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Abstract. Partitioning of volatile chemicals among the gas, liquid, and solid phases during freezing of
liquid water in clouds can impact trace chemical distributions in the troposphere and in precipitation.
We describe here a numerical model of this partitioning during the freezing of a supercooled liquid
drop. Our model includes the time-dependent calculation of the coupled processes of crystallization
kinetics, heat transport, and solute mass transport, for a freezing hydrometeor particle. We demonstrate
the model for tracer partitioning during the freezing of a 1000 um radius drop on a 100 um ice
substrate, under a few ambient condition scenarios. The model effectively simulates particle freezing
and solute transport, yielding results that are qualitatively and quantitatively consistent with previous
experimental and theoretical work. Results suggest that the ice shell formation time is governed by
heat loss to air and not by dendrite propagation, and that the location of ice nucleation is not important
to freezing times or the effective partitioning of chemical solutes. Even for the case of nucleation at
the center of the drop, we found that dendrites propagated rapidly to form surface ice. Freezing then
proceeded from the outside in. Results also indicate that the solid-liquid interfacial surface area is not
important to freezing times or the effective partitioning of chemical solutes, and that the rate aspects
of trapping are more important than equilibrium solid-liquid partitioning to the effective partitioning
resulting from freezing.
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1. Introduction

Convective clouds impact tropospheric chemistry through transport and transfor-
mation of trace chemical species. Through scavenging of chemical species, they
contribute to acid deposition (Hales and Dana, 1979). They also transport and mix
trace species between the atmospheric boundary layer and the upper troposphere
(e.g. Chatfield and Crutzen, 1984; Dickerson et al., 1987). Hence, they have im-
portant impacts on the global nitrogen budget (e.g. Logan, 1983), and on upper
tropospheric concentrations of ozone (e.g., Pickering et al., 1992) and odd hydro-
gen (Prather and Jacob, 1997; Jaegle et al., 1997). Despite the presence of ice in
many cloud systems, interactions between trace chemicals and ice are not well
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understood (Abbatt, 2003). Here, we focus on studying partitioning of chemical
solutes between the air, liquid water, and ice phases during freezing of supercooled
drops.

Chemical solutes originally dissolved in a supercooled drop may be retained or
expelled from the drop as it freezes. Research indicates that non-volatile species,
such as sulfate, are efficiently retained during freezing (e.g., Mitchell and Lamb,
1989). However, the overall partitioning of more volatile species resulting from
freezing (here termed ‘effective partitioning’) is not well characterized. Several
laboratory and field studies have measured effective partitioning ratios (‘retention’
ratios) for soluble gases found in clouds, including H,O,, SO,, O,, HCI, NHj,
and HNO3z, HCOOH, and CH3COOH (e.g. Lamb and Blumenstein, 1987; Iribarne
and Pyshnov, 1990; Snider et al., 1992; Voisin et al., 2000). The retention ratio
is defined as the ratio of solute mass in the hydrometeor particle after freezing to
the mass originally dissolved in the drop. Measured retention ratios range widely
from approximately 0.01 to 1. Several studies have investigated the dependence
of retention ratio on freezing conditions. Correlations of the retention ratio with
drop temperature, drop pH, ventilation rate, accretion rate, and drop impact velocity
were found (Lamb and Blumenstein, 1987; Iribarne et al., 1990; Snider et al., 1992;
Iribarne and Barrie, 1995; Snider and Huang, 1998). However, apparently contra-
dictory results among studies have left significant uncertainty in the applicability of
these findings to the variety of freezing conditions in natural clouds. Nonetheless,
cloud modeling studies have found that partitioning of solutes during hydrometeor
freezing may significantly affect chemical distributions in the troposphere and de-
position to the ground (Cho et al., 1989; Chen and Lamb, 1990; Wang and Chang,
1993; Audiffren et al., 1999; Mari et al., 2000; Barth et al., 2001; Yin et al., 2002).

A better understanding of the partitioning of volatile chemical solutes during
freezing is needed in order to quantify its effects on tropospheric gas-phase and
precipitation chemistry. In previous work (Stuart and Jacobson, 2003, 2004), we
used time scaling analyses to provide a basic understanding of the dependence
of the effective partitioning on chemical properties and freezing conditions and to
predict retention ratios for a variety of conditions and chemicals. We found effective
partitioning to be highly chemical specific and dependent on the Henry’s constant
of the solute, the pH, temperature, drop size, and ventilation conditions. Predicted
retention ratios compared well with much of the experimental data, but not all. To
elucidate better the complex, coupled, non-steady process interactions involved in
the partitioning of volatile chemical solutes during freezing, we have developed a
drop-scale numerical model. Here, we discuss the model physics and mathematical
representation, and demonstrate its use.

2. Development of Model Equations

Our numerical model represents the coupled heat transport and solute mass trans-
port processes that occur during freezing in a spherical solute-containing liquid
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Figure 1. An idealized depiction of the numerical model. The model domain is made up of
spherical shells. A supercooled drop is assumed to spread evenly around an ice nucleus or
accretion substrate, which initiates freezing. Each model shell is made up of a volume fraction
of ice and fraction of liquid water, to represent the dendritic character of ice crystal growth in
supercooled drops.

hydrometeor particle with a accretion substrate or ice nucleus (which are collec-
tively referred to here as an ‘ice substrate’) at its center. Figure 1 provides an
idealized depiction of hydrometeor particle freezing, which was used to formu-
late our model. Model calculations are initiated at freezing nucleation (we do not
consider ice nucleation rates here). At time 0, a supercooled drop is assumed to
be spread evenly around the ice substrate. The size of the drop and the ice sub-
strate are specifiable. As time progresses, the drop freezes and solute is expelled
at rates governed by both the grid-resolved radial heat transport and solute mass
transport processes, and the subgrid-scale processes occurring at the solid-liquid
interface. To couple the grid-resolved and subgrid-scale processes, and to repre-
sent the dendritic character of drop freezing, we treat the solid-liquid interface as
a ‘mushy zone’ (after Tien and Geiger, 1967). With this treatment, phase changes
in each radial shell provide a volume source of sensible heat and mass to the wa-
ter phases in the shell. Model calculations terminate when all liquid water has
frozen.

2.1. GRID-RESOLVED PROCESSES

Figure 2 illustrates the processes that are resolved on the model grid. Each radial
model shell can consist of both ice and liquid water, such that the amount of each
is represented by a volume fraction. F; is the volume fraction of (solid) ice and
F; (=1 — F)) is the volume fraction of liquid water in any shell. Within each
shell, there is an average temperature for each phase, T; and 7;, and an average
concentration of any given solute for each phase, C; and C;.
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Figure 2. Processes resolved at the grid scale. For each shell there are average volume fractions
of ice and liquid water (¥ and F; = 1 — Fj), an average temperature in each phase (7 and 7;),
and an average solute concentration in each phase (C, and C;). Grid-scale processes include
intra- and inter-phase radial heat and solute mass transport.

2.1.1. Radial Heat Transport

To develop equations for the radial heat transport, an energy balance over a spherical
radial shell was performed for each phase of water (liquid and solid). For the liquid
phase, this takes the form

Qa—1 = OQc—i1 + Qe—int (1)
where Q,_; is the accumlation of energy (e.g. in units of J/s) in liquid water in the
shell over a time step, At. Q._y is the intra-phase (liquid-liquid) conduction of
energy across the shell boundaries, and Q¢_int is the inter-phase (liquid-solid) con-
duction of energy across the shell boundaries. Convection is not explicitly treated,
but its effects can be included through the use of an effective conductivity. Viscous
energy dissipation and radiative energy transport are also neglected. We further
assume that the densities of liquid water and ice are constant and equivalent.

Energy accumulation is given by

. o
Qu = PICIEFIL"T[V Ar (2)

where p; is the density of liquid water, ¢; is the specific heat of liquid water at
constant pressure, 7; is the absolute temperature of liquid water in the shell, r is the
radial distance in the shell from the center of the sphere, and Ar is the shell radial
thickness.

Liquid-liquid intra-phase inter-shell heat transport is given by

) T, oT;
Qe = —KIEFI“JT’”ZH + KZEFI47772|r+Ar 3)

where «; is the thermal conductivity of liquid water. At the shell edge, F; is a surface
area fraction of liquid water.
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Liquid-solid inter-phase inter-shell heat transport is given by

. aT; 0T
Qc—int = —Kint—— - 1nt477r - + Kint 8:

ar 1m477r |r+Ar (4)

where Fiy is the fractional interfacial surface area at the shell edge and — iy E’aT;‘“ is

the inter-phase energy flux. i, is modeled by treating the inter-phase heat transport
process with two-film (resistance) theory (e.g. Sherwood ef al., 1975), for which
Kint = Ksk;/(ks + k) and  is the thermal conductivity of ice.

Substituting these heat transport terms into the energy balance (Equation (1)), re-
sults in the following grid-scale partial differential equation for radial heat transport
for liquid water:

poe L[ op 0T 10T, 0T 5)
C == Kj—— = intKi
zplzat 25 P 297 ntKint =

For ice, the grid-scale radial heat transport differential equation is

aT, 1 9 8Tint]

FS,OSCS— = —_|:r2FsKs

(6)

ar  r2or r2 or

T, 1 0
or

ar + == |:r Fintkine

2.1.2. Radial Solute Mass Transport

Differential equations for solute mass transport in each phase can be derived simi-
larly, using a shell mass balance approach. The resulting equations are

F8C1 10 FDaCl . 1 0 28 (D 0Cin 7
lat 28 ! la 28 int int ar l

PG 18T 9C) LAy () 3Cm ®)
ot r2ar or r2 or ey ity ;

N

where C; and C; are the solute concentrations in liquid water and ice, respectively.
D, Dy, and Dy, are the solute diffusivities in liquid water, in ice, and across the solid-
liquid interface, respectively. Dy, can be modeled using two-film theory, similarly
to kint, but we must account for the (dimensionless) equilibrium solid-liquid distri-
bution coefficient, H; (i.e. the concentration of solute in ice versus that in liquid
water, at equilibrium). Equating fluxes between phases yields (Diy); = Hg(Dint)s-
Additionally, ("g—‘r‘“)’ and (‘)g—‘r"‘)s can be discretized as (C;|; — Cs|j—1/Hy)/Ar and
(Cslj — HyCylj—1)/ Ar, respectively, where j is the radial shell index. However,
model computations currently neglect grid-scale radial inter-phase mass transport,
and it is treated only at the subgrid scale.
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2.1.3. Boundary Conditions

To solve the above equations, boundary conditions are needed. At the center of the
grid (r = 0), mass and energy conservation requires all fluxes to be zero, i.e.:

0T oT; 0Tyt
— = —K|— = —Kipt—— = 0 9
s or o or Fint or ©)
dC, 0C; 0 Cint
—Di—=—-Dj— = —Djp—— =0 (10)
or or or

At the particle-air boundary (r = R, where R is the particle radius), heat transport
to/from air is represented by a first-order rate equation that accounts for energy
loss due to convectively enhanced heat conduction and evaporation/sublimation
(Macklin and Payne, 1967):

o _ 1V 6T —T)+ L.D,G Pai _ _pa (11)
—Ki— = < |K — 1Ig m\ &5 -
l 97 R aJh\L] ey R,T; R,T,
aT, 1 pus .
iy = — |k Gp(Ty = Ty + LDy G [ 225 — L (12)
or R RT. R,

where T, is the temperature of air, p, is the partial pressure of water vapor in air,
Kk, 1s the thermal conductivity of air, D, is the diffusivity of water vapor in air,
G, and G, are the ventilation coefficients for gas-phase heat and (water vapor)
mass transport, L, and L are the latent heats of evaporation and sublimation, Ps';’tl
and P’ are the saturation vapor pressures of water vapor over liquid water and
over ice, and R, is the gas constant for water vapor (i.e, the universal gas constant
divided by the molecular weight of water).

For solute mass transport, the particle-air boundary conditions were represented

as
aC;

~Dis = Ki$(C) — C,Hyp) (13)
-D 90Cs _ K#(Cy — C,H,,) (14)
N 8}" - mt N a Sg

where C, is the concentration of solute in air. Hj, is the (dimensionless) Henry’s
constant in terms of liquid-phase concentration over gas-phase concentration.
Hj; = K,R,T, where K, is the dimensional (e.g. M/atm) Henry’s constant, R,
is the universal gas constant, and T is the absolute temperature. Hy, = Hj,Hy; is
the solute solid-gas distribution coefficient. The overall liquid-gas and solid-gas
mass transfer coefficients, K,l,ft and K,5, were developed from two-film theory
(Sherwood et al., 1975). They are given by

lg kll'ntklit/ng
Kot =0 e 70 (15)
kmt + kmt/ng
s 1,8
ng,; — kmtkmt/H58 (16)

ke + Koy [ Hig
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Figure 3. Processes treated at the subgrid scale. Subgrid-scale processes include ice crystal
growth or melting, latent heat transport, inter-phase heat transport, and solute segregation
during freezing (inter-phase mass transport).

where k%, k', and k&, are the local solid-, liquid-, and gas-phase solute mass
transfer coefficients. k, = 2n2D;/Ar, k', = 2n°D;/Ar, and ki, = G,,D,/R,
where D, is the solute diffusivity in air and G, is the ventilation coefficient for

gas-phase mass transport (of solute).

2.2. SUBGRID-SCALE PROCESSES

Processes represented at the subgrid scale include freezing, latent heat transport,
inter-phase heat transport, and inter-phase solute mass transport during freezing.
Figure 3 illustrates these processes.

2.2.1. Freezing

In each shell, we determine volume freezing by a kinetic equation for ice crystal
growth, such that

F b

= Avbl(ATint) ? (17)

ot

where b (ATy,)" is the intrinsic crystal interface growth speed, v. To obtain a
volume fraction phase change due to freezing, we multipy the interfacial growth
speed by the specific solid-liquid interfacial area in the shell, A,. For simulations,
we estimate A, as the ratio of the shell surface area to its volume, 1/Ar. AT, =
T, — Tin is the supercooled temperature of the solid-liquid interface, where T,
is the equilibrium freezing temperature of water (0°C) and T, is the interface
temperature. We estimate T, as the average of the phase-specific temperatures in
the shell, or (T, + T;)/2.
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The form of the ice growth speed equation and the pre- and post-exponential
factors (b; and b,) are based on experimental data and theory for growth rates of
ice in supercooled water (e.g. Pruppacher and Klett, 1997). For 0 < ATj, < 10
(K or °C), we use b; of 0.3 and b, of 2 (Bolling and Tiller, 1961). For AT, > 10,
we use a by of 2.3 and b, of 1 (Pruppacher and Klett, 1997, p. 674). If ATy < 0O,

Equation 17 is also used to calculate melting rates, with 381? given opposite sign.

2.2.2. Latent Heat Transport

Freezing is a source of sensible heat to the shell. To account for this source we need
to distribute the released heat into the ice and liquid water phases. To ensure enthalpy
conservation, we use an integral equation to solve for temperature changes due to
released latent heat of fusion. An enthalpy balance over a shell for an incremental
freezing time step results in

I r T/
M/ / esdT + Lyl +Msff ¢, dT
Tb Tb

. T T
= M / ¢;dT + Lyl|pi | + M / ¢, dT (18)
Ty ! T,

where M represents mass of water (as solid or liquid). Subscripts on M and T
describe the phase (I for liquid water and s for solid ice) and superscripts describe
whether it is the value prior to (i for initial) or after (f for final) the freezing time
step. T is an arbitrary base state temperature, which is assumed to be ice, and L,,
is the latent heat of fusion.

Substituting for M; and M, with p; F;V and p; F; V, where V is the shell volume,
and assuming p; = py, leads to the integral balance:

T/ 7/
F,f|:/ ¢, dT + L,,M} + st[/ chT:|
T, ! T,
I 7 e
_ Fz[/ e, dT +Lm|T;} n F;[/ csde| (19)
Ty Ty

Since Equation (19) is underdetermined, we must make an additional assumption
in order to solve for temperatures. Hence, we assume that the final temperatures in
both phases in the shell are equal immediately after a freezing step.

Equation (19) includes integrals whose limits are the unknowns (the final tem-
peratures of ice and liquid water). Hence, it must be solved iteratively. This is
computationally costly. Therefore, we also developed an approximate difference
equation. We again start with an enthalpy balance for freezing, of the form

AH=AH+AH; =0 (20)
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where AH is the overall enthalpy change, and AH; and AH; are the enthalpy
changes in liquid water and (solid) ice, respectively. Since enthalpy is a thermo-
dynamic state function, we can represent the enthalpy change due to freezing with
any path of processes. We represent the enthalpy change of liquid water with the
following sequence: (1) a mass change to the final mass of liquid water at constant
initial temperature (A H MM/ IT,,-) and (2) a temperature change to the final tempera-
ture of liquid water at constant final mass (AH . T/ | M/ ). We represent the enthalpy
change of ice with the following sequence: (1) a temperature change to the initial
liquid water temperature at constant initial mass (AHdT,T,’ |mi); (2) a mass change
to the final mass of ice at constant (inital liquid water) temperature (AH ;7 |7:);
(3) a temperature change back to the initial temperature of ice, at constant final
mass (AHyr,7i M&f); and (4) a temperature change to the final temperature of ice at
constant final mass (AH,; ;1,,r). Using this path, we get:

AHy = AHyy ol + AHyp 1oy 2
AH; = AHdT,T/lM,é + AHa’M,MflT/' + AHL]T’T_AMX/ + AHdT,TﬂMf (22)

Combining these with Equation (20) and rearranging yields

0= AHdM,M,f|T,i + AHdM’M&f|T[i + AHdT,T,f|M,f + AHdT,TAf|Mf

+ AHyp 7ilui + AHar 17l s (23)
For small changes in mass (small enough timf: steps), AH,,, M/ lpiand AH o |7
can be approximated by (%)IAMI and (%)SAMS, respectively. Since L,, =
(% , (%)S and AM; = —AM;, the first two terms in Equation (23) sum to
—Lm|TI,-AM , where AM = Mf - M ; For small changes in liquid water or ice

T/ | M/ and AH ;. ,r|,,s can be approximated by le ¢ AT, and

Msf ¢y ATy, respectively. Since the difference between the initial liquid water and
ice temperatures does not decrease with decreasing time step, the integral over tem-
perature in the last two terms in Equation (23) cannot be approximated accurately

temperature, AH,

with a difference formulation. Instead they can be summed to give —AM | Tl cdT.
Substituting and rearranging gives l

Ti

i
1

M/ AT, + M/ ¢, AT, = [me +/ chT:| AM (24)

Assuming p; = p;, = p, we know that le = ,oFlfV, Msf = ,oFSfV, and AM =
pAF,V. Substituting and dividing by pV leads to

TJ

F/ e/ AT, + F/ ¢, AT, = [L,,JTI,- +/ csdT}AFS (25)
T]i
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This is again underdetermined, so we assume a phase volume fraction weighted
energy distribution, leading to

i

i

T}
AT, = |:Lm|Tli + / Csde|AFS (26)

i
1

T;‘
s ATy = |:Lm|7-li + / chT:|AFS (27)
For time steps and shells in which no phase is initiated or terminated, we use
Equations (26) and (27) to solve efficiently for the new phase temperatures. For
time steps in which a phase is initiated or terminated, they are undefined and we

must use Equation (19).

2.2.3. Inter-Phase Heat Transport

For a shell volume in which inter-phase transport is the only source (or sink) of
energy to either phase, inter-phase heat transport can be represented by setting the
change in enthalpy in each phase equal to inter-phase conductive heat transport,
giving

T,

FIPZCIE = —hinA(T; — T) (28)
a7

Fspscsy = _hintAv(Ts - Tl) (29)

The inter-phase heat transfer coefficient is modeled as hiy; = «int/8, where § is the
length scale of transport, for which we use the dendrite tip radius. For free dendritic
crystal growth, this radius is § = 2D,,,,Pe/v (Caroli and Miiller-Krumbhaar, 1995;
Libbrecht and Tanusheva, 1999). D,,,, is the self-diffusivity of water in liquid water
and v is the growth speed. Pe is the Peclet number, determined for dendritic growth
as

oo ,—C ATI

Pe P° / ¢ gy = Bl (30)
Pe ; Lm

where ¢ is a dummy variable.

2.2.4. Inter-Phase Solute Mass Transport

During freezing, solute is segregated at the solid-liquid interface. A solute mass
balance over the freezing shell takes the simple form,

M+ M =M+ M, 31)

where M, refers here to the mass of solute. The other subscripts and superscripts
have the same meanings as in Equation (18). We assume that partitioning at the
interface can be described by the solid-liquid equilibrium distribution coefficient.
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Then for a small volume of the shell frozen, A F;V, originally liquid water with
solute concentration C li, the solute mass in the ice formed will be H;C 11 AF,V.This
assumption is valid for At small enough that concentrations in the liquid phase do
not build significantly. Then for our shell,

M/ =M. + HyC/AF,V (32)
Combining this with Equation (31) and noting that M = C F'V leads to

C/F/ — CI'F' = H,C]AF, (33)

c/F/ —CiFl = —H,C]AF, (34)
Dividing by the time step and taking the limit as At goes to zero, gives

Studies of dendritic crystal growth in solution (e.g. Harrison and Tiller, 1963;
Tiller, 1964; Eddie and Kirwan 1973; Myerson and Kirwan, 1977a,b) indicate that
equilibrium partitioning of solutes between phases can be significantly enhanced
as dendrite branches grow together and trap solute-containing liquid pockets. As
crystallization continues, there is no liquid pathway for solute transport out of the
immediate environment. Hence, liquid-phase solute concentrations can increase
drastically as the liquid pockets continue to freeze. When the pocket freezes com-
pletely, the trapped solute remains locally in the solid phase (minus solid-phase
diffusion losses). To represent trapping during freezing, shells that freeze com-
pletely during any one time step retain all of the solute that was in the liquid phase
at the beginning of the time step.

For melting, we allow all the solute originally in the ice volume melted, AFV,
to be transferred to the liquid phase (i.e. there is no segregation during melting).
This gives

- dF

dF,C; _ dFC,
dt — dr T Sdt

(36)

3. Computational Development

To numerically simulate partitioning of chemical solutes during freezing, we must
consider issues of computational efficiency, computational process flow, and model
conservation properties. Here we discuss our computational design.

3.1. PROCESS TIME SCALES AND TIME STEPS

Partitioning of chemical solutes during freezing is a complicated multi-process phe-
nomenon. To develop a method for solving the process equations, we can compare
the process time scales, or critical time steps.
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Freezing and latent heat transport. Solidification is limited by the sensible heat
released during freezing (the latent heat of fusion). If the time step is too large,
temperatures will significantly exceed the equilibrium freezing temperature (which
is not physically realistic) and the approximations used to develop Equation (25) will
not be valid. To ensure a small critical temperature change, AT,, we can approximate
the critical time step, Af,, by rearranging Equation (26) or (27) (assuming liquid
water and ice are initially at the same temperature), giving

cp AT,

Aty = —P—"¢
L.AF,/At,

(37)
where ¢, is the heat capacity of the phase of interest. Substituting for AF;/At,
(with Equation 17) and A, = 1/Ar, we find

cp AT Ar
At, =

= —— 38
Lybi (AT %)

The critical time step is a function of the interfacial supercooling, the critical tem-
perature change, and the grid shell spacing. Using values of Ar =0.01 cm, AT, =
0.1°C,and 1 < AT, < 40°C, the critical time step ranges from about 1 x 1073
tol x 107 s.

Subgrid inter-phase transport. For inter-phase heat transport, we require that the
change in temperatures of water and ice cannot be greater than a fraction (£ < 1)
of the initial difference between them. Using Equation (28), this criterion can be
expressed as

At higAy(T; — T, At higAy(T) — T,
E|T[ _ Ts| > maximumH int v( I ) ’ int ( ) ) i| (39)
psCs F oici Fy
Solving for Af,, results in
s Py A FA
AtC:minimum[E'O‘ C‘h : ",E‘”CZ’ r} (40)
int int

The critical time step is a function of the volume fraction of ice. For £ = 0.1 and
F; = F; = 0.5, the critical time step is about 1 x 10~* s. Note that there is no critical
time step for inter-phase solute transport. It is an equilibrium process, converted to
a time-dependent calculation using dF/dt.

Radial transport. For radial heat transport, we require that the change in tem-
perature is not greater than a fraction of the difference in temperatures between two
adjacent cells. Using Equations (5) and (6), this criterion results in
pcp(Ar)z}

(41)

At. = rninimum[E
K

where p and « are the density and thermal conductivity of the phase of interest.
Hence, the critical time step depends on gridspacing. For Ar = 0.01 cm and E =
0.1, itis about 1 x 1073 s.
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For radial solute mass transport, we use the same criterion for concentration as
for temperature above. From Equations (7) and (8), we find

(Ar)?
5]

At, = minimum[E 42)
Again, the critical time step is again a function of gridspacing. For Ar = 0.01 cm
and E = 0.1, the critical time step is about 1 s.

Since the critical time steps for distinct processes are orders of magnitude dif-
ferent, it is not necessary nor numerically efficient to calculate all processes at the
smallest critical time step. Hence, the processes are time split and each is calculated
separately in a serial manner. Additionally, since the critical time steps for freezing
with latent heat transport and inter-phase heat transport depend on model variables
that change significantly (ATjy and Fj, respectively), we use an adaptive time step
for these processes.

3.2. ENTHALPY AND MASS CONSERVATION

To ensure physically realistic rates of freezing, numerical enthalpy losses or gains
must be orders of magnitude smaller than losses to the hydrometeor particle envi-
ronment. Enthalpy conservation in the model is calculated as

T, iy
AHtot N; 9 A(FHOV -[Tb CsdT + Flpl[Lm|T/ + fTb] CsdT])j
=4 reAr
At = At
tan R A0 4 AT 2 (43)
S Ar Ar

where the first term represents the total enthalpy in the hydrometeor particle and
the second term represents the loss/gain of enthalpy to the environment (via all the
processes represented in Equations (11) and (12)). N, is the total number of grid
shells.

Non-physical enthalpy losses or gains can occur in model calculations during
the processes of latent heat transport during freezing and sub-grid inter-phase heat
transport. Equations (19) and (25) are used to calculate latent heat transport. Equa-
tion (19) is also used as an enthalpy balance to calculate enthalpy-conserving final
liquid water temperatures for inter-phase heat transport, after an adaptive time-step
loop using Equations (28) and (29). Since Equation (19) involves integrals whose
limits are the unknowns, it is solved with an iterative convergence loop. Enthalpy
conservation depends on the degree of convergence specified. We use convergence
criteria (i.e. error tolerances) of 1 x 10~7 and 1 x 107° (in terms of the ratio
of numerical enthalpy loss/gain to the total enthalpy in a shell), for latent heat
transport and inter-phase heat transport, respectively. The enthalpy conservation
properties of Equation (25) depend on the change in temperature during any given
time step. The use of a threshold temperature change of 0.1 °C in the adaptive
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time step solution of freezing (Equation (17)) ensures enthalpy conservation for
Equation (25). It also ensures that freezing and the concurrent release of latent heat
do not cause non-physical interfacial temperatures that significantly overshoot
the equilibrium freezing temperature, once it is reached. These tolerances were
chosen to ensure that the enthalpy loss/gain for each process module is more than
two orders of magnitude less than the enthalpy loss to the environment, through
repeated experimental model runs for a hydrometeor particle with no convective
enhancement to heat transport in air. Strictly speaking, this enthalpy conservation
criterion cannot be met for very early times, prior to the drop heating significantly.
At early times, the energy loss to the environment is very close to zero. However,
over the entire model simulation, enthalpy conservation is excellent.

The model equations are exactly mass conserving. Hence, conservation of solute
and water mass is expected if there is no numerical error. As a benchmark of the
model’s performance, the conservation of solute mass is calculated as

N
AM)c,tot — 4 ZI”gAV A(Fscs + Flcl)j
At =’ At
AC; AC
+ 47 R?*( D, + D, 2= —o (44)
Ar Ar

where M, i is the total mass of solute (in all phases) in the system. It is the sum
of solute mass in the hydrometeor particle and solute mass losses from the particle
to the environment.

The water mass balance is further simplified, as water mass is held constant in
the model (i.e., there is no explicit representation of water mass transport). Hence,
to benchmark the model’s performance, water mass conservation is calculated as a
simple sum of mass over all shells:

S

AM = A(Fyps + Fip);
tot — 4 ZI‘?AI" ( sPs + lpl)j -0 (45)
j=1

At At

where M\, is the total mass of water (in both the liquid and solid phases) in the
freezing hydrometeor particle. Note that although we account for heat loss due to
evaporation and sublimation in Equations (11) and (12), as these may be important
drivers for freezing, all other calculations assume constant water mass (in other
words heat transport is decoupled from water mass transport). The implications of
this representation are discussed in Section 5.

3.3. SOLUTION PROCEDURE

Figure 4 illustrates the process flow diagram of the model. A simulation is initiated
by specifying ambient conditions (constant temperature and pressure), hydrometeor
characteristics (initial drop and ice substrate sizes, temperatures, and air speed),
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Figure 4. Flow diagram of model calculation modules. 7 is the outer-model time step.

solute concentrations in all phases, and computational parameters (Af and Nj).
The grid is determined and initialized by assuming the drop water is spread evenly
around the ice substrate. Model constants (e.g., water density, hydrometeor parti-
cle fall speed, and ventilation coefficients) and temperature-dependent secondary
model variables (e.g. latent heats of phase change, specific heats, conductivities,
and diffusivities) are then initialized. Table I provides a list of model constants and
variables, as well as references for the methods used for their calculation. Following
initialization, the model time cycle of processes begins. For each outer-model time
step, subgrid processes of phase change with latent heat transport, inter-phase heat
transport, and solute segregation and trapping are calculated using individual time
steps, as needed. The grid-resolved processes are then calculated at the outer-model
time step. A second order central difference approximation is used for spatial dis-
cretization and time progression is discretized using a forward Euler formulation.
After each outer-model time step (and at initialization), values of system enthalpy
and mass are calculated. The simulation terminates when the hydrometeor particle
is completely frozen. A detailed description of the model numerics can be found
in Stuart (2002). Further explanation of the computational modeling terminology
and methods used can be found in numerical modeling texts (e.g. Ferziger, 1998;
Jacobson, 1999).

4. Model Simulations

To test and demonstrate the model, we simulated freezing and solute transport for
several cases.
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Table 1. Model constants, variables, and solute properties’

Constants Notation Method source

Partial pressure of water vapor in air Pa See caption text

Thermal conductivity of moist air Kq Pruppacher and Klett (1997, p. 508)
Diftusivity of water vapor in air D, Pruppacher and Klett (1997, p. 503)
Density of condensed water 01, Ps Pruppacher and Klett (1997, p. 87)
Ventilation coefficients for heat, water Gy, G, Pruppacher and Klett (1997, p. 541)

vapor, and solute transport in air

Variables Notation Method source

Latent heat of water sublimation Ly Jacobson (1999, p. 31)

Latent heat of water evaporation L, Jacobson (1999, p. 31)

Latent heat of water fusion L, See caption text

Saturation vapor pressure:

Over liquid water R:.l“[l Jacobson (1999, p. 33)
Over ice Py’ Jacobson (1999, p. 34)

Specific heat of liquid water c Pruppacher and Klett (1997, p. 93)

Specific heat of ice s Pruppacher and Klett (1997, p. 86)

Thermal conductivity of liquid K Bird et al. (1960, p. 248)

Thermal conductivity of solid K Pruppacher and Klett (1997, p. 676)

Solute properties Notation Value used

Henrys constant (—) H, Demonstration case: 28
Additional cases: 18000

Solid-liquid distribution coefficient (—) Hy Demonstration case: 0
Additional cases: 1 x 107°

Diffusivity in air (cm?/s) D, Demonstration case: 0.1
Additional cases: 0.16

Diffusivity in liquid water (cm?/s) D, Demonstration case: 1 x 1073
Additional cases: 7.7 x 107°

Diffusivity in ice (cm?/s) D All cases: 1 x 1010

fConstants are calculated from the initial freezing conditions, i.e., ambient pressure, tempera-
tures, and drop and substrate sizes. We assume the air is saturated with respect to liquid at the
air temperature. The density of water and ice are assumed equal. For ventilation coefficients,
the terminal fall speed was calculated as described in Jacobson (1999, p. 528). Variables vary
in time and space, depending on the temperature. For enthalpy conservation, the latent heat
of fusion is calculated as L, + fOT ¢; — ¢, where T is the temperature, and L,,, was taken
from Perry et al. (1984, pp. 3—120)). For thermal conductivity of liquid water, we used a linear
regression on the data. Solute properties were assumed constant and are for hypothetical trac-
ers. For the demonstration case, they are arbitrary with order of magnitude typical diffusivity
values in the given phases. For the additional cases, we used rough estimates of values intended
to be somewhat representative of SO,. The effective Henrys constant accounts for S(IV) dis-
sociation equilibria, as described in Seinfeld and Pandis (1997, p. 340-361), with necessary
equilibrium constant and enthalpy data from this same source and Pruppacher and Klett (1997,
pp. 748-749). A pH of 4.0 and a temperature of 0 °C were used. 2) The ice-water distribution
coefficient is an assumed value, chosen to be greater than zero but an order of magnitude less
than measured effective distribution coefficients discussed in Hobbs, (1974, p. 600-602). 3)
Diffusivities in air and water were estimated as described in Lyman ez al. (1990) and Jacobson
(1999), assuming an air temperature of —10 °C and water temperature of 0 °C. The diffusivity
in ice was left as the typical phase value.
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4.1. DESCRIPTION OF THE DEMONSTRATION CASE

We simulated the freezing of a hydrometeor particle falling at its terminal fall speed,
nucleated due to the impact of a supercooled drop 1000 pem in radius with an accre-
tion substrate of 100 m in radius. The air and supercooled drop temperatures were
—10°C. The ice substrate temperature was —5 °C. Ambient pressure was 300 hPa.
A hypothetical chemical solute was used with properties listed in Table 1. Solute
concentrations in the gas-phase and supercooled drop were initially at equilibrium,
with values 7 x 10~ g/cm? and 2 x 107> g/cm?, respectively. Initial solute con-
centration in ice was 0. The number of radial grid shells was 10, resulting in Ar of
1 x 1072 cm. The outer model time step was 1 x 10™*s.

4.2. DEMONSTRATION CASE RESULTS

Figure 5 shows the dynamics of freezing and temperature changes in the liquid
water and ice phases. The progression in time and radial space of the fraction solid
(a), liquid water temperature (b), and ice temperature (c) are shown. As seen in
Figure 5a, the hydrometeor particle is initially liquid with a solid core (the original
ice substrate). By 1 x 107* s, freezing begins to propagate out from the core of
the hydrometeor particle, with the ice fraction values near the core increasing to
about 0.1, and temperatures increasing near the core by up to three and five degrees
in ice and liquid water, respectively. The temperature of ice in the core increases
slightly (less than 1/10 of a degree). As time progresses, freezing propagates out
to the boundary of the hydrometeor particle and the temperatures in ice and liquid
water increase. By 9 x 107* s, ice has propagated radially throughout the hy-
drometeor particle. Due to the latent heat of fusion, temperatures quickly increase
from the inside of the hydrometeor particle to the outside. By 1.6 x 1073 s, liquid
water temperatures throughout the two-phase zone are approximately uniform at
about 272 K. Ice temperatures in the two-phase zone also increase, until they reach
approximately equal values of 273 K at 1.1 x 1073 s.

Once temperatures in the the two-phase zone are about equal, the ice fraction
and temperatures increase more slowly and approximately uniformly. At4.1 x 1073
s, the ice fraction near the air boundary surpasses that in the interior, due to heat
loss to the surrounding air. The temperature of the solid core (the ice substrate)
increases slowly due to radial heat transport from the two-phase zone, but does not
reach the temperature of the two-phase zone, 273.1 K, until about 3.3 x 1072 s. As
freezing progresses, temperatures approach the equilibrium freezing temperature
of water. Far from the air boundary, temperatures reach 273.15 K at approximately
0.1 s. Temperatures near the surface are slightly depressed, due to heat loss to sur-
rounding air which is at 263.15 K. In the first 7 seconds, the ice fraction near the
air boundary increases significantly, while that in areas far from the boundary in-
crease much less. At 7 seconds, a frozen shell forms at the particle-air boundary and
freezing propagates inward until the entire hydrometeor particle is frozen at 24.6 s.
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Figure 5. Radial profiles of fraction solid (a), liquid water temperature (b), and ice temperature
(c) with time. Note that the scale of the time axis changes from logarithmic to linear at 1 second.
Black indicates the value is undefined (because the phase does not exist at that point).

Concurrently, ice temperatures decrease from the outside in, due to heat transport to
the surrounding air. However, temperatures do not decrease monotonically, likely
due to the latent heat of fusion. Temperatures in liquid water also decrease from
outside in, but as freezing progresses to completion in each shell, the liquid water
temperature becomes undefined, and, hence, the profiles are shorter.

The progression of freezing seen in the model is both qualitatively and quan-
titatively consistent with experimental and theoretical studies of drop freezing.
Previous work (e.g. Pruppacher and Klett, 1997; Macklin and Payne, 1967) indi-
cates that nucleated drops freeze in approximately two stages. The first stage is
termed the adiabatic stage. During this stage, ice propagates out from the nucle-
ation site and the drop heats up to the equilibrium freezing temperature of water
with relatively little heat loss to the drop environment (i.e. to air or the ice sub-
strate). This stage is very quick, orders of magnitude faster than freezing of the
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entire drop. The second stage is sometimes termed the diabatic stage. During this
stage, freezing occurs more slowly and is limited by the rate of heat loss to the ice
substrate and surrounding air. Our model results are qualitatively consistent with
this progression.

Quantitative comparisons also support our model results. We can approximately
bound the simulated adiabatic freezing time by two limits: 1) the time is takes
for freezing to propagate through the drop (approximately 0.001 s) and 2) the
time it takes the two-phase zone to heat to approximately the equilibrium freezing
temperature (about 0.1 s). We use these bounds because freezing does not occur
in exactly two stages. There is some heat loss to air and the ice substrate during
the ‘adiabatic’ stage, and hence, the two-phase zone never completely reaches
273.15 K. During this stage, approximately 13% of the original supercooled drop
mass froze in our simulation. This is consistent with drop freezing theory, which
suggests that ¢; AT /L,,, or 13%, of the drop mass would freeze during the adiabatic
stage (Pruppacher and Klett, 1997, p. 675).

By balancing heat released by freezing with that dissipated to air, Pruppacher
and Klett (1997, p. 677-679) developed a theoretical expression (p. 678, Eqn. 16—
36), validated by laboratory observations, for the total freezing time of droplets
falling freely in air. Freezing times calculated with this expression for drops of
radii from 1 to 2000 wm vary by orders of magnitude (Stuart and Jacobson, 2003).
Using this expression, we estimate the freezing time to be 19.4 s for a 1000 um
drop at —10°C, freely falling in air at the same temperature and a pressure of 300
hPa. This is in good agreement (within about 20%) with our simulated freezing
time of 24.6 s.

Figure 6a and b show the progression of solute concentrations in the liquid water
and ice phases, respectively, during freezing. Solute concentrations in liquid water
were initially 2 x 107> g/cm?® throughout the hydrometeor particle except in the
original ice substrate core. The initial solute concentration in the core ice was 0. As
freezing propagates through the drop, solute concentrations in liquid water away
from the air boundary increase slightly to 2.3 x 107> g/cm? at 1 second, due to
exclusion of solute from the ice phase during freezing. Concentrations near the air
boundary decrease slightly to 1.9 x 107> g/cm?® at 1 second, due to solute mass
transport to air. After an ice shell forms at the air-particle surface and shell freezing
propagates inward, concentrations in liquid water near the inner boundary of the
ice shell increase more dramatically to about 1 x 10~* g/cm® (with some higher
values) due to exclusion from the ice phase and the lack of a sink to the air.

In ice (Figure 6b), concentrations near the center of the hydrometeor particle
jump from 0 to 7 x 107 g/cm® due to freeze trapping, directly after freezing
initiation. Solute concentrations in ice near the core increase slightly above O (to
3 x 107! g/cm?) due to radial intra-phase solute mass transport. As ice propagates
through the hydrometeor particle, the concentrations in ice throughout also increase
to very small values (<1 x 10~ g/cm?®) due to radial solute mass transport. When the
ice shell forms, concentrations in ice near the air boundary jump to 9.4 x 1078 g/cm?,
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Figure 6. Radial profiles of solute concentration in liquid water (a), solute concentration in ice
(b), and solute mass fraction retained in the hydrometeor particle (c) with time. Note that the
scale of the time axis changes from logarithmic to linear at 1 second and that the color scales
for concentration in liquid water and ice are different. Black indicates an undefined value.

due to freeze trapping. As freezing progresses inward, higher concentrations are
trapped in ice due to higher concentrations in the liquid. In the area that freezes
last, the concentrations in ice are slightly higher at 2.3 x 10~ g/cm? than those in
the original liquid water, due to redistribution (radial solute mass transport) during
freezing. Very little mass is lost from the ice phase to air, since ice diffusivity is so
small.

Figure 6¢ shows the total retention ratio (mass remaining over total original mass
of solute) as a function of time. We see that in the first 0.1 seconds the retention ratio
decreases precipitously from 1 to about 0.96 (note the logarithmic time axis scale).
The retention ratio continues to decrease until an ice shell forms at the hydrometeor
particle surface. Once a shell forms (at about 7 seconds), the retention ratio remains
effectively constant at 0.72.
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Figure 7. Absolute value of the model enthalpy error (cumulative numerical error over cumu-
lative physical enthalpy loss to the hydrometeor particle surroundings) with time.

Since there are few data available on solute concentration distributions in frozen
drops, the concentration results cannot be quantitatively compared with experimen-
tal data. However, the total retention ratio of 0.72 is within the range of measured
retention ratios (~0.01 to 0.83) for SO, (Iribarne et al., 1983; Lamb and Blumen-
stein, 1987, Iribarne et al., 1990; Iribarne and Barrie, 1995; Voisin et al., 2000),
which has somewhat similar chemical properties to our tracer solute. Additionally,
the concentration distribution results are qualitatively consistent with concentration
distributions observed in industrial freezing separation studies (e.g. see Zief and
Wilcox, 1976; Pfann, 1966).

Finally, as benchmarks of our model success, we monitored the enthalpy and
mass conservation during the simulation. Figure 7 shows the fractional model en-
thalpy error (cumulative computational enthalpy gain divided by the cumulative
enthalpy loss to air). We use this metric because the energy loss to air drives the ul-
timate freezing of the hydrometeor particle; with too much computational enthalpy
error, the drop would freeze either too slowly or too quickly. We see that enthalpy
conservation is excellent in the simulation, with the final model enthalpy error ap-
proximately five orders of magnitude less than the total loss to the surroundings.
Water and solute mass conservation are exact within the precision of our output
values (9 significant digits).

4.3. ADDITIONAL CASE SIMULATIONS

We will discuss here model simulations for a few additional scenarios. The condi-
tions of these cases were similar to the demonstration case, with a few exceptions.
First, the ambient pressure was 700 hPa. Second, the air and drop temperatures were
varied among the cases. Air and drop temperatures were —5, —10, and —20 °C for
cases 1, 2, and 3, respectively. For all cases, the chemical tracer was based loosely
on SO,, with properties listed in Table I. Solute concentrations in the gas-phase
and supercooled drop were initially at equilibrium, with values of 1.11 x 10~°
and 2.0 x 1073 g/cm?, respectively. Initial solute concentration in the ice substrate
was 0.
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For all cases, freezing occurred in a manner similar to that described for the
demonstration case. The two-phase zone first heated to approximately 273 K af-
ter ice propagation throughout the drop. Ice shell formation occurred for cases 1
through 3 at 17, 8, and 4 s, respectively. Freezing subsequently occurred from the
outside in, with the final freezing times for cases 1 through 3 of 59.6, 30.2, and 14.7
s, respectively. These freezing times are all within 20% of theoretical bulk freezing
times (49.7, 25.4, and 12.5 s, respectively) estimated with the Pruppacher and Klett
(1997) expression. The mass and energy balances for all cases were excellent, with
an exact solute and water mass balance and enthalpy balance error (error / heat out)
of less than 2 x 10> for all cases.

Solute concentrations in liquid water and ice also progressed in a manner sim-
ilar to the demonstration case. However, due to a finite H,; for these cases (as
opposed to Hy; = 0 for the demonstration case), the concentrations in ice increased
to about 2.1 x 10~ ! g/cm? throughout the two-phase zone once freezing had propa-
gated throughout the drop. The total retention ratio for all cases was approximately
equivalent to the demonstration case.

We were surprised by this result because the air and supercooled drop temper-
atures varied between the cases. We expected to see higher retention ratios with
decreasing temperature as has been found in some experimental studies (Lamb
and Blumenstein,1987; Iribarne et al., 1990; Snider et al., 1992), and as is pre-
dicted by time scaling theory (e.g. Lamb and Blumenstein, 1987; Iribarne et al.,
1990; Snider et al., 1992; Stuart and Jacobson, 2003). (Note that the solute prop-
erties were all equivalent and constant for the cases simulated here. Hence only
the freezing and heat transfer processes were directly affected by the temperature
change). In the simulations, we used a solute diffusivity in ice typical of trans-
port through a monocrystalline solid. Hence, solute loss after ice shell formation
is minimal and we are effectively representing a scenario in which ice shell for-
mation, rather than complete freezing, controls the retention ratio. The relative
importance to determining effective partitioning, of ice shell formation (adiabatic
freezing control) versus complete freezing of the drop (diabatic freezing control)
is an open question in the above literature. Since we are representing adiabatic
freezing control in our simulations, we expected that the shorter ice shell forma-
tion times for the lower temperature cases would lead to higher retention ratios,
in accordance with time scaling theory. Our equivalent simulated retention ratio
results suggest that a compensating effect may not be accounted for in the current
theory. A possible unrepresented compensating effect is the impact of freezing on
the driving force for solute mass transport. Prior to ice shell formation, a driving
force for solute transport out of the hydrometeor only exists when water freezes
and, hence, increases solute concentrations in liquid water above the gas-liquid
equilibrium value. This suggested effect is supported by the fact that the lower tem-
perature cases underwent more volume freezing prior to shell formation. This may
have counteracted the effect of decreased shell formation times on the retention
ratio. Further work is needed to determine the importance of impacts of freezing
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on the solute mass transport driving force, and ultimately on effective partitioning
during freezing.

Additionally, this result may suggest the importance of the second stage of
freezing to determining effective partitioning of solutes. Since we do not see a
temperature dependence in our results, which represent adiabatic freezing control,
loss during the second stage of freezing may be important to determining effec-
tive partitioning and its observed temperature dependence (though not necessarily
under all freezing conditions). After the adiabatic freezing stage, loss from the hy-
drometeor may not always be controlled by diffusive loss through the ice crystal.
Ice shell formation can be incomplete and fissures can form due to pressure buildup
and cracking of the shell (e.g., Griggs and Choularton, 1983). These could provide
a mechanism for solute loss at higher rates through water channels. Additionally,
diffusion at grain boundaries may occur in polycrystalline ice (Huthwelker et al.,
2001), enhancing transport rates through ice. Further investigations of the impor-
tance of solute loss during the second stage of freezing, through the use of effective
ice diffusivities (as discussed in Section 5), is needed.

5. Discussion

The model described here is a sophisticated representation of the multiple coupled
processes occurring to influence the partitioning of chemical solutes during the
freezing of a supercooled hydrometeor particle. It is also the first numerical model
of this phenomenon. Nonetheless, many assumptions and simplifications were nec-
essary in the development. These uncertainties and their implications are discussed
here.

5.1. THE FREEZING REPRESENTATION

Assumptions and simplifications that may affect the simulated representation of
freezing dynamics include the assumed value of the specific interfacial area A,, the
use of a grid-spacing-dependent parameterization of dendrite propagation, the use
of a single spatial dimension, and the lack of an explicit representation of water
mass transport.

The specific interfacial area directly affects the rate of freezing, as well as inter-
phase heat and solute mass transport. We selected 1/Ar because this is the ratio
of the shell border surface area to the shell volume, which provides a best guess
of the scale of A,. A sensitivity analysis indicated that varying A, by an order of
magnitude does not significantly affect the simulated freezing or partitioning of
solute.

To represent the initial propagation of ice dendrites through the supercooled
liquid, we only allow ice to initially form in shells that have ice in an adjacent
shell. This representation is artificially dependent on the grid spacing, potentially
affecting the accuracy of simulated freezing times. A test simulation similar to case
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3, but with the shell size reduced in half, resulted in the same total freezing time
(14.7 s) as for case 3. Hence, we conclude that it does not likely significantly affect
our results.

For a numerically tractable first model, we have used a one-dimensional rep-
resentation. Due to friction effects, varied hydrometeor particle geometries, and
non-symmetric air flow patterns around falling drops, freezing hydrometeor parti-
cles can have distinct non-spherical shapes and non-symmetric heat transport rates
from the particle surface. One potential effect of these non-isotropic phenomena,
which has been observed in the laboratory (Griggs and Choularton, 1983), is freez-
ing of ice from a single side or two sides of the hydrometeor particle. This could
lead to non-isotropic liquid-phase transport pathways. Additionally, due to the one-
dimensionality of our model, we must assume that ice nucleation occurs at the
center of the drop. Recent studies indicate significant ice nucleation may occur at
the drop surface by either preferential surface nucleation (Tabazadeh et al., 2002)
or evaporative freezing (Jacobson, 2003). We cannot represent the effects of these
two- and three-dimensional phenomena. However, based on our model results we
can hypothesize that the location of nucleation will not have a significant impact on
overall individual hydrometeor particle freezing rates or on the effective partition-
ing of solutes. Our results indicate the even in the case of nucleation at the center of
the hydrometeor particle (the farthest point from the surface of the drop), dendrites
likely propagate rapidly enough to the surface of the drop to quickly form surface
ice. Therefore, even in this case, heat loss to air controls potential ice shell formation
and ultimate drop freezing, resulting in little impact of the ice nucleation site.

There is no explicit representation of water mass transport, such as fluid flow
between shells or water loss/gain to the environment. In a one dimensional model,
any such treatment would necessarily be very rudimentary and would necessi-
tate significantly increased complexity in the computational method. Since we are
specifically interested in freezing and solute partitioning, which are driven by heat
transport and solute mass transport, respectively, we instead can treat the effects of
water mass transport on these phenomena. This can be achieved through the use
of ventilation coefficients in both the gas and liquid phases, leading to effective
thermal conductivities and effective solute diffusivities. Terms in the heat transport
and solute transport equations representing heat (and solute) loss via water evap-
oration and sublimation can also be used. Currently, we only treat the effects of
ventilation in the gas phase, through the boundary conditions described in Section
2.1.3. Transport in the liquid phase is represented as being diffusive. Implementa-
tion of a parameterization for ventilation coefficients in the liquid phase, described
in Stuart [2002], is planned in future work. However, good agreement between our
simulated freezing times and previous work, indicates that liquid-phase ventilation
effects may not be very important.

Continued developments in the freezing representation, such as the use of a
dendrite initiation representation that accounts for dendrite tip travel distances or
an expansion to a two- or three-dimensional model, may be useful for further
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investigations of partitioning of solutes. However, we are quite confident in the
freezing dynamics results of the current model, as simulated freezing physics, freez-
ing times, and adiabatic freezing volumes compare very well to previous theoretical
and experimental results.

5.2. THE CHEMICAL REPRESENTATION

For the chemical algorithm, additional uncertainties include the assumed values of
the solid-liquid inter-phase distribution coefficient and the solute diffusivity in ice,
the constant and equivalent water density assumption, the grid-spacing-dependent
representation of solute trapping, and the lack of a chemical reaction representation.

The equilibrium solid-liquid solute distribution coefficient, Hy;, affects inter-
phase solute mass transport (through Equation 35 in our model). Hence, its value
may be important to the effective partitioning of chemical solutes during freezing.
If equilibrium partitioning (as opposed to rate processes) controlled the effective
partitioning, we would expect to see retention ratios equal to Hy; for a given solute.
For the simulations here, we have used constant assumed values of H; (0 for
the demonstration case and 1 x 107® for the additional cases). In actuality, the
equilibrium solid-liquid distribution coefficient is a function of the concentration
of solute in solution (e.g. Atkins, 1990), though for dilute enough systems, it is close
to constant (e.g., Zief and Wilcox, 1976). Additionally, Hy; values for most dilute
solutes in water are orders of magnitude less than 1 (Hobbs, 1974). Our simulations
predict retention ratios significantly greater than the assumed values of Hy;. This
suggests that rate processes (i.e. trapping) are more important than equilibrium
partitioning to determining effective partitioning during freezing. It also indicates
that the specific assumed values chosen as Hy; are not very important.

Solute diffusivities in hydrometeor ice are not well understood. Measured vol-
ume self-diffusivities of H and O in singe-crystalline ice are approximately 10~!!
cm?/s at —10°C (Hobbs 1974). Measured diffusivities of other species (e.g. Diehl
et al., 1995; Sommerfeld et al., 1998; Thibert and Domine, 1998) vary by a few
orders of magnitude (from about 10~!! to 108 cm?/s in these studies of HNO; and
HCI). Differences appear to be affected by the degree of polycrystallinity, due to
solute diffusion at ice crystal boundaries (Huthwelker et al., 2001). Here, we use a
assumed diffusivity in ice of 107!° cm?/s, which is near the lower end of measured
values, and likely more representative of monocrystalline ice. This diffusivity re-
sulted in minimal solute loss after ice shell formation, effectively representing a
scenario in which ice shell formation, rather than complete freezing, controls the
retention ratio. Investigations of the effects of greater solute diffusivities in ice are
needed to understand the importance of the second stage of freezing on effective
partitioning of solutes. This can be achieved in future work by varying the effective
diffusivity of ice used in model simulations.

For tractability, we have assumed that the densities of liquid water and ice are
constant and equivalent. Density differences can cause pressure gradients, cracking
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of ice, and liquid water protrusions (Griggs and Choularton, 1983). This could allow
preferential pathways of solute mass transport and loss to air. In a one-dimensional
model, we cannot physically represent these phenomena. However, their potential
effects could be represented through the use of an effective ice diffusivity, here
ranging up to values representative of diffusivity in liquid water.

The amount of solute trapping in our model is artificially dependent on grid
spacing, since we assume that all solute is trapped in ice when a grid shell freezes
completely. A sensitivity simulation similar to case 3, but with Ar reduced in half,
resulted in an overall retention ratio that was 18% higher than for case 3. Therefore,
a more physical parameterization may be needed for further investigations of par-
titioning during freezing. A future improvement to the trapping representation will
be the use of a rate-dependent effective solid-liquid distribution coefficient, Hy_ ¢
(in place of Hy;), instead of a separate trapping algorithm. Possible models for
Hy;_ oy include the Burton et al. (1953) and Myerson and Kirwan (1977a,b) models.

Finally, we do not currently represent chemical reactions, though experimental
studies indicate that reactions may impact the effective partitioning of some chem-
icals during freezing (e.g., Iribarne and Barrie, 1995; Snider and Huang, 1998). A
goal of our work is to consider the effects of reactions on the effective partitioning
of chemical solutes (and the effects of the redistribution of solutes during freezing
on reaction rates) by coupling a chemistry ordinary differential equation solver to
our model. However, our current model only provides information on the impacts
of physical processes on chemical fate.

Further improvements of the chemical algorithms in our model are needed for
accurate prediction of partitioning of solutes during freezing. Nonetheless, results
from our simulation cases, discussed in Section 4, indicate that the current model
represents the redistribution of solute in a manner qualitatively consistent with
previous work on freezing segregation in both industrial applications and in hy-
drometeor ice. It therefore provides a good basis for further development and for
investigations of the redistribution and chemistry of trace chemicals in clouds.

6. Conclusions

We have developed and demonstrated a one-dimensional computational model of
freezing and partitioning of chemical solutes in a hydrometeor particle. This pro-
vides a first computational model that resolves the multiple drop-scale processes
governing the redistribution of chemical solutes during supercooled drop freez-
ing. The simulated profiles of freezing fraction, temperature, and concentration are
physically realistic and qualitatively consistent with previous theoretical and exper-
imental work. Freezing times and adiabatic freezing volumes are also quantitatively
consistent with those from previous work. Enthalpy and mass (of water and solute)
conservation were excellent in all model simulations.

Findings include that ice shell formation is largely controlled by heat loss to air
and not propagation of ice dendrites to the hydrometeor particle surface, and that
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the location of ice nucleation is not likely very important to hydrometeor particle
freezing times or the effective partitioning of solutes. Even in the case of nucleation
at the center of the drop (as represented here), dendrites rapidly propagated to the
surface and formed surface ice. Freezing then proceeded inward from the outside of
the hydrometeor particle. The specific interfacial surface area was also not found to
be a significant determinant of freezing or partitioning. Additionally, our retention
ratio results indicate that trapping is more important to the effective partitioning
of chemical solutes than solid-liquid equilibrium partitioning. Finally, we found
equivalent effective partitioning results despite distinct freezing temperatures for the
simulations here, which representing adiabatic freezing control. This suggests that
the impacts of freezing on the driving force for mass transport may be important. It
also suggests the potential importance of the second stage of freezing to determining
observed retention ratios, though further work is need to test these implications.
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