Effects of Local CO₂ Domes on Air Pollution and Health

Mark Z. Jacobson

Atmosphere/Energy Program

Dept. of Civil & Environmental Engineering

Stanford University

EPA Region 9, San Francisco, California May 24, 2010

Reasons Used to Deny California's 2007 Waiver Request

Stephen L. Johnson, U.S. EPA Administrator, Federal Register, Mar. 6, 2008.

- 1) Globally-emitted CO₂ does not affect California's health more or less than it affects overall U.S. health.
- 2) Because CO₂ becomes well-mixed in the atmosphere, local California CO₂ emissions don't affect California's air pollution any more than CO₂ emissions from outside of California affect California's air pollution.

Sen. Carl Levin, EPA Waiver Hearing Mar. 5, 2009

"One ton of CO₂ emitted in California has the same effect as one ton of CO₂ emitted in another state."

Increases in Water Vapor and Temperature Both Increase Ground-Level Ozone in Polluted Air But Not in Background Air

 \rightarrow California has 6 of the 10 most polluted U.S. cities \rightarrow Suffers largest impact of higher T, H₂O among states.

Changes Resulting From Historic CO₂ Alone

3-D simulations \rightarrow CO₂ increases temperature, water vapor, precipitation, biogenic organics, carcinogens, particles

Temperature

Water vapor

Precipitation

HCHO diff. (ppbv) base-CO₂(+0.15)

Isoprene

Formaldehyde

Changes Resulting From Historic CO₂ Alone

CO₂ increases particles, ozone

Aerosol Secondary Organic Matter

Ozone

Additional U.S. pollution deaths/yr per 1.8 °F (1 K) +1000 (350-1800) 40% due to ozone; 60% due to aerosol particles 30% of deaths in California, which has 12% of U.S. population

Additional world deaths/yr per 1.8 °F (1 K) +21,600 (7400-39,000)

Measured CO₂ in a City

Downtown Salt Lake City (420-440 ppmv)

Global background 385 ppmv

Salt Lake City

Snowbird

Murray

Sugar House

U of U

Downtown

Kennecott (390-395 ppmv)

http://co2.utah.edu/

Feb-Apr L.A. Changes Due to Local CO₂

3-D model results - numbers in parentheses are population-weighted values

Change in surface/column CO₂ from local CO₂ emissions = "CO₂ Dome"

Feb-Apr L.A. Changes Due to Local CO₂

3-D model results - numbers in parentheses are population-weighted values

Change in surface T

Change in column H₂O

Local CO₂ emissions increase surface temperature and column water vapor

Feb-Apr L.A. Changes Due to Local CO₂

3-D model results

Additional O₃ deaths/yr

Additional PM deaths/yr

Local CO₂ emissions increase ozone and PM deaths

Aug-Oct L.A. Deaths From CO₂ Dome

3-D model results

Additional O₃ deaths/yr

Additional PM_{2.5} deaths/yr

Local CO₂ emissions increase ozone and PM deaths

Spatial Correlation Between Increased Local CO₂ and Increased Local O₃ (left) & PM_{2.5} (right) in Los Angeles

Changes in California Due to Local CO₂

Numbers in parentheses are population-weighted values

Change in column CO₂ "CO₂ Domes"

Increase in Surface air temperature

Increase in Column H₂O

Local CO₂ emissions increase temperatures, water vapor

Additional O₃ deaths/yr From CO₂ Domes

Increase in surface O₃

Additional O₃ deaths/yr

Local CO₂ emissions increase O₃ and O₃ deaths

Additional PM deaths/yr From CO₂ Domes

Local CO₂ emissions increase PM_{2.5} deaths

1-Year Changes Due to Local CO₂

Additional ozone deaths/yr

Increase in CO2 from local emissions

Additional PM deaths/yr

Local CO₂ emissions increase PM_{2.5} and O₃ deaths

Summary

Locally-emitted CO_2 produces CO_2 domes, which increase local ozone and $PM_{2.5}$ premature deaths in California by ~50-100/yr. Thus, reducing locally-emitted CO_2 will reduce local air pollution and mortality. This result contradicts the basis for all previous local air pollution regulation worldwide, which has ignored CO_2 , thus it provides the basis for controlling CO_2 due to its local health impacts.

The result also implies that the main assumption behind "cap and trade" that CO₂ impacts are the same regardless of where CO₂ is emitted, is incorrect.

Journal papers:

http://www.stanford.edu/group/efmh/jacobson/urbanCO2domes.html