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Abstract. E−ε turbulence model predictions of the neutral atmospheric boundary layer (NABL) are
reinvestigated to determine the cause for turbulence overpredictions found in previous applications.
Analytical solutions to the coupled E and ε equations for the case of steady balance between transport
and dissipation terms, the dominant balance just below the NABL top, are derived. It is found that
analytical turbulence profiles laminarize at a finite height only for values of closure parameter ratio
κ ≡ cε2σε/σe equal to or slightly greater than one, with laminarization as z → ∞ for greater κ .
The point κ = 2 is additionally found that where analytical turbulent length scale (l) profiles made
a transition from ones of decreasing (κ < 2) to increasing (κ > 2) values with height. Numerically
predicted profiles near the NABL top are consistent with analytical findings. The height-increasing
values of l predicted throughout the NABL with standard values of closure parameters thus appear
a consequence of κ ≈ 2.5 (> 2), implied by these values (cε2 = 1.92, σε = 1.3, σe = 1).
Comparison of numerical predictions with DNS data shows that turbulence overpredictions obtained
with standard-valued parameters are rectified by resetting σε and σe to ≈1.1 and 1.6, respectively,
giving, with cε2 = 1.92, κ ≈ 1.3, and laminarization of the NABL’s capping transport-dissipation
region at a finite height.

Keywords: E − ε model, Neutral atmospheric boundary layer, Turbulence parameterization.

1. Introduction

In turbulence models for meso- and large-scale Reynolds-averaged meteorolo-
gical prediction, there is strong motivation to supplant typically used algebraic
length scale formulations with a more generally applicable transport equation
for the length or other turbulence ‘scale’ quantity. The most common quantity
for engineering flow computation is the dissipation rate, ε, of turbulent kinetic
energy, E. Unlike the E-equation, however, direct closure of source and sink
terms in the theoretical transport equation for ε is intractable, and a modelled
equation, with source and sink terms analogous to those in the E-equation, is
employed. Closure parameter values in this equation (hereafter referred to as the
‘ε-equation’) are empirically determined to give accurate predictions of various
engineering benchmark flows. Integration of the E- and ε-equations then supplies
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the length scale, l ∝ E3/2/ε, necessary to compute eddy viscosities and diffus-
ivities for turbulence fluxes in the mean equations. In this paper, we reinvestigate
the predictive inaccuracies of this approach when applied to the one-dimensional,
horizontally homogeneous, barotropic, neutrally-stratified atmospheric boundary
layer (NABL).

Previous applications of the ε-equation to the NABL (Detering and Etling,
1985; Duynkerke, 1988; Huang and Raman, 1991; Andrén, 1991; Koo and Reible,
1995; Apsley and Castro, 1997; Xu and Taylor, 1997) yielded a more turbulent
and deep boundary layer than suggested by field data. In addition, l values in-
creased with height throughout the boundary layer, at odds with popular Blackadar
(1962) algebraic formulations in which a constant value is approached with height.
Although small amounts of static stability in field data used for evaluation (see
Duynkerke, 1988 for a discussion) prevent unequivocal statement of model inac-
curacy, most of the previous investigators modified the ε-equation by implementing
in various ways an additional production mechanism in the equation (or its effects
elsewhere in the model) to lower model-predicted values of l aloft and thereby
bring predicted turbulence levels and boundary-layer depths to better agreement
with field measurements. Here, we present analytical and numerical work that i)
links the need for additional ε-production to model inability to produce lamin-
arization at a finite height of the NABL’s capping region of transport-dissipation
turbulence energy balance and ii) demonstrates rectification of this inability and of
associated turbulence overpredictions by alteration of key closure parameter values
from those standardly employed in engineering flow computation.

2. Basic Equations

The NABL equations for the mean horizontal streamwise (in the direction of
the geostrophic wind) and cross-stream (perpendicular and to the left of the
geostrophic wind) velocity components, U and V , respectively, are

∂U

∂t
= fV − ∂uw

∂z
, (1)

∂V

∂t
= −f (U −G) − ∂vw

∂z
, (2)

where G is the geostrophic wind speed (independent of height as per the barotropic
assumption), f is the Coriolis parameter, uw and vw are the u and v components
of the vertical turbulent momentum flux (Reynolds stress), respectively, t is time
and z is height. In the E − ε model, uw and vw are represented by flux-gradient
relationships

uw = −Km

∂U

∂z
, (3)
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vw = −Km

∂V

∂z
, (4)

with eddy viscosity, Km, modelled as

Km = cµE
2/ε. (5)

The following transport equations for turbulent kinetic energy (TKE), E, and its
dissipation rate, ε, close the model,

∂E

∂t
− ∂

∂z

(
Km

σe

∂E

∂z

)
= −uw

∂U

∂z
− vw

∂V

∂z
− ε, (6)

∂ε

∂t
− ∂

∂z

(
Km

σε

∂ε

∂z

)
= −cε1

τ

(
uw

∂U

∂z
+ vw

∂V

∂z

)
− cε2

τ
ε, (7)

where τ ≡ E/ε. The determination of values for closure parameters cµ, cε1, cε2, σε
and σe is discussed below. Of interest here is the steady solution to (1)-(7) subject
to appropriate boundary conditions (Section 4.1).

The combination of the first two terms on the right side of (6) is the TKE shear
production rate and the second term on the left side represents TKE turbulent
transport. ε-equation (7), a modelled form of the theoretical equation (Tennekes
and Lumley, 1972) is a dimensionally consistent analogy to (6). Rationale and
additional ideas behind the modelling assumptions implicit in (7) are discussed in
a number of literature (e.g., Jones and Launder, 1972; Andrén, 1991; Speziale and
Bernard, 1992; Speziale and Gatski, 1996; Xu and Taylor, 1997; Wilcox, 1998).

The value of cµ is set by matching (3) and (5) to a classical neutral surface layer.
Specifically, aligning the u-coordinate with the direction of the surface shear stress,
and inserting (5) into (3) with ∂U/∂z = u�/kz, ε = u3

�/kz and uw = −u2
� (where

u� is the surface friction velocity and k is the Von Karman constant), gives

c1/2
µ = u2

�/E ≡ β0, (8)

with β0 amenable to laboratory and/or micrometeorological measurement. The
value of cε2 is set to be consistent with experimentally determined decay rates
of unsheared isotropic turbulence. Inserting (8) and the above neutral surface-layer
expressions into the steady form of (7) gives a third condition,

k2 = σεc
1/2
µ (cε2 − cε1). (9)

With values of cµ and cε2 determined as above and arbitrarily setting σe = 1, the
engineering values of cε1 and σε were then determined by optimizing agreement
with experimentally determined spreading rates of a plane mixing layer while sim-
ultaneously satisfying (9) with k ≈ 0.4. Determined in this manner, the ‘standard’
values are

[cµ, cε1, cε2, σε, σe] = [0.09, 1.44, 1.92, 1.3, 1.0]. (10)
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Inserting these into (9) gives k ≈ 0.43. Further details on this calibration procedure
are given in Durbin and Pettersson-Reif (2001).

For later reference, we note that (5) can be represented in terms of l through

Km = c1/4
µ lE1/2, (11)

with

l = c3/4
µ E3/2/ε. (12)

The partitioning of cµ between (11) and (12) is chosen so that l = kz in a classical
neutral surface layer, which can be checked by inserting ε = u3

�/kz and, from (8),
E = c−1/2

µ u2
� into (12). This ensures consistency with commonly used algebraic l

formulations (e.g., Blackadar, 1962).

3. Transport-Dissipation Solutions

In this section, we derive a set of analytical solutions to (6) and (7) for the case
of steady balance between transport and dissipation terms. Analytical, field, large-
eddy simulation (LES) and direct numerical simulation (DNS) studies (Deaves,
1981; Mason and Thomson, 1987; Coleman et al., 1990; Grant, 1992) support
the dominance of this TKE balance in the weakly turbulent, nearly geostrophic,
shearless region just below the NABL top. The analytical solutions may thus be
relevant to the full model’s solutions (i.e., with all terms present) in the region,
and will be used to gain insight into turbulence profiles predicted from full-model
numerical integrations discussed in Section 4.

The lower boundary of the analytical domain is an arbitrary height z = hB ,
where E = EB and ε = εB are presumed known. In reference to the NABL, this
height can be thought near z = hτ , at which the magnitude of the vertical turbulent
momentum flux falls to 5% of its surface value. Two general types of solutions are
derived. In the first, E and ε laminarize (equal zero) at a distinct height (‘edge’)
z = hL above hB . In the second, E and ε laminarize as z → ∞, and there is no
distinct edge to the turbulent region above hB .

3.1. POWER-LAW SOLUTION WITH AN EDGE (PL-E)

The solution type sought here was assumed in the analytical work of Deaves
(1981). We first make the coordinate transformation

η ≡ hL − z

$h
, (13)

where $h ≡ hL − hB . Assuming steady transport-dissipation balances in (6) and
(7) and substituting (5) as well as, from (13), dz = −$hdη leads to

cµ

σe$h2

d

dη

(
E2

ε

dE

dη

)
= ε, (14)
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cµ

σε$h
2

d

dη

(
E2

ε

dε

dη

)
= cε2

ε2

E
. (15)

We seek power-law solutions to (14) and (15) of the form E = EBη
p and ε = εBη

q

satisfying the upper boundary conditions

E = 0, dE/dη = 0 at η = 0, (16)

ε = 0, dε/dη = 0 at η = 0, (17)

and hence p > 1 and q > 1. Inserting the solutions into (14) and (15) gives

(
cµ

σe

)
p(3p − q − 1)η3p−2q−2 = ε2

B$h
2

E3
B

, (18)

(
cµ

σεcε2

)
q(2p − 1)η3p−2q−2 = ε2

B$h
2

E3
B

. (19)

Since the right sides of (18) and (19) are not functions of η, the condition from the
left side 3p − 2q − 2 = 0 must be satisfied, and hence

q = 3p/2 − 1. (20)

Inserting (20) with the proposed solutions into (5) and (12) then gives

Km ∼ ηp/2+1, (21)

l ∼ η, (22)

and hence l decreases with height to zero at hL, as do E and ε. Inserting (20) into
(18) and (19) and equating the resulting expressions then leads to

(6 − 3κ)p2 − 7p + 2 = 0, (23)

where

κ ≡ cε2σε

σe
. (24)

It can be checked that solutions for p and q satisfying (16) and (17) are obtained
from the positive solution branch of (23). We additionally stipulate:
1. ε → 0 as fast or faster than E → 0 as η → 0 (q ≥ p).
2. Values of p and q are O(1).
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The first is based on classical arguments of TKE decay, whereby small, dissipative
eddies are extinguished before large, energetic eddies. The second reflects efforts
to avoid the singular point κ = 2 in the positive solution branch of (23), for which
p = ∞. It can be verified that solutions satisfying (16), (17) and these additional
constraints exist for

1 ≤ κ ≤ κA, (25)

where κA < 2 is a loosely defined unknown value of κ above which p and q exceed
O(1). From (20) and the positive solution branch of (23), it can be checked that (25)
corresponds to 2 ≤ p ≤ pA and 2 ≤ q ≤ qA, where pA and qA (> pA) are values
of p and q, respectively, at κA.

3.2. POWER-LAW SOLUTION WITHOUT AN EDGE (PL-NE)

The solution shown here was also derived by Briggs et al. (1996). We first make
the coordinate transformation

ẑ ≡ z/hB. (26)

Power-law solutions of the form E = EBẑ
p and ε = εBẑ

q are then sought subject
to the upper boundary conditions

E → 0, ẑ → ∞, (27)

ε → 0, ẑ → ∞, (28)

and hence p < 0 and q < 0. Inserting these solutions into (6) and (7) under steady
transport-dissipation balance then yields expressions analogous to (18) and (19)
with the replacements ẑ for η and hB for $h. Equations (20) and (23) for q and p,
respectively, thus still hold. Solutions for l and Km are analogous to (21) and (22),

Km ∼ ẑp/2+1, (29)

l ∼ ẑ, (30)

and therefore, contrary to the PL-E solution, l increases with height throughout the
analytical domain. Valid solutions for p and q are those satisfying (27), (28) and
the constraints
1. Km → 0 as ẑ → ∞.
2. Values of p and q are O(1).

The reasoning for the second is stated above in connection with the PL-E solution.
The first is based on physical considerations, and from (29) implies p < −2.
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Solutions satisfying these conditions result from the positive solution branch of
(23) provided

κB ≤ κ < 10/3, (31)

where κ is defined by (24) and κB > 2 is a loosely defined unknown value of κ
below which p and q exceed O(1). From (20) and the positive solution branch of
(23), it can be checked that (31) corresponds to pB ≤ p ≤ −2 and qB ≤ q ≤ −4,
where pB and qB (< pB) are the values of p and q, respectively, at κB .

3.3. EXPONENTIAL SOLUTION WITHOUT AN EDGE (EXP-NE)

We first make the coordinate transformation

z� ≡ (z − hB)/$h
�, (32)

where $h� ≡ h�L − hB and h�L is a scale height of exponential turbulence decay.
Solutions of the form E = EBe

−pz� and ε = εBe
−qz� are then sought subject to the

upper boundary conditions

E → 0, z� → ∞, (33)

ε → 0, z� → ∞, (34)

and hence p > 0 and q > 0. Inserting these solutions into (6) and (7) under steady
transport-dissipation balance yields

(
cµ

σe

)
p(3p − q)e−(3p−2q)z� = (εB$h

�)2

E3
B

, (35)

2

(
cµ

cε2σε

)
pqe−(3p−2q)z� = (εB$h

�)2

E3
B

. (36)

Since the right sides of (35) and (36) are not functions of z�, the condition 3p −
2q = 0 from the left side must be satisfied, and hence

q = 3p/2. (37)

Inserting this and the proposed solutions into (5) and (12) then gives

Km ∼ e−pz�/2, (38)

l ∼ constant. (39)
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The fact that l is constant suggests the EXP-NE solution as intermediary between
the PL-E and PL-NE solutions, for which l decreases and increases with height, re-
spectively. Inserting (37) into (35) and (36) and equating the resulting expressions
then leads to cancellation of p, collapsing the final expression to

κ = 2, (40)

where κ is defined by (24). An exponentially decaying solution therefore exists
only for κ = 2, with p and q undeterminable by this analysis method. It is interest-
ing, and probably not a coincidence, that κ = 2 corresponds to a singularity in the
PL-E and PL-NE solutions. The EXP-NE solution thus seems that asymptotically
approached in the PL-E and PL-NE cases as κ → 2 from the positive and negative
directions, respectively. This relationship among the solutions is consistent with
the intermediary behaviour of the EXP-NE solution with respect to l.

3.4. SUMMARY OF SOLUTIONS

A qualitative summary of the analytical solutions is shown in Figure 1. Power-
law solutions with (PL-E) and without (PL-NE) an edge exist for κ ranges (25)
and (31), respectively. An exponential solution (EXP-NE) exists for κ = 2. For
κA ≤ κ < 2 and 2 < κ ≤ κB , ‘mixed’ PL-E/EXP-NE and PL-NE/EXP-NE
solutions, respectively, are proposed, representing hybrids of the exponential and
power-law types. These mixed solutions are not derived above, but are proposed
intuitively from matching the EXP-NE to the PL-E and the EXP-NE to the PL-NE
solutions as κ → 2 from below and above, respectively. In the PL-E solution, l
decreases with height towards zero at z = hL. In the PL-NE solution, l increases
with height. Finally, in the EXP-NE solution, l is constant. The point κ = 2, at
which the EXP-NE solution is valid, thus also represents that at which l transitions
from a height-decreasing (κ < 2) to a height-increasing profile (κ > 2). The
regions κ < 1 and κ > 10/3 give unphysical solutions for reasons given above and
in the figure.

4. Numerical Computations

In this section, we discuss the results of numerical computations of the NABL per-
formed over a range of κ . The goals are a) to check the relevance of the analytical
solutions derived in Section 3 to the full model’s solutions near the NABL top and
b) to examine the effect of κ on the behaviour and accuracy of model predictions.
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Figure 1. Qualitative summary of E − ε model transport-dissipation analytical solutions. Solution
types plotted versus κ ≡ cε2σε/σe. Abbreviations and further explanation given in text.

4.1. METHODOLOGY

The steady solution to (1)–(7) is obtained by numerically solving the unsteady
forms of these equations to convergence over eight inertial periods (where the iner-
tial period equals 2π/|f |). Variables are held on a staggered grid (mean velocities
at layer midpoints and turbulence quantities at the levels), with central differencing
used to compute vertical derivatives. Roughly 150 vertical levels are employed
from the surface (z = 0) to the computational domain top zt = 37.5 km. The
lowest grid level is at z = 100z0, where z0 is the surface roughness length, with
the spacing of higher levels stretched so that $z ≈ 200 m at z ≈ 5 km. This places
roughly 120 layers in the region z < 5 km, where essentially all boundary-layer
structure exists among the computed NABLs.

Lower boundary conditions on (1) and (2) are obtained by computing the u

and v components, τu,0 ≡ (uw)0 and τv,0 ≡ (vw)0, respectively, of the surface
Reynolds stress. This is done by inverting the classical surface-layer logarithmic
mean velocity profile expression to compute u�,

u� = kW2

ln (h2/z0)
, (41)

τu,0 = u2
� cos α0, (42)

τv,0 = u2
� sinα0, (43)
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α0 = tan−1

(
V2

U2

)
, (44)

where U2, V2 and W2 are the values of U , V and wind speed W ≡ (U 2 + V 2)1/2,
respectively, at h2, the midpoint of the lowest computational grid layer, and α0 is the
surface layer mean wind direction relative to geostrophy. Equation (41) assumes a
logarithmic mean velocity profile at z = h2, an assumption valid provided 10 ∼<
h2/z0 ∼< 150 (Garratt, 1992). The height of the first grid level above the surface
(100z0, hence h2 = 50z0) is set to satisfy this condition. The lower boundary
condition on (6) is defined by inverting (8)

E0 = c−1/2
µ u2

�, (45)

while for (7), the vertical flux of ε at h2 is employed,

−
(
Km

σε

∂ε

∂z

)
h2

= u4
�

σεh2
, (46)

derived by inserting ε = u3
�/kz and Km = u�kz into the left side of (46). For upper

boundary conditions, Km = 0 is specified at zt and at the midpoint of the adjacent
grid layer below. This specification, however, does not have appreciable effects
since zt is far above the disturbed region of the flow. Values E = 1.0×10−9 m2 s−2

and ε = 1.0 × 10−13 m2 s−3 are specified in the undisturbed ‘freestream’ region
above the computed NABL. Results, however, appear insensitive to the particular
choice of these small, background values.

Cases RO5-RO8 (Table I) are performed with the standard parameter values
(10) for different values of surface Rossby number Ro ≡ G|f |/z0, so that basic
model behaviour and consistency with Rossby-number similarity theory (Garratt,
1992) can first be evaluated. Cases K20-K10 are then performed for different κ . In
these cases, G, f and z0 are as in case RO6, and κ is varied by holding cε2 and σε
fixed (the value of σε lowered slightly from the standard value to give, from (9),
k ≈ 0.40, more commonly accepted than k ≈ 0.43 from the standard value) and
raising σe.

Predictions are evaluated by comparing non-dimensionalized (by u� and f )
variables with DNS data of Coleman (1999, hereafter C99). Although the DNS
was performed over a smooth surface and at a much lower value of bulk Reynolds
number Re ≡ GD/ν (where D = 2ν/|f |, with ν the molecular viscosity) than
typical of the atmosphere, the utilized value of Re (1000) appears large enough for
Reynolds-number (or analogously for a rough surface, Rossby-number) invariance
of non-dimensionalized (as above) mean and large-scale turbulence profiles in the
outer, rotationally-influenced region of the NABL to be satisfied to an adequate
degree. This Re/Ro invariance ensures validity in comparing profiles computed
by us over a rough surface at typically large atmospheric values of Ro with those
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TABLE I

Computational cases.a

Case G (ms−1) f (s−1) z0 (m) Ro = G/|f |z0 σe σε κb h̃τ
c

RO5 5 1.263 × 10−4 0.100 3.96 × 105 1.00 1.30 2.5 0.850

RO6 10 1.000 × 10−4 0.100 1.00 × 106 1.00 1.30 2.5 0.852

RO7 5 7.292 × 10−5 0.005 1.37 × 107 1.00 1.30 2.5 0.854

RO8 30 1.370 × 10−4 0.002 1.09 × 108 1.00 1.30 2.5 0.854

K20 10 1.000 × 10−4 0.100 1.00 × 106 1.07 1.11 2.0 0.721

K17 10 1.000 × 10−4 0.100 1.00 × 106 1.25 1.11 1.7 0.681

K15 10 1.000 × 10−4 0.100 1.00 × 106 1.43 1.11 1.5 0.650

K13 10 1.000 × 10−4 0.100 1.00 × 106 1.64 1.11 1.3 0.623

K10 10 1.000 × 10−4 0.100 1.00 × 106 2.13 1.11 1.0 0.580

a Symbols defined in text.
b cµ = 0.09, cε1 = 1.44 and cε2 = 1.92 for all cases.
c C99 DNS value, h̃τ = 0.599.

of the DNS computed over a smooth surface at relatively lower (with respect to
typical atmospheric values) Re. Details regarding the Re-invariance of the DNS
are given in C99.

DNS profiles of mean velocity and Reynolds stress components were obtained
directly from Coleman. From these, we computed TKE shear production and used
this to diagnosed the DNS Km profile from

Km = −uw ∂U/∂z − vw ∂V/∂z

(∂U/∂z)2 + (∂V /∂z)2
. (47)

The DNS l profile was then diagnosed from (11), making use of Km from (47)
and the DNS E profile, directly obtained. The validity of (47) rests on the suitab-
ility of the flux-gradient assumption underlying (3) and (4). Within the lower and
middle portion (‘bulk’) of the NABL, where shear production and dissipation are
in primary balance, the assumption is largely valid. In the upper NABL, however,
where turbulent transport becomes important, the assumption is less valid, while in
the freestream region above the NABL, diagnosed Km and l values are not physical
since Reynolds stresses and mean velocity gradients essentially vanish there. We
thus view our diagnosed DNS profiles of Km and l trustworthy only within the bulk
of the NABL.
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Figure 2. E − ε model predictions of (a) C1/2
g = u�/G and (b) α0; ‘o’, standard-value cases

RO5-RO8; ‘∗’, cases of same Ro, but with κ = 1.3 set as in case K13. Solid lines, (48) and (49) with
A0 = 2 and B0 = 4.1; dashed lines, (48) and (49) with A0 = 2 and B0 = 2.1.

4.2. RESULTS

4.2.1. Standard Parameter Values (κ = 2.5)
We begin by evaluating predictions made with standard-valued parameters. Predic-
tions of geostrophic drag coefficient, Cg = u2

�/G
2, and α0 are shown in Figure 2

(symbol ‘o’). Also shown are Rossby-number similarity expressions

Cg = k2

(ln (RoCg)− A0)
2 + B2

0

, (48)

α0 = tan−1

(
B0 sgn(f )

ln (RoCg)− A0

)
(49)

with [A0, B0] = [2, 4.1], deduced from field measurements (Garratt, 1992), and
with [A0, B0] = [2, 2.1], deduced by C99 from his DNS. It is seen that pre-
dictions agree very well with curves formed from the DNS-deduced values of
A0 and B0 but not well, particularly for α0, onto curves formed from the field-
deduced values. The lower Cg and higher α0 in the field curves are most likely
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Figure 3. E− ε model predictions (solid line) of non-dimensional a) U and (b) V for case RO6. C99
DNS data for z̃ ≡ z|f |/u� > 0.03 plotted as ‘x’.

due to effects of stable stratification on field data. The fact that predictions fit
well onto the shape of (48) and (49) suggests consistency with Rossby-number
similarity, corroborated by the Ro-invariance of non-dimensional boundary-layer
depth h̃τ ≡ hτ |f |/u� (hτ defined at beginning of Section 3) computed for each
of the standard-value cases (Table I). The excellent agreement in value with the
expressions using DNS-deduced values of A0 and B0 indicates that the model with
standard-valued parameters accurately predicts mean momentum transport to the
surface layer from higher levels of the NABL. This is further supported by the
accuracy of mean velocity (Figure 3) and Km (Figure 4a, solid line) predictions
in the lower NABL (z̃ ≡ z|f |/u� ∼< 0.1), where the majority of mean momentum
mixing takes place. The only appreciable inaccuracy in the lower NABL occurs for
E (Figure 5, solid line), where the underprediction is due to an overly low value
of E0 imposed, through (45) and (8), by a value β0 = 0.30 evidently higher than
present in the DNS log-layer. We revisit this issue at the end of the next subsection.

Above the lower NABL, the standard values give significant overprediction of
Km (Figure 4a, solid line). Corresponding with this are overpredictions of E aloft
(Figure 5, solid line) and a predicted value h̃τ ≈ 0.85 greater than the DNS value
h̃τ ≈ 0.60 (Table I). These overpredictions, similar to those in previous applic-
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Figure 4. E−ε model predictions of non-dimensional Km; (a) cases RO6 (solid), K20 (dashed), K17
(dashed-dot); (b) cases K15 (solid), K13 (dashed), K10 (dashed-dot). C99 DNS data for z̃ > 0.03
plotted as ‘x’.

ations using the standard values, do not adversely affect surface drag and mean
velocity predictions in the lower NABL because mean velocity gradients aloft
are small, and hence there is negligible contribution from aloft to the total mean
momentum mixing within the boundary layer. Adverse effects on mean mixing
throughout the boundary layer would, however, occur if appreciably strong mean
gradients existed aloft, for example associated with pollution layers or different
scalar concentrations between the boundary layer and free atmosphere.

4.2.2. Modified Parameter Values (κ Varied)
We begin examining the sensitivity of results to κ by checking relevance of the
transport-dissipation analytical solutions to the region near the NABL top. Pre-
dicted profiles of TKE budget terms in the upper NABL (taken as the turbulent
region above z̃ ≈ 0.6) are shown in Figure 6 for cases RO6 and K13. In case RO6
(Figure 6a), shear production clearly approaches zero with height faster than do
transport and dissipation, leaving the latter two in primary balance. The transport-
dissipation region in this case is elongated, extending far above that shown in the
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Figure 5. E − ε model predictions of non-dimensional E. Solid, case RO6; dashed, case with
cµ = 0.0289 and κ = 1.3 (see text for details). C99 DNS data for z̃ > 0.03 plotted as ‘x’.

figure until eventually (at z̃ ≈ 3) giving way to an unsteady-transport balance, with
corresponding upward growth of the turbulent layer, to match the edge imposed by
our small, fixed values of E and ε in the freestream (this unsteadiness, however,
has an imperceptible effect on the main region z̃ ∼< 1.2, which is in steady-state).
This unsteady-transport region at the extreme top, shown by Cazalbou et al. (1994)
as the correct balance at the edge of turbulent shear flows when the standard values
are used, reflects the inability of the standard values to accommodate an edge at
the top of the transport-dissipation region, since these give κ ≈ 2.5 and hence
laminarization of the region as z → ∞ (Figure 1). In case K13 (Figure 6b), on the
other hand, the transport-dissipation region laminarizes at a finite height (z̃ ≈ 1),
consistent with analytical expectations for κ near one (Figure 1), and as such the
region is much shallower and weakly turbulent (and hence less evident with the
scaling used in figure) than that in case RO6. Behaviour with respect to laminariz-
ation of the transport-dissipation region in cases not shown is also consistent with
analytical expectations.

Profiles of predicted l are shown in Figure 7. The analytical l behaviour is
exhibited clearly in the upper NABL; for κ > 2 (RO6) there is monotonic increase
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Figure 6. E − ε model profiles in the upper NABL of non-dimensional TKE budget terms for cases
(a) RO6 and (b) K13. Shear production (solid), dissipation (dashed), transport (dashed-dot). C99
DNS data for shear production plotted as ’x’.

with height, for κ = 2 (K20) a constant value is reached, and for κ < 2 (K17-
K10) values decrease with height. The kinks at the extreme top for cases K15-K10
are probably caused by course vertical resolution and/or coupling to freestream
values of E and ε that are not exactly zero (as opposed to the upper boundary
conditions of the PL-E solution, for which E and ε are exactly zero). Predicted
E profiles (Figure 8) are also consistent with analytical expectations in tending
towards laminarization at a finite height as κ decreases towards one.

To elaborate, we show in Figure 9 predictions of Km and l for runs with κ equal
to 2.5, 2.0 and 1.3, but with κ lowered in the latter two by changing the value of
σε (to 1.04 and 0.68, respectively) leaving cε2 and σe at their standard values. To
maintain k ≈ 0.4 in (9), cε1 was also lowered (to 1.41 and 1.14, respectively) in
these cases. It is seen that profiles are practically identical to those in Figures 4 and
7 of identical κ , emphasizing that κ , rather than the parameters on an individual
basis, controls predictions near the NABL top. It should be mentioned, however,
that the lower values of cε1 used in these cases would give overly large growth rates
of turbulence in neutrally-stratified free shear flows (Durbin and Pettersson-Reif,
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Figure 7. As in Figure 4, but for non-dimensional l.

2001). Lowering κ by raising σe (as done in cases K20-K10), on the other hand,
would not sacrifice such predictive accuracy, since this necessitates no alteration to
cε1.

A more extensive relevance check could include comparison of predicted E

and ε profiles near the NABL top with appropriate (depending on κ) analytical
solutions. We feel, however, that the exhibition in the numerical profiles of the
central qualitative analytical features, the transport-dissipation balance near the
NABL top, the transitional l behaviour at κ = 2, and the tendency of turbulence
quantities towards laminarization at a finite height as κ → 1, gives convincing
evidence supporting relevance of the analytical solutions to the full model’s near
the NABL top.

Concerning accuracy, predictions of Km (Figure 4) and l (Figure 7) within the
bulk region 0.2 ∼< z̃ ∼< 0.6 (above which our deduced DNS profiles are not accurate)
as well as of E up to the NABL top (Figure 8) are improved considerably as κ
is lowered. Corresponding improvements are seen in predictions of h̃τ (Table I).
It is interesting that, although the direct effects of varying κ are on behaviour
within the capping transport-dissipation region, predictive improvements of Km

and l are felt in the bulk region beneath, pointing to the importance of diffusional
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Figure 8. As in Figure 4, but for non-dimensional E in the region 0.3 ≤ z̃ ≤ 1.2.

coupling of the entire NABL to behaviour at the top. Best agreement is found for
κ = 1.3, for which the analytical and numerical solutions produce an edge to
the capping transport-dissipation region. An edge is also suggested in the DNS E

profile (Figure 8), as is the corresponding transport-dissipation energy balance by
the tendency towards zero with height of the DNS TKE shear production (Figure
6), leaving transport and dissipation as the only steady balance that can support
the non-zero TKE found in the upper NABL. An edge to the transport-dissipation
region thus appears a physical feature that necessitates accommodation in the E−ε

model for accurate NABL prediction, and our numerical results suggest that this
is adequately achieved by lowering κ from its standard value of ≈ 2.5 to ≈ 1.3.
To maintain proper prediction of traditional engineering benchmark flows and to
satisfy (9) with k ≈ 0.4, we propose carrying this out by altering σε and σe from
their standard values to ≈ 1.1 and 1.6, respectively, maintaining standard values
for the remaining parameters. It is seen (Figure 2, symbol ‘∗’) that surface drag
predictions with κ = 1.3 are not significantly different than those computed in the
standard cases, also the case (not shown) for mean velocity and turbulence profiles
in the lower NABL. Model accuracy in the lower NABL is therefore not lost with
κ = 1.3.
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Figure 9. E − ε model predictions of non-dimensional a) Km and b) l for cases with κ lowered by
altering the value of σε and leaving σe and cε2 at standard values. See text for further details. Solid,
κ = 2.5; dashed, κ = 2; dashed-dot, κ = 1.3. C99 DNS data for z̃ > 0.03 plotted as ‘x’.

Finally, we revisit the underprediction of E in the lower NABL. As stated
earlier, this is caused by an overly high value of β0. In fact, it appears that β0 = c1/2

µ

decreases with Reynolds number (Degraaff and Eaton, 2000), with atmospheric
surface-layer observations (of very high Reynolds number) supporting β0 ≈ 0.17
(Panofsky et al., 1977; Kader and Yaglom, 1990). The E profile from a run with
cµ = 0.0289 (corresponding to β0 = 0.17) and σε = 1.96 and σε = 2.89 reset to
give, assuming standard values of cε1 and cε2, k = 0.4 and κ = 1.3 is shown in Fig-
ure 5 (dashed line). The increase in E in the lower NABL is clear, and it is evident
that agreement with the DNS would be obtained by choosing an appropriate value
of cµ between 0.0289 and 0.09 (with, of course, recalibration of σε and σe). An
edge to the E profile at the boundary-layer top is produced since κ = 1.3. Finally,
predictions of surface drag as well as mean velocity and turbulence profiles (except,
of course, for E) in the lower NABL for this case (not shown) are indistinguishable
from those of the same Ro for κ = 1.3 and cµ = 0.09. The ‘lower-cµ’ parameter
values used in this run are therefore those giving optimal prediction of all variables
in the NABL, while the ones we propose above (with cµ = 0.09) do not capture
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the higher E in the lower NABL found in high Reynolds number field NABLs. The
lower cµ, however, is inconsistent with experimental data for equilibrium neutrally-
stratified turbulent free shear layers, for which cµ = 0.09 is more appropriate (e.g.,
Tavoularis and Karnik, 1989).

5. Conclusion

E − ε model predictions of the neutrally-stratified atmospheric boundary layer
(NABL) were reinvestigated to determine the cause for turbulence overpredic-
tions found in previous applications. Analytical solutions for the case of steady
transport-dissipation balance in the E and ε equations were derived to isolate
possible model behaviour near the NABL top. It is found that closure parameter
ratio κ ≡ cε2σε/σe is the key control determining the type of analytical solution
to the model’s transport-dissipation problem. Although physical solutions exist for
1 ≤ κ ≤ 10/3, solutions in which E and ε laminarize at a finite height necessitate
a value of κ in the lower portion of this range, with laminarization as z → ∞ for
greater κ . The point κ = 2 is furthermore found as that where turbulent length scale
(l) profiles transition from ones of decreasing (κ < 2) to increasing (κ > 2) values
with height. Numerically computed profiles near the NABL top are consistent with
analytical solutions. The height-increasing values of l predicted throughout the
NABL with standard-valued parameters thus appear to result from κ ≈ 2.5 (> 2),
inferred from these values.

Comparison of numerical predictions with DNS data of Coleman (1999) concur
with previous applications in finding turbulence overprediction in the middle and
upper portion of the NABL when standard-valued parameters are used. Improved
agreement, however, is obtained as κ is lowered towards one, with excellent agree-
ment for κ ≈ 1.3. Predictions are therefore improved as κ is lowered towards
values producing laminarization of the capping transport-dissipation region at a
finite height, a behaviour also suggested in DNS E profile. Accommodation in the
E − ε model for laminarization thus seems necessary for accurate prediction of
the NABL. To maintain consistency with pre-existing engineering flow constraints
on the choice of parameter values, we propose to accommodate laminarization by
resetting the values of closure parameters σε and σe to ≈ 1.1 and 1.6, respectively,
giving, with cε2 = 1.92, κ ≈ 1.3. The need for laminarization gives physical
interpretation to the additional production term deemed necessary in (7) in previous
applications for accurate prediction of the NABL.
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