fixed thermostat (Base Case) versus flexible thermostat (Dispatch Case) optimization for STP heating and CF cooling. 

Base Dispatch 

Month Total Energy Cost ($) Diesel (kWh) Diesel Operation (hrs) Curtail (kWh) Total Energy Cost ($) Diesel (kWh) Diesel Operation (hrs) Curtail (kWh) 

Jan 2,053 2,667 128 0 2,050 2,666 128 0 

Feb 2,958 3,834 188 0 2,951 3,835 184 0 

Mar 1,771 2,290 112 66 1,767 2,286 112 66 

Apr 351 448 24 158 330 421 23 115 

May 373 471 27 518 370 468 26 501 

June 191 243 13 1,330 189 240 13 1,266 

July 3,026 3,921 196 408 3,022 3,915 196 389 

Aug 1,337 1,717 89 260 1,333 1,709 89 248 

Sep 3,390 4,397 214 0 3,386 4,389 214 0 

Oct 4,100 5,301 264 0 4,092 5,309 256 0 

Nov 3,455 4,472 218 0 3,450 4,467 218 0 

Dec 4,243 5,515 264 0 4,238 5,507 264 0 

TOTAL 27,248 35,276 1,737 2,740 27,178 35,212 1,723 2,585 

Fig. 10. Optimized microgrid dispatch profiles of energy supply and demand, for a) Base Case with a fixed thermostat for the STP system and b) Dispatch Case with 

flexible heating. 

Fig. 11. Comparison of power used for STP heat trace between the Base and 

Dispatch cases on April 17 with associated battery storage state of charge levels. 
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he unit must regularly turn on to heat since it is only programmed with
 fixed thermostat setting. In the following early morning period (in
he Base Case), the battery storage level hits a minimum threshold and
riggers the generator to turn on. Conversely, given the flexible dispatch
chedules in the Dispatch Case, there is sufficient battery energy storage
o that the generator does not start. Instead, the microgrid can wait un-
il there is sufficient solar energy to charge the battery ( Fig. 12 ). Thus,
SM can ensure microgrid operations using 100% renewable energy for

everal days at a time with sufficient solar resource. 
9 
Dispatching the cooling system in the CF results in similar electric-
ty use patterns. For example, on June 1, a day with abundant, excess
olar resource, the model in the Dispatch Case curtails 3 kWh less solar
ompared with the Base Case. This otherwise wasted solar generation
s used to cool the container below the normal thermostat setpoint by
 ̊C so that it is pre-cooled before solar resource declines in the evening,
nd less cooling is demanded when there is less solar energy. 

Adding a WR system to the KLRS microgrid to recycle graywater can
lso be examined. In the Base Case, a WR system, without any DSM, is
dded to the KLRS microgrid. In May, operating a WR system would add
30 kWh of diesel generation and 5 h of diesel operation time while in-
reasing energy costs for the month by 20%, as opposed to not installing
 WR system. However, if the WR system’s treatment and heating pro-
esses can be dispatched flexibly, then only 80 kWh of diesel use and
 h of diesel operation time are required, while increasing the monthly
nergy cost by only 14%. Overall, dispatching the WR system processes,
s opposed to default fixed schedules, reduces diesel energy by 53 kWh
nd diesel operation time by three hours per month. Results are similar
n other field season months. 

The ability to operate the container farm and water treatment sys-
ems depends strongly on the cost of energy required to power them.
s energy prices increase, it may be prohibitive to grow food or treat
ater, and the infrastructure may not be used in favor of the status quo.
hus, the integration of renewable energy to reduce energy costs, com-
ared with diesel generation, has an effect on the ability to provide food
nd water, as part of a broader FEW nexus. The results demonstrate that
ptimizing FEW infrastructure operations can also reduce energy costs
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Fig. 12. Microgrid dispatch on April 17-18 in a) the Base Case with diesel generation, and b) Dispatch Case with less frequent diesel generation required. 
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nd thus contribute to the community’s ability to utilize them to address
EW security. 

To be sure, adding new FEW technologies to improve FEW security
ill increase total electric demand. Electricity is expensive and any new

nfrastructure loads would increase energy costs. However, if new elec-
ric loads are dispatched to run when renewable energy is in excess, to
he extent possible, then the total load can be much smaller than an-
icipated. This also frees storage capacity in the battery to be used for
on-dispatchable loads, without requiring a larger battery to integrate
ew FEW electric loads. This study may assist KLRS and other commu-
ity decision-making processes about tradeoffs across the FEW nexus. 

. Conclusion 

Overall, with microgrid dispatch optimization, KLRS can substan-
ially reach its goal of 100% renewable energy during several months
f the year without any additional energy infrastructure needs beyond
he solar and battery system it already has. For the month of June, the
tation can operate with 96% of energy generation from solar PV and
torage with batteries, and 100% with such generation and storage us-
ng DSM of FEW technologies. Annually, solar PV and batteries can meet
7% of load. Optimizing battery storage levels and diesel generator op-
ration to maximize solar use for the past field season can reduce diesel
uel use by 31% annually and the total hours of diesel generator runtime
y 62% annually. Dispatching loads optimally using DSM of a CF and
TP can reduce total annual solar curtailment by 6%. Note that nearly
ll of the aforementioned savings occur during the half of year when
he northern hemisphere is tilted towards the sun (approximately late
arch to late September), as there is limited solar PV generation in the
orth during the winter. 

As is often the case in islanded microgrids, installing the last amount
f renewable generation and storage to get to 100% renewable energy
s often not cost-effective if the microgrid already has a high percentage
f renewable generation. This study demonstrates that DSM can be the
ost affordable means of achieving the final goal of 100% renewable

eneration and use by allowing turning diesel generators off while not
equiring additional solar PV and battery storage capacity. In remote
reas, utilizing existing infrastructure to provide DSM, as opposed to
hipping and installing new generation and storage technology, may also
rove to be much easier and cheaper. 

Select results have also been implemented in practice at KLRS over
he past field season. Optimal microgrid settings and controls, such as
attery DOD, generator start/stop settings, and lighting schedules in the
F, have been recommended by this study and incorporated into KLRS
perations by staff to validate some of the modeling presented here. The
ffect of changing the loading and capacity of the diesel generator is also
eing analyzed for future work. Full implementation of DSM programs
10 
nd their effect on the plant growth and water quality, for example,
an be continued in future work. KLRS offers a unique perspective as
 living laboratory and representative “community ” of the sub-Arctic.
his model can be used for integrating generation and dispatchable load
echnologies in other communities across the sub-Arctic and Arctic, and
otentially in other remote communities worldwide. 
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ppendix A 

LRS Model Formulation 

The Appendix is presented here as supplementary information for
he optimization model used to study the KLRS microgrid. 

.1. Nomenclature 

• KLRS: Kluane Lake Research Station 
• DSM: Demand-side Management 
• FEW: Food-Energy-Water 
• CF: Container Farm 

https://doi.org/10.13039/100000001
https://doi.org/10.13039/100006505
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• STP: Sewage Treatment Plant 
• WR: Water Reuse 

.2. Model inputs 

icrogrid Inputs 

• Station Electric Load profile ( L ) [kW averaged in each hour: kWh],
including: 
○ Container Farm Electric Load profile [kW averaged in each hour:

kWh] 
○ STP Electric Load profile [kW averaged in each hour: kWh] 

eather Inputs 

• Ambient Temperature profile ( T amb ) [°F] 
• Solar Insolation profile [kW AC in each hour per kWp installed, in-

cludes losses] 

conomic Inputs (all in CAD) 

• Total Diesel Fuel Cost: $1.59/L ( ∼$6/gal) 
• Diesel O&M: $2/hr 
• Start-up/Shut-down Cost: $0.16/step (5 min per step of O&M) 

enerator Inputs 

• Capacity: 21 kW 

• Minimum Loading: 30% 

• Fuel Efficiency: 2.4 kWh/L (9 kWh/gal) (based on historical opera-
tion) 

attery Inputs 

• Battery Depth-of-Discharge (DOD): 60% (171 kWh total, initially at
60% SOC) 

• Battery Round-Trip Efficiency: 88% (94% charging and discharging
efficiencies) 

• Battery Self-Discharge Rate: 0.03%/hr ( ∼2-3%/month) 

olar Inputs 

• Solar: 48.3 kWp DC 

• Solar Charge Controller / Inverter Efficiency: 95% 

ontainer Farm 

• Container Size: 2.4 m x 12.2 m x 3 m (8 ft x 40 ft x 10 ft) 
• Container Insulation: R13 [1/(Btu/hr-ft 2 -°F)] (UA = 122 Btu/hr-ft 2 -

°F) 
• Cooling EER = 11 Btu/Wh 

.3. Model outputs 

• Dispatch Scheduling 
○ Time series of solar utilization 
○ Time series of diesel dispatch 
○ Time series of diesel on/off operation 
○ Time series of charging/discharging of battery 
○ Time series of amount in storage 
○ Time series of CF HVAC and STP heat trace 

• Total Energy Output (kWh) 
○ Total diesel energy generation and fuel use 
○ Amount of renewable energy utilized 

• Costs 
○ Total cost of diesel fuel 
○ Total O&M cost 

○ Total warm-up/cool-down cost  

11 
.4. Condensed mathematical form 

• Energy Supply/Storage Decision Variables 
○ Dispatch time series of battery energy storage (charge and dis-

charge) and subsequent storage level 
▪ E in/out 

t, amount of electrochemical storage to charge/
discharge at time step t [kWh] 

○ Dispatch time series of solar curtailment 
▪ c t, amount of solar energy curtailed at time step t [kWh] 

○ Dispatch time series of diesel dispatch 
▪ G t, amount of electricity generated by diesel in each time step

t [kWh] 
▪ D t, binary variable to turn on diesel generator in each time

step t [kWh] 
• Dispatchable Load Decision Variables 

○ Dispatch time series of CropBox HVAC 

▪ Q 

C 
t 
, electrical energy to run HVAC system at each time step

t [kWh] 
○ Dispatch time series of STP heat trace 

▪ Q 

L 
t , electrical energy to run STP heat trace at each time step

t [kWh] 
○ Dispatch time series of WR system treatment/heating 

▪ W t 
, electrical energy to run WR system at each time step t

[kWh] 
• Objective 

○ Minimize diesel generation costs 

min 
∑
𝑡 

C 𝐺 G t + C OM 

D 𝑡 
|| D 𝑡 − D 𝑡 −1 || C 𝑑 (A.1) 

▪ Where 𝐶 𝐺 is the cost of diesel generated electricity [$/kWh]
▪ C OM 

is the operations and maintenance cost of diesel [$/hr] 
▪ C D is the cost of diesel dispatch start-up/cool-down [$/step] 

• Defined Variables 
○ Current amount of energy stored in battery storage 

𝑆𝐸 𝑡 +1 = SD 

[
( 𝑐 ) 𝐸 in ,𝑡 − ( 1∕ 𝑑 ) 𝐸 out ,𝑡 

]
(A.2)

▪ Where c and d are the charging and discharging efficiencies
respectively 

○ Temperature, T , in CF, STP, and WR system container and hot
water tank in time step t 

T t +1 = T t + ( 1∕C ) 
[
𝜂Q − UA 

(
T t − T amb 

)]
(A.3)

▪ Where C is the thermal capacitance of water mass 
▪ UA is the heat loss coefficient 
▪ 𝜂Q is the amount of heating/cooling delivered [kWh] 

• Constraints 
○ Overall electricity flows in the grid must be balanced in each time

step 

G t + 

(
S t − c t 

)
+ E out , t = L t + E in , t (A.4)

▪ Where L t is the total electrical load (including DSM) at time
step t 

○ Diesel generator must operate within its capacity (C) constraints:

G t > 0 . 3G (A.5)

G t > G (A.6)

○ Diesel generator must operate if minimum SOC set point of bat-
tery is reached: 

D t + SE t ∕ 
(
E 
(
SOC min )) < 1 (A.7)
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○ Diesel generate must shut off when maximum SOC set point of
battery is reached: 

D t + SE t ∕ 
(
E 
(
SOC max ) < 2 (A.8)

○ Storage state of charge must lie within limits in each time step
(for battery electrochemical storage, which is restricted by DOD:

DOD < 𝑆𝐸 𝑡 < 𝐸 (A.9)

○ Maximum heating/cooling and temperature constraints 
○ WR system tank capacity 
○ WR minimum treatment process time 
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