History of, Processes in, and Numerical Techniques in GATOR-GCMOM

Last update: November 19, 2012 by Mark Z. Jacobson (jacobson@stanford.edu)

This document is located online at http://www.stanford.edu/group/efmh/jacobson/GATOR/index.html

Background

GATOR-GCMOM is a one-way nested (from the global to local scale) gas, aerosol, transport, radiation, general circulation, mesoscale, and ocean model.

In 1990, the model began as GATOR, a regional-scale gas, aerosol, radiation, and transport model. The model treated gas photochemistry, size- and composition-resolved aerosol microphysics and chemistry, wavelength-resolved solar and thermal-infrared radiative transfer, and horizontal and vertical transport of all gases and aerosol components. Time-dependent aerosol and gas optical properties fed into the radiative transfer calculation, thereby affecting photolysis and heating rates, thus photochemistry and temperature changes, respectively. However, temperature changes could not yet feed back to the weather.

In 1993, GATOR was coupled with a regional-scale dynamical meteorological module (MMTD). The coupled model now treated feedback of gases and size- and compositionresolved aerosol particles to meteorology through temperature changes calculated with the radiative transfer code. Changes in temperature affected pressure and pressure gradients, thereby affecting winds and turbulence. Temperature changes also affected evaporation rates, the relative humidity, and cloudiness. Changes in winds, turbulence, humidity, and cloudiness fed back to gas and aerosol concentration and composition. The result was the first online, coupled (with two-way feedback) regional air quality-meteorological model worldwide, GATORM (also called GATOR-MMTD).

In 1994, a global version of the model was developed that included gases, aerosols, radiation, transport, and dynamical meteorology. It accounted for the same processes as in the mesoscale model. The global version was GATORG, which treated gas photochemistry, size- and composition-resolved aerosol processes, spectral radiative transfer, and their feedback to meteorology. This was the first online, two-way coupled global air quality-weather-climate model worldwide.

In 1998, GATORM and GATORG were linked together from the global to local scale, and the result was the first nested, online, coupled global-through-urban scale air quality-weather-climate model, GATOR-GCMM. This model accounted for nesting of all

processes treated in GATORM and GATORG. Subgrid (as opposed to grid-scale) surface parameterizations were added and aerosol numerics, including treatment of aerosols among multiple size distributions, were improved. All processes in all nested domains were exactly the same, except for the different horizontal boundary conditions and solutions to the momentum equation on the global versus regional scale. The model has since been applied from the global scale down to a horizontal resolutions of 10 m.

In 2000, treatment of discrete size-resolved cloud hydrometeor particles containing multicomponent aerosol inclusions was added. The hydrometeor particles existed in multiple size distributions (liquid, ice, and graupel) and interacted among each other and between multiple size distributions of discrete size- and composition-resolved aerosol particles. The result was the first online-coupled air quality-weather-climate model to treat discrete size- and composition-resolved clouds.

In 2001, a 2-D ocean module was added, and the resulting module was GATOR-GCMOM. In 2004 3-D ocean equilibrium chemistry and diffusion of all chemicals and energy were added, making GATOR-GCMOM the first coupled atmosphere-ocean model to treat 3-D ocean equilibrium chemistry explicitly.

In 2004, the 3-D evolution and transport of grid-scale clouds on the regional scale was added, as was a new method of calculating heating rates for multiple absorbing greenhouse gases simultaneously.

In 2007, the treatment of the evolution of subgrid aircraft exhaust microphysics and plume expansion from each individual commercial aircraft flight worldwide at the subgrid scale was added.

In 2009, near-explicit gas photochemistry (over 4600 species and 13,500 reactions) was added along with the transport, radiative heating, and photolysis of all explicit gases. GATOR-GCMOM thus became the first atmospheric model to simulate 3-D near-explicit photochemistry on the regional and global scales. In 2012, highly-explicit aqueous chemistry (390 species and 829 reactions) was coupled with the near-explicit gas photochemistry in 3-D.

In 2011, treatment of the extraction of energy from the atmospheres by wind turbines on the regional and global scales was added, allowing for the first calculation of the saturation wind energy potential of the world.

Table 1 compares treatment of online coupling of several major processes in GATOR-GCMOM with that in prior or concurrent models that treated some coupling. Whereas, several 3-D models had some form of coupling, none on the global or regional scale prior to GATOR-GCMOM in 1995 (a) transported all photochemically-active gases explicitly, (b) solved time-dependent chemistry for all photochemically-active gases, or (c) treated feedback to heating rates or photolysis coefficients of all time-varying, absorbing gases, all discrete, size-resolved aerosol particles, or all discrete, size- and composition-resolved hydrometeor particles.

Table 1. Comparison of treatments of online coupling of gas, aerosol, radiative, transport, and meteorological processes between GATOR-GCMOM (in red) and other prior or concurrent models treating any coupling.

prior or concurrent models treat						r				
	H69	C70	C74	A75	P84	P92	J94c	J02b	J06b	J10b
		S79		Jo76	G91		J95c	J04a	J07b	
				T85	R95		J96b	J04b		
				C85			J97a	J04c		
				M86			J97b	J04d		
3-D trans	port, dr	iven by	online	meteoro	ology, o	f				
ozone	Ý	Ŷ				Y				
ozone and some other gases and					Y					
families, but not all										
photochemically-active gases										
all photochemically-active gases							Y	Y	Y	v
All photochemically-active gases							1	1	1	Y
· · · ·										1
(4675) in near-explicit mechanism				Y						
Single bulk or modal aerosol				Y						37
All discrete, size-resolved aerosol							Y	Y	Y	Y
particles										
All chemicals within discrete, size-							Y	Y	Y	Y
resolved aerosol particles										
All discrete, size-resolved									Y	Y
hydrometeor particles and their										
aerosol inclusions										
Gas chemistry solv	ved onli	ne with	meteor	ology a	nd gas t	transp	ort	•	•	
None				Y						
Time-dependent for ozone only	Y	Y	Y			Y				
Time-dependent for ozone and some					Y					
gases; steady-state or family										
chemistry for others gases										
Time-dependent for all reacting and							Y	Y	Y	Y
transported gases							_	_	_	
Time-dependent for near-explicit										Y
photochemistry (4675 transported										-
and reacting gases, 13,626										
reactions)										
Online feedback of chemically-var	ving go	os or ne	articlos	to hosti	ing roto	s for d	riving r	notooro	logy	
No feedback	Ying gas	bes of pa	articles	to neat	Y Y	<u>5 101 u</u>		lleteoro	logy	
Feedback of online ozone to lookup-	1		Y		1					
1			1							
table heating rate		V				V				
Feedback of online ozone to online		Y				Y				
parameterized heating rate							37	37	37	• • •
Feedback of all photochemically-							Y	Y	Y	Y
reacting gases to heating rates from										
spectral radiative transfer						ļ				
Feedback of 1909 absorbing gases in										Y
explicit mechanism to heating rates										
from spectral radiative transfer										
Feedback of online bulk or modal				Y						
aerosol to parameterized heating										
rate										
Feedback of all discrete size-resolved							Y	Y	Y	Y
aerosol particles to heating rates										
actustic particles to heating falles	L	l	L	l		I				

from spectral solar and thermal-IR										
radiative transfer										
Feedback of all discrete size-resolved								Y	Y	Y
hydrometeor particles to heating										
rates from spectral solar and										
thermal-IR radiative transfer										
Online feedback of chemically-varyi	ng gase	s or pai	rticles b	ack to j	photolys	sis to d	rive ph	otochen	nistry	
No photolysis				Y						
Photolysis from lookup table or	Y	Y			Y					
fixed, without feedback										
Feedback of online ozone only to			Y			Y				
lookup-table photolysis										
Feedback of all gases, including							Y	Y	Y	Y
ozone, to online photolysis										
calculated from spectral radiative										
transfer										
Feedback of all gases in near-explicit										Y
mechanism to online photolysis for										
2644 photoprocesses calculated										
from spectral radiative transfer										
Feedback of all discrete size-resolved							Y	Y	Y	Y
aerosol particles to photolysis							-	-	-	-
calculated from spectral radiative										
transfer										
Feedback of all discrete size-resolved		-						Y	Y	Y
								I	I	I
hydrometeor particles to photolysis										
calculated from spectral radiative										
transfer										

Processes / numerical techniques in GATOR-GCMOM

Table 2 below lists most processes and numerical techniques included in GATOR-GCMOM. It also provides the year the first version of the process or technique was added, the first reference for the process in a GATOR 3-D model, and an indication of whether the processes was the first to appear in any three-dimensional model (including, global, regional, high-resolution local, cloud, air quality, meteorological, climate, coupled, nested, community, or research-grade models).

The table indicates that \sim 500 processes and numerical techniques appeared in GATOR-GCMOM before appearing in any other 3-D model. To date, most of these processes still do not appear in any other model.

Mark Z. Jacobson's home page: http://www.stanford.edu/group/efmh/jacobson/

Please refer any suggested corrections or clarifications to this list to jacobson@stanford.edu.

Table 2. Processes and numerical techniques included in GATOR GCMOM. Also shown are the year the first version of the process or technique was added, the first reference for the process in one of the GATOR 3-D models, and an indication of whether the processes was the first to appear in any three-dimensional model (including, global, regional, high-resolution, cloud, air quality, meteorological, coupled, nested, community, or research-grade models). The last column counts the number of processes/techniques first appearing in a GATOR model. Acronyms are listed in a footnote at the end of the table.

Year	First	Was	No.
first	Reference	this the	of
version	in 3-D	first	'Yes'
of	GATOR	treat-	
coding	models	ment of	
complet		this	
ed in		process	
GATO		in any	
R		3-D	
models		model?	

Air quality module	1990	J94c, J96b		
Gas processes				
Emissions from an inventory	1993	J94c, J96b	No	
Gas photochemistry w/ online spectral photolysis affected by DSCRAP	1993	J94a	Yes	1
Gas-to- particle conversion	1991	J94c, J96b	No	
Dry deposition	1990	J94c, J96b	No	
Aerosol processes (discrete size- and composition-resolved)				
Prognostic equations for both aerosol mass and number versus size	1993	J94c, J97a	Yes	2
DSCRAP emissions from an inventory	1993	J94c, J97a	No	
DSCRAP homogeneous nucleation	1991	J94c, J97a	No	
DSCRAP coagulation among multiple size distributions	1993	J94b	Yes	3
DSCRAP condensational growth	1993	J94c, J95a	No	
DSCRAP dissolutional growth	1993	J94c, J95a	Yes	4
DSCRAP reversible chemical equilibrium	1991	J94c, J96a	No	
DSCRAP irreversible aqueous chemistry	1992	J97a	Yes	5
DSCRAP dry deposition / sedimentation	1990	J94c, J97a	No	
Transport processes (gas/DSCRAP horizontal/vertical advection/diffusion)	1990	J94c, J96b	No	
Radiation processes (gas/DSCRAP optics, spectral radiative transfer)	1990	J94c, J96b	Yes	6

Original Version of GATOR

Original Limited-Area Dynamics Module (MMTD)

Limited-area mesoscale dynamics module (MMTD) of L95	1993	J94c, J96b	No	
Pressure, geopotential, air temperature, wind velocity, moisture (L95)	1993	J94c, J96b	No	
Conserves enstrophy in frictionless, barotropic flow limit	1993	J94c, J96b	No	
Conserves total energy for frictionless, adiabatic flow and conserves mass	1993	J94c, J96b	No	
Conserves potential enthalpy for adiabatic flow; hydrostatic	1993	J94c, J96b	No	
Uses Arakawa C-grid	1993	J94c, J96b	No	
Soil temperature, soil moisture, turbulence	1993	J94c, J96b	No	

First Online, Coupled Regional Air Quality-Meteorological Model (GATORM=GATOR-MMTD)

Online coupling of air quality / limited-area dynamics modules	1993	J94c, J96b	Yes	7
Feedback of all photochemically-active gases, DSCRAP to radiative transfer	1993	J94c, J96b	Yes	8
for heating rates				
Use of heating rates from all photochemically-active gases and DSCRAP to	1993	J94c, J96b	Yes	9
drive meteorology				
Transport of all photochemically-active gases/DSCRAP with online modeled	1993	J94c, J96b	Yes	10
winds/turbulence				
Option to transport gases/DSCRAP with MMTD advection scheme	1996	J97d	Yes	11

Original Global Dynamics Module (UCLA AGCM)

Global atmospheric general circulation module (UCLA AGCM) of A81	1994	J95c, J00	No	
Pressure, geopotential, air temperature, wind velocity, moisture (A81)	1994	J95c, J00	No	
Conserves potential enstrophy in frictionless, barotropic flow limit	1994	J95c, J00	No	
Conserves total energy for frictionless, adiabatic flow and conserves mass	1994	J95c, J00	No	
Conserves potential enthalpy for adiabatic flow; hydrostatic	1994	J95c, J00	No	
Uses Arakawa C-grid	1994	J95c, J00	No	
Subgrid cumulus liquid and ice clouds from A74	1994	J95c, J00	No	

First Online, Coupled Global Air Quality-Weather-Climate Model (GATORG)

Online coupling of air quality / global dynamics modules	1993	J95c, J99d, J00	Yes	12
Feedback of all photochemically-active gases, DSCRAP to radiative transfer	1994	J95c,J99d,J01c	Yes	13
for heating rates				
Use of heating rates from all photochemically-active gases and DSCRAP to	1994	J95c,J99d,J01c	Yes	14
drive meteorology				
Transport of all photochemically-active gases/DSCRAP with online modeled	1994	J95c,J99d,J01c	Yes	15
winds/turbulence				
Option to transport gases/DSCRAP with GCM advection scheme	1995	J01c	Yes	16

First Nested, Online, Coupled Global-Through-Urban Scale Model (GATOR-GCMM)

One-way nesting from global to urban scale	1998	J01c	Yes	17
All gas/aerosol/radiative/surface processes solved in all domains.	1998	J01c	Yes	18
Inflow of gases, DSCRAP, meteorological parameters at horiz. boundaries	1998	J01c	Yes	19
Optical properties above top of finer domain from coarser domain.	2006	J08a	Yes	20
Any number of nested layers and domains in each layer.	1998	J01c	Yes	21
A nested layer consists of one or more nested domains within the layer	1998	J01c	Yes	22
that are independent of each other				
Each domain in each layer feeds boundary conditions to any number of	1998	J01c	Yes	23
domains in the next finer layer of nesting.				
The coarsest layer of nesting is the global scale	1998	J01c	No	
Regardless of number of domains, memory required never exceeds 2.1	1998	J01c	Yes	24
times the memory of the largest domain.				

First Online, Coupled Model w/ Discrete Size, Composition-Resolved Clouds (GATOR-GCMOM)

Online coupling of discrete size- and composition-resolved cloud processes	2000	J02b, J03,	Yes	25
		J07b		

First Coupled Atmosphere-Ocean Model w/ 3-D Explicit Ocean Chemistry (GATOR-GCMOM)

Online coupling of 2-D ocean dynamics, 3-D ocean chemistry / diffusion	2001	J02b	Yes	26
2-D ocean dynamics	2001	K09, J02b	No	
3-D ocean chemistry and diffusion, ocean/atmosphere exchange	2004	J05c	Yes	27

First-3-D Model to Treat Subgrid Aircraft Exhaust from All Commercial Flights Worldwide

Online subgrid contrail microphysical growth / dilution / shear	2009	J11b	Yes	28

First 3-D Model to Treat Near-Explicit Photochemistry

Parallelized GATOR-GCMOM

Parallelization of nested, online coupled GATOR-GCMOM	2001	J04d	Yes	30

Gas, Aerosol, Cloud, Transport, Radiative, Surface, Ocean Processes in GATOR-GCMOM

Emissions				
Anthropogenic emissions of gases				
Open biomass burning	2000	J02b	No	
CO ₂ , CO, H ₂ O, H ₂ , CH ₄ , NO, NO ₂ , N ₂ O, NH ₃ , SO ₂ , COS, CH ₃ Cl,	2000	J02b	Yes	31
CH ₃ Br, CH ₃ SCH ₃ , CH ₃ SSCH ₃ , C ₂ H ₆ , C ₂ H ₄ , C ₃ H ₈ , C ₃ H ₆ , C ₄ H ₁₀ , C ₄ H ₈ ,				
C_4H_6 , C_5H_{12} , C_5H_{10} , C_5H_8 , C_6H_6 , toluene, monoterpenes, xylene,				
ethylbenzene, CH ₃ OH, C ₂ H ₅ OH, HCHO, CH ₃ CHO, CH ₃ COCH ₃ ,				
benzaldehyde, HCOOH, CH ₃ COOH				
Biofuel burning separated from other emissions	2003	J04d	Yes	32
Same chemicals as open biomass burning	2003	J04d	Yes	33
Includes H ₂ O from combustion	2004	J04d	Yes	34
Vehicles, power plants, industry, homes, etc.	1993	J96b	No	
Same chemicals as open biomass burning	1993	J96b	Yes	35
Includes H ₂ O from combustion	2000	J02b	Yes	36
Includes H ₂ O from power-/manufplant cooling-water evaporation	2010	J12d	Yes	37
Plume rise equation for stack emissions	1993	J96b	No	
Shipping	2000	J02b, J06a	No	
CO ₂ , CO, H ₂ O, H ₂ , CH ₄ , NO, NO ₂ , HONO, N ₂ O, SO ₂ , HSO ₃ , H ₂ SO ₄	2000	J02b, J06a	Yes	- 38
Aircraft	2005	J07a	No	
CO ₂ , CO, H ₂ O, H ₂ , CH ₄ , NO, NO ₂ , HONO, N ₂ O, SO ₂ , HSO ₃ , H ₂ SO ₄ ,	2005	J07a	Yes	39
speciated NMVOC				
Gas emissions from all individual flights worldwide at subgrid scale	2007	J11b	Yes	40
All gases emitted into individual subgrid contrail plumes in each cell	2012	J12e	Yes	41
Gas chemistry solved separately within each subgrid plume	2012	J12e	Yes	42
Subgrid gases released to grid scale when contrail dissipates	2012	J12e	Yes	43

Natural emissions of gases	2000	1015	Na	
Dimethyl sulfide from phytoplankton	2000	J01b	No	
Vegetation emissions	1002	10(1	NT	
Isoprene	1993	J96b	No	
Accounts for temperature, PAR, LAI variation with time	2003	J05f	No	
PAR determined from spectral radiative transfer calculation	2003	J05f	Yes	44
Monoterpenes	2003	J05f	No	
Other volatile organic carbon	2003	J05f	No	
Carbon dioxide from plant respiration	2006	J09	No	
Soil bacteria respiration				
NO	1996	J05f	No	
H_2, N_2O, CO_2	2006	J09	No	
Carbon dioxide				
Plant cellular respiration / photosynthesis	2006	J09	No	
Phytoplankton respiration / photosynthesis	2008	J11b	No	
Soil bacteria respiration	2006	J09	No	
Ocean evaporation (see ocean-atmosphere exchange)	2004	J05c	No	
Lightning, hot channel and corona discharge	2000	J02b, J09	No	
NO, NO ₂ , HONO, N ₂ O, HNO ₃ , CO, H ₂ O ₂ , HO ₂	2000	J02b, J09	Yes	4.
Lightning strokes calculated from bounceoff rate following discrete	2000	J02b, J09	Yes	40
size-resolved liquid-ice, liquid-graupel, ice-graupel, liquid, liquid, ice-				
ice, and graupel-graupel collisions.				
Volcanos, sporadic and continuous	2000	J02b	No	
H ₂ O, CO ₂ , CO, H ₂ , SO ₂ , H ₂ S, CS ₂ , OCS, HCl, HBr, HF	2000	J02b	Yes	4′
Ocean biological production of CH ₄ , H ₂ , N ₂ O	2006	J09	No	
Anthropogenic DSCRAP emissions				
Open biomass burning	2000	J01b, J02b	No	
BC, POM, H ₂ O(l), NH ₄ ⁺ , Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , H ⁺ , H ₂ SO ₄ (aq), HSO ₄ ⁻ ,	2000	J01b, J02b	Yes	48
SO_4^{2-} , $Cl^-, Br^-, NO_3^-, HCO_3^-$,		
Biofuel burning separated from other emissions	2003	J04d	Yes	49
Same chemicals as open biomass burning	2003	J04d	Yes	50
Vehicles, power plants, industry, homes, etc.	1993	J97b	No	
Same chemicals as open biomass burning	1993	J97b	Yes	5
Plume rise equation for stack emissions	1993	J96b	No	
Spatial emissions of explicit gases for near-explicit photochemistry	2009	J10b	Yes	52
Shipping	2009	J02b, J06a	No	
BC, POM	2000	J02b, J06a	No	
Aircraft	2005	J07a	No	
$BC, POM, H^+, H_2SO_4(aq), HSO_4^-, SO_4^{2-}$	2005	J07a	Yes	5.
Emissions from all individual commercial aircraft worldwide	2003	J11b	Yes	54
Each individual contrail tracked as a subgrid tube in each grid cell	2007	J11b	Yes	5
Contrails form by deposition of aircraft H_2O on DSCRAP emission	2007	J11b	Yes	5
	2007			5
	2007	J11b	Yes Yes	5
Contrail ice crystals grow by collision-coalescence/H ₂ O deposition	2007		Tes	3
Contrail ice crystals grow by collision-coalescence/H ₂ O deposition Contrail plumes spread by subgrid shearing and dilution	2007	J11b		54
Contrail ice crystals grow by collision-coalescence/H ₂ O deposition Contrail plumes spread by subgrid shearing and dilution Contrail ice sublimated upon sufficient dilution in each plume	2007	J11b	Yes	
Contrail ice crystals grow by collision-coalescence/H ₂ O deposition Contrail plumes spread by subgrid shearing and dilution Contrail ice sublimated upon sufficient dilution in each plume Contrail merges with grid-scale material upon dilution to grid scale ₂	2007 2007	J11b J11b	Yes Yes	59 60
Contrail ice crystals grow by collision-coalescence/H ₂ O deposition Contrail plumes spread by subgrid shearing and dilution Contrail ice sublimated upon sufficient dilution in each plume	2007	J11b	Yes	

Natural DSCRAP emissions				
Sea spray and spume drops	1994	J97b	No	
$H_2O(aq)$, Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , H ⁺ , $H_2SO_4(aq)$, HSO ₄ ⁻ , SO ₄ ⁻²⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , HCO ₃ ⁻ , POM	1994	J97b	Yes	62
Function of wind speed	1994	J97b	No	
Use modeled seawater composition (see ocean equilibrium chem)	2007	J09	Yes	63
Soil dust	2000	J01b	No	
$Na^+, K^+, Mg^{2+}, Ca^{2+}, SiO_2(s), Fe_2O_3(s), Al_2O_3(s)$	2000	J01b	Yes	64
Function of wind speed	2000	J01b	No	
Function of subgrid soil class, each with diff. composition	2000	J01b	Yes	65
Pollen	2005	J09	Yes	66
Fungal spores	2005	J09	Yes	67
Bacteria from soils	2005	J09	Yes	68
Bacteria from the ocean	2005	J09	Yes	69
Volcanos, sporadic and continuous	2000	J02b	No	
SO ₄ ²⁻ , Na ⁺ , K ⁺ , Ca ²⁺ , Fe, Al, Zn	2000	J02b	Yes	70
as photochemistry and transport				
Fully-coupled online tropospheric chemistry-radiation-meteorology	1993	J94c, J96b	Yes	71
Near-explicit gas photochemistry solved in 3-D coupled model	2009	J10b	Yes	72
All absorbing gases from online spectral photochemistry feed back to dynamics through spectral heating rates	1993	J94c, J96b	Yes	73
All chemically-active gases transported in 3-D (none in steady state)	1993	J94c, J96b	Yes	74
Horizontal advection and vertical convection of all gases	1993	J94c, J96b	Yes	75
Horizontal and vertical molecular diffusion of all gases	1993	J94c, J96b	Yes	76
Vertical turbulent diffusion of all gases	1993	J94c, J96b	Yes	77
All gases involved in photochemistry are solved with time-dependent exact solution (no steady state or approximations)	1993	J94c, J96b	Yes	78
Fully-coupled online global trop/strat. chemistry-radiation-meteorology	1994	J95c, J01c	Yes	79
All absorbing gases, including ozone, from online spectral photochemistry feed back to dynamics through spectral heating rates	1994	J95c, J01c	Yes	80
All absorbing gases from near-explicit mechanism feed back to dynamics through spectral heating rates	2009	J10b	Yes	81
All gases solved during photochemistry are transported in 3-D	1994	J95c, J01c	Yes	82
All gases in near-explicit mechanism are transported in 3-D	2009	J10b	Yes	83
All gases involved in photochemistry are solved with time-dependent exact solution (no steady state or approximations).	1994	J95c, J01c	Yes	84
All gases in near-explicit mechanism solved with exact solution	2009	J10b	Yes	85
Photochemistry produces inorganic and organic gases used for size- resolved aerosol growth in coupled gas-aerosol-meteorological model	1994	J97a	Yes	86
Development of method of converting pseudo-first-order to second-order rate coefficients to ensure mass conservation of heterogeneous reactions	2006	J08c	Yes	87
Family chemistry solution scheme	1990	J94c, J99d	No	
Matrix inversion to solve for species concentrations in family	1990	J94c, J99d	Yes	88
	/ 0			
Multistep implicit-explicit (MIE) solution scheme	1992	J94a	Yes	89
Iterated forward and backward Euler converge to each other	1992	J94a	Yes	90
SMVGEAR / SMVGEAR II	1993	J94a, J98a	Yes	91
Near-exact solution to first-order ODEs, based on Gear's method	1993	J94a	Yes	92
Predicts the time step (10 ⁻¹⁰ to 900 s)	1993	J94a	Yes	93

Predicts the order of convergence $(1^{st} to 5^{th})$	1993	J94a	Yes	94
Uses a variable relative error tolerance (default is 10 ⁻³)	1993	J94a	Yes	95
Uses a variable absolute error tolerance	1993	J94a	Yes	96
Predicted absolute error tolerance (SMVGEAR II)	1997	J98a	Yes	97
Sparse matrix techniques				
Species with fewest partial derivative terms at top of matrix	1993	J94a	Yes	98
Eliminate matrix decomposition/backsubstitution multiplies by zero	1993	J94a	Yes	99
Compress matrix arrays to minimize memory	1993	J94a	Yes	100
Separate matrices for day/night chemistry	1993	J94a	Yes	101
Division of grid domain into blocks of grid cells	1993	J94a	Yes	102
Vectorization around the grid cell dimension in each block	1993	J94a	Yes	103
Minimizes array references on vector and scalar machines	1993	J94a	Yes	104
Speeds array operations on vector machines	1993	J94a	Yes	105
Less memory than vectorization around full domain.	1993	J94a	Yes	106
Reordering of grid cells among all blocks by stiffness	1994	J95b	Yes	107
Allows stiff cells and non-stiff cells to be solved together	1994	J95b	Yes	108
Division of domain into grid blocks used parallelization	2001	J94a	Yes	109
Different sets of chemistry for different regions of atmosphere	1994	J95b	Yes	110
First derivatives, partial derivatives, matrices automatically generated	1993	J94a	Yes	111
from a changeable input species and reaction date set.	1770	03 I.u	100	
Photolysis coefficients updated each SMVGEAR time step	1993	J94a	Yes	112
Interpolated between coefficients calculated from spectral radiative	1993	J94a	Yes	113
transfer at the begin and end of each chemistry time interval	1770	0.2 10	1.05	110
Discrete size- and composition-resolved aerosol processes				
Characteristics of aerosol size distributions				
Any number of aerosol size distributions	1991	J94b	Yes	114
Any number of discrete size bins per aerosol distribution	1991	J94b	No	
Any number of chemical components per size bin per distribution	1991	J94b	No	
Predicts number concentration of each bin of each distribution	1991	J94b	Yes	115
Predicts mole conc. of each chem. in each bin of each distribution	1991	J94b	Yes	116
Single-particle volume consists of solution + nonsolution component	1998	J02a	Yes	117
Solution density determined from densities of electrolytes	1998	J02a	Yes	118
Aerosol size structures (how size distributions vary in time)				
Hybrid	1993	J95a	Yes	119
Constant core volume but variable shell volume	1993	J95a	Yes	120
Moving center	1994	J97a	Yes	121
Particles moved when larger/smaller than bin boundaries	1994	J97a	Yes	122
Full moving	1993	J95a	N/A	
Particles moved to their exact volumes. (0-D only)	1993	J95a	N/A	
Quasistationary	1994	J97a	Yes	123
Number/volume partitioned between adjacent bins	1994	J97a	Yes	124
Nucleation				
Homogeneous homomolecular and binary nucleation	1991	J94c, J97a	No	
Homogeneous ternary nucleation	2003	J06a	Yes	125
Heterogeneous homomolecular and binary nucleation	1991	J99d, J05d	No	
Nucleation solved simultaneously with condensation	1993	J02a	Yes	126
Aerosol-aerosol coagulation	1002	10.41	N7	100
COAGSOLV noniterative solver for discrete size distributions	1993	J94b	Yes	127

Positive-definite, unconditionally stable for any time step	1993	J94b	Yes	128
Conserves single-particle volume of total particle, all components	1993	J94b	Yes	129
Conserves volume concentration of total particle, all components	1993	J94b	Yes	130
Solves equations for any volume ratio of adjacent size bins > 1	1993	J94b	Yes	131
Solves any number externally-, one internally-mixed distribution	1993	J94b	Yes	132
Solves any number externally- and internally-mixed distributions	2000	J01b, J02a	Yes	133
Solves for particle number of all sizes of all distributions	1993	J94b	Yes	134
Solves for all individual components of all sizes of all distributions	1993	J94b	Yes	135
Discrete size-resolved aerosol-aerosol coagulation kernels over time	1993	J94b	Yes	136
Brownian diffusion	1993	J94b	Yes	137
Brownian diffusion enhancement	1993	J94b	Yes	138
Turbulent shear	1993	J94b	Yes	139
Turbulent inertial motion	1993	J94b	Yes	140
Gravitational settling	1993	J94b	Yes	141
Van der Waals forces	2003	J04a	Yes	142
Viscous forces	2003	J04a	Yes	143
Fractal geometry	2003	J04a	Yes	144
	2005	307u	105	1-7-7
Equilibrium chemistry within aerosols and between gases/aerosols				
Coupling size-resolved equilibrium with dissolutional growth in 3-D	1991	J96a	Yes	145
Aerosol equilibrium for vapor pressures within all DSCRAP in all	1991	J96a	Yes	145
size distributions	1991	J 90a	105	140
Vapor pressures for nonequilibrium dissolutional growth	1991	J96a	Yes	147
Internal aerosol equilibrium for composition after growth	1991	J96a	Yes	147
Equilibrium between gases and all DSCRAP in 3-D model	1991	J96a	No	140
EQUISOLV chemical equilibrium solver	1991	J96a J96a	Yes	149
Solves any number equations among gases, ions, liquids, solids	1991	J96a	Yes	149
e.g., $H_2O(1)$, $H_2SO_4(aq)$, HSO_4^- , SO_4^{2-} , NO_3^- , Cl^- , H^+ , NH_4^+ , Na^+	1991	J96a J96a	Yes	150
	1991	J96a J96a	Yes	151
Solid formation depends on deliquescence and crystallization RHs,	1991	J96a	res	152
and whether RH is increasing or decreasing	1001	107	V	150
Determines aerosol pH, liquid water content and composition	1991	J96a	Yes	153
Uptake of water reduces the relative humidity iteratively, feeding	2002	J08a	Yes	154
back to water uptake and aerosol composition	2002	100	N	1.5.5
Uptake of water warms air temperature iteratively	2002	J08a	Yes	155
Numerical solution iterative around all equations	1991	J96a	Yes	156
Unconditionally stable, positive definite, conserves moles, charge	1991	J96a	Yes	157
Individual equations solved with MFI method	1991	J96a	Yes	158
Iterative, exact solution to individual equations	1991	J96a	Yes	159
Water content in all bins of all distributions from ZSR method	1991	J96a	No	
Mixed electrolyte solute activity coefs. from Bromley's method	1991	J96a	No	
Temperature dependence of solute activity coefficients	1991	J96a	Yes	160
EQUISOLV II chemical equilibrium solver	1997	J99c	Yes	161
Solves any number equations among gases, ions, liquids, solids	1997	J99c	Yes	162
e.g., $H_2O(1)$, $H_2SO_4(aq)$, HSO_4 , SO_4^2 , $HNO_3(aq)$, NO_3^- , Cl^- , $H_2CO_3(aq)$, HCO_3^- , $CO_3^2^-$, H^+ , NH_4^+ , Na^+ , Mg^{2+} , Ca^{2+} , K^+	1997	J99c	Yes	163
e.g., 25 or more solid electrolytes can form	1997	J99c	Yes	164
Solution iterative around all equations,	1997	J99c	Yes	165
Unconditionally stable, positive definite, conserves moles, charge	1997	J99c	Yes	166
Individual equations solved with AEI method	1997	J99c	Yes	167
marviadal equations sorved with ALI method		J99c		

Dissolutional growth/evaporation between gases/DSCRAP	1002	10.5	V	1 /
Dissolution of inorganic gases into DSCRAP	1993	J95a	Yes	16
Dissolution of organic gases into DSCRAP	1994	J97a, J04d	Yes	17
Dissolution into multiple aerosol distributions simultaneously	1998	J02a	Yes	17
SMVGEAR solution to dissolution	1993	J96a	Yes	17
Exact solution	1993	J96a	Yes	17
Conserves moles between gas and all particle size bins	1993	J96a	Yes	17
Effective Henry's constants/vapor pressures from EQUISOLV	1993	J96a	Yes	17
APD solution to dissolution	1993	J97c	Yes	17
Noniterative, analytical solution to discretized equation	1993	J97c	Yes	17
Unconditionally-stable, positive definite	1993	J97c	Yes	17
Conserves moles between gas and all particle size bins	1993	J97c	Yes	17
Effective Henry's constants/vapor pressures from EQUISOLV	1993	J97c	Yes	18
APNCD solution	1998	J02a	Yes	18
Solves nucleation, condensation, dissolution together	1998	J02a	Yes	18
Solves equations between gas and multiple size distributions	1998	J02a	Yes	18
Allows condensation in some bins, dissolution in others	1998	J02a	Yes	18
Noniterative, unconditionally stable, positive definite	1998	J02a	Yes	18
Conserves moles between gas and all bins in all distributions	1998	J02a	Yes	18
Effective Henry's constants/vapor pressures from EQUISOLV II	1998	J02a	Yes	18
PNG-EQUISOLV II solution	2003	J05a	Yes	18
Couples dissolution growth/equilibrium at long time step	2003	J05a	Yes	18
Dissolution of semivolatile acid gases at high/moderate LWC	2003	J05a	Yes	19
pH, aerosol comp. for effective Henry's const. from EQUISOLV II	2003	J05a	Yes	19
Condensation of semivolatile acid gases at low LWC	2003	J05a	Yes	19
Vapor pressure determined over solids from analytical solution	2003	J05a	Yes	19
Vapor pressure determined over liquids from EQUISOLV II	2003	J05a	Yes	19
Condensation involatile gases at all LWC	2003	J05a	Yes	19
Equilibration NH ₃ /NH ₄ ⁺ and pH between gas/all distributions	2003	J05a	Yes	19
Equilibration of internal-aerosol liquid, ion, solids, pH, LWC	2003	J05a	Yes	19
Conserves moles/charge between gas and all size distributions	2003	J05a	Yes	19
Solution method stable, nonoscillatory at long time step	2003	J05a	Yes	19
Condensation/evaporation of gases onto/from DSCRAP	1002	104 105	ЪT	
Condensation of inorganic gases onto DSCRAP	1993	J94c, J95a	No	
Condensation of organic gases onto DSCRAP	1996	J98b, J04d	No	
Condensation onto multiple aerosol distributions simultaneously	1998	J02a	Yes	20
Terms in discrete size-resolved growth equations in 3-D	4001			
Diffusion, collision geometry, sticking probability, ventilation	1991	J95a	No	
Kelvin effect term	1991	J95a	No	
Raoult's law term	2004	J05e	Yes	20
Radiative cooling effect term	1991	J95a	Yes	20
SMVGEAR solution	1993	J95a	Yes	20
Exact solution to condensation/evaporation	1993	J95a	Yes	20
Conserves moles between gas and all aerosol size bins	1993	J95a	Yes	20
APC solution	1993	J97c	Yes	20
Noniterative, analytical solution to discretized equation	1993	J97c	Yes	20
Unconditionally-stable, positive definite	1993	J97c	Yes	20
Conserves moles between gas and all aerosol size bins	1993	J97c	Yes	20
APNCD solution	1998	J02a	Yes	21
Solves nucleation, condensation, dissolution together	1998	J02a	Yes	21

Solves equations between gas and multiple size distributions	1998	J02a	Yes	212
Noniterative, unconditionally stable, positive definite	1998	J02a	Yes	212
Conserves moles between gas and all bins in all distributions	1998	J02a	Yes	213
conserves moles between gas and an onio in an distributions	1770	3 02u	105	211
Aqueous chemistry (irreversible)				
Solved within DSCRAP, operator split from gas-aerosol transfer	1992	J97a	Yes	215
Solved together with gas-aerosol transfer to all discrete size bins	1997	J99d, J05d	Yes	216
Gas transfer/chemistry of families solved with SMVGEAR	1997	J99d, J05d	Yes	217
Families partitioned to ions with EQUISOLV	1997	J99d, J05d	Yes	218
Gas transfer/chemistry to liquid aerosol/hydrometeor particles together	2000	J02b, J03	Yes	219
Highly-explicit aqueous photochemistry coupled with near-explicit gas photochemistry solved in 3-D coupled model	2012	G12	Yes	220
Cloud processes				
Cloud thermodynamics				
Unresolved scales (subgrid clouds)				
AS cumulus parameterization of A74; multiple subgrid clouds	1994	J01c	No	
Clouds form vertically and dissipate at the end of time interval.	1994	J01c	No	
Clouds are formed in equilibrium (thus not time dependent)	1994	J01c	No	
Feedback of momentum, heating, vapor to large scale	1994	J01c	No	
Modified AS scheme of D98	1996	J01c	No	
Similar to AS, but subgrid cloud bases can be above ABL	1996	J01c	No	
Up to 500 subgrid clouds can form per column (1-10 usually do)	1996	J01c	No	
Stratus cloud fraction, LWC from parameterization of M82	2000	J01c J02b	No	
1	2000	J02b		
Coupled to turbulence parameterization of M82 Resolved scales (grid-scale clouds)	2000	J020	No	
	2005	J07b	No	
Grid-scale cloud thermodynamics				
Clouds form and move in 3-D over time (thus are time dependent)	2005	J07b	No	
Updrafts can be tilted	2005	J07b	No	
Transport of gases, aerosols, hydrometeors within clouds				
Unresolved scales (subgrid clouds)				
DSCRHP and inclusions transported vertically in time interval	2000	J02b, J03	Yes	221
All chemicals in all sizes in all HP size distributions transported	2000	J02b, J03	Yes	222
HP number concentration in each bin transported as well	2000	J02b, J03	Yes	223
Gas, interstitial DSCRAP are transported consistently	2000	J02b, J03	Yes	224
Convective plume module transported gases, DSCRAP, DSCRHP	2000	J02b, J03	Yes	225
Conserves moles / number exactly	2000	J02b, J03	Yes	226
Turbulent diffusion scheme transports gases, DSCRAP, DSCRHP	2004	J07d	Yes	227
Conserves moles and constant mixing ratio exactly	2004	J07d	Yes	228
Resolved scales (grid-scale clouds)	• • • =			
DSCRHP and inclusions are transported in 3-D over time	2005	J07b	Yes	229
All chemicals in all DSCRHP size distributions are transported	2005	J07b	Yes	230
DSCRHP number concentration in each bin transported as well	2005	J07b	Yes	231
Modeled grid-scale velocities used to transport material	2005	J07b	No	
Same advection/diffusion solvers as to transport gases, DSCRAP	2005	J07b	Yes	232
Discrete size/composition-resolved cloud microphysics (all scales)				
Microphysical processes are time-dependent and explicit	2000	J02b, J03	No	
Hydrometeor particles are discretely size and composition resolved	2000	J02b, J03	Yes	233

	2000	1021 102	N	
Three hydrometeor distributions can form: liquid, ice, graupel	2000	J02b, J03	No	024
DSCRHP can form on any number of discrete aerosol distributions	2000	J02b, J03	Yes	234
Large particles in each hyd. distribution fall as rain, snow, or hail	2000	J02b, J03	No	
Any number of discrete size bins per hydrometeor distribution	2000	J02b, J03	No	025
Any number of chemical inclusions per size bin per hyd. distribution	2000	J02b, J03	Yes	235
Model predicts number concentration of each bin of each hyd. dist.	2000	J02b, J03	No	026
Model predicts mole conc. of each chem. in each bin of each hyd. dist.	2000	J02b, J03	Yes	236
Model predicts liquid or ice content of each bin of each hyd. dist.	2000	J02b, J03	No	
Energy/moisture changes due to microphysics feed back to dynamics	2000	J02b, J03	No	0.07
Optical properties of DSCRHP feed back to spectral radiative transfer	2000	J02b, J03	Yes	237
All microphysical processes conserve water vapor, size-resolved aerosol	2000	J02b, J03	Yes	238
and hydrometeor, precipitation, ground, and ocean water	• • • • •			
All microphysical processes conserve energy	2000	J02b, J03	No	
In stand and marking/damasiting/source/white/marking.commains)				
In-cloud condensation/deposition/evap./subl. (nucleation scavenging)	2000	102 102		• • • •
DSCRHP grow on a single DSCRAP distribution in a global model	2000	J02a, J03	Yes	239
DSCRHP grow on multiple aerosol size distributions	2000	J03, J06a	Yes	240
Aerosol surface tension, composition vary with size/distribution	2000	J02b, J03	Yes	241
Surface tension is function of organic, inorganic composition	2000	J02b, J03	Yes	242
Activated CCN/IDN size bins are determined from the Köhler	2000	J02b, J03	Yes	243
equation applied to each aerosol size distribution in 3-D				- · · ·
Growth solution allows for dual peaks in cloud size distributions	2000	J03, J06a	Yes	244
Growth results in discrete liquid, ice, or both in all size distributions	2000	J02b, J03	Yes	245
DSCRHP contain inclusions of all aerosol components they form on	2000	J02b, J03	Yes	246
Heterogeneous nucleation (HN) of ice determined by considering	2000	J02b, J03	Yes	247
size and composition of size-resolved aerosol particles				
HN accounts for minimum embryo radius on each aerosol size.	2008	J10c, J11b	Yes	248
HN accounts for temperature- and size-dependence of freezing probability	2008	J10c, J11b	Yes	249
Ice crystal shape is a function of temperature and size. Shape affects	2010	J11b	No	
capacitance, fall speed, coagulation kernel, diffusion coefficient				
Solution to hydrometeor growth is extension of APC scheme	2000	J03, J07b	Yes	250
Water vapor competes between liquid and ice during growth onto	2000	J03	Yes	251
CCN and IDN aerosol distributions				
Water vapor competes among liquid CCN aerosol, ice IDN aerosol,	2000	J07b	Yes	252
and pre-existing liquid, ice, graupel hyd. distribs. during growth				
Noniterative, unconditionally-stable, positive definite	2000	J03	Yes	253
Conserves moles between gas and all bins of all distributions	2000	J03	Yes	254
Hydrometeor growth solved over quasistationary size structure	2000	J02b, J03	Yes	255
Hydrometeor-hydrometeor coagulation (collision/coalescence)				
Discrete size-resolved coagulation among all hyd. distributions	2000	J02b, J03	No	
Liqliq., liqice, liqgraup., ice-ice, ice-graup., graupel-graupel	2000	J02b, J03	No	
Inclusions in each size of each distribution coagulated as well	2000	J02b, J03	Yes	256
~	2000	J02b, J03	No	
Coagulation produces size-resolved precipitation (rain, snow, hail)	2000			257
Coagulation produces size-resolved precipitation (rain, snow, hail) Size-resolved precipitation particles contain inclusions of	2000	J02b, J03	Yes	
		J02b, J03	Yes	
Size-resolved precipitation particles contain inclusions of		J02b, J03 J02b, J03	Yes	258
Size-resolved precipitation particles contain inclusions of underlying CCN/IDN COAGSOLV used to solve hydhyd. coagulation	2000	,		
Size-resolved precipitation particles contain inclusions of underlying CCN/IDN	2000 2000	J02b, J03	Yes	258
Size-resolved precipitation particles contain inclusions of underlying CCN/IDN COAGSOLV used to solve hydhyd. coagulation Noniterative, posdefinite, unconditionally stable for any time step	2000 2000 2000	J02b, J03 J02b, J03	Yes Yes	258 259

Solves for particle number and component concentration	2000	J02b, J03	Yes	263
Components in each distribution coagulate with all distributions	2000	J02b, J03	Yes	264
Lightning formation (see natural emissions of gases)	2000	J05d, J09	Yes	265
Discrete size-resolved hydromethydromet. coag. kernels over time	1993	J94b	Yes	266
Brownian diffusion	1993	J94b	Yes	267
Brownian diffusion enhancement	1993	J94b	Yes	268
Turbulent shear	1993	J94b	Yes	269
Turbulent inertial motion	1993	J94b	Yes	270
Gravitational settling	1993	J94b	No	
Diffusiophoresis	2000	J02b, J03	Yes	271
Thermophoresis	2000	J02b, J03	Yes	272
Electric charge	2000	J02b, J03	Yes	273
Aerosol-hydrometeor coagulation (aerosol washout)				
Coag. between interstitial aerosol distribs. and hydrometeor distribs.	2000	J03	Yes	274
Size- and distribresolved aerliquid, aerice, aergraupel coag.	2000	J03	Yes	275
DSCRAP and components coag. to DSCRHP distributions	2000	J03	Yes	276
COAGSOLV used (same as for hydrometeor-hydrometeor coag.)	2000	J02a	Yes	277
Components in each distribution coagulate with all distributions	2000	J03	Yes	278
Coagulated aerosol components incorporated into DSCRHP	2000	J03	Yes	279
Coagulation kernels (same as for hydrometeor-hydrometeor coag.)	1993	J94b, J03	Yes	280
Large liquid drop breakup	• • • • •			• • • •
Drops & inclusions fragmented to smaller sizes in global model	2000	J03	Yes	28
Discrete size-resolved drop breakup in global model	2010	J11a	Yes	282
Positive-definite, unconditionally stable for any time step	2010	J11a	Yes	283
Solves for particle number and component concentration	2010	J11a	Yes	284
Conserves single-particle volume of total particle & all components	2010	J11a	Yes	285
Conserves volume concentration of total particle & all components	2010	J11a	Yes	280
Size-resolved breakup and bounceoff enhance lightning	2010	J11a	Yes	287
Below-cloud evaporation/sublimation				
Iterative equation for drop surface temperature	2000	J03	Yes	288
Evaporation rate a function of drop surface temperature, size	2000	J03	Yes	289
Complete evaporation/sublimation, release of aerosol cores to air				
Complete evaporation/sublimation, release of aerosol cores to air Evaporation/sublimation of all water releases DSCRAP to air	2000	J03	Yes	290
	2000 2000	J03 J03	Yes Yes	
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib.				
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation)	2000	J03	Yes	292
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column	2000	J03 J03	Yes Yes	292 292
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase	2000 2000 2000	J03 J03 J03	Yes Yes Yes	292 292 293
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase Undersaturation of gas results in uptake of gas by precip.	2000 2000 2000 2000	J03 J03 J03 J03	Yes Yes Yes Yes	292 292 293 294
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase	2000 2000 2000	J03 J03 J03	Yes Yes Yes	290 292 292 293 294 295
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase Undersaturation of gas results in uptake of gas by precip. Solution conserves moles between gas/precipitation	2000 2000 2000 2000	J03 J03 J03 J03	Yes Yes Yes Yes	292 292 293 294
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase Undersaturation of gas results in uptake of gas by precip. Solution conserves moles between gas/precipitation	2000 2000 2000 2000 2000	J03 J03 J03 J03 J03	Yes Yes Yes Yes Yes	292 292 293 294 295
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase Undersaturation of gas results in uptake of gas by precip. Solution conserves moles between gas/precipitation Irreversible aqueous chemistry in clouds Gas transfer / bulk aqueous chemistry solved with SMVGEAR	2000 2000 2000 2000 2000 2000	J03 J03 J03 J03 J03 J03 J02b, J03	Yes Yes Yes Yes Yes	292 292 293 294 295 296
Evaporation/sublimation of all water releases DSCRAP to air DSCRAP released back to mixed aerosol distrib. Gas washout (dissolution of gases in precipitation) Gas dissolution/evap. in liquid precip. solved in vertical column Supersaturation of gas in drops results in release to gas phase Undersaturation of gas results in uptake of gas by precip. Solution conserves moles between gas/precipitation	2000 2000 2000 2000 2000	J03 J03 J03 J03 J03	Yes Yes Yes Yes Yes	292 292 293 294 294

Hydrometeor settling				
Hydrometeor fall speed function of size, density, air viscosity	2000	J03	Yes	300
Precipitation to ground				
Precipitation of size-resolved liquid increases soil water, runoff	1999	J01c	Yes	301
Precipitation of size-resolved ice, graupel increases snow depth	1999	J01c	Yes	302
Precipitation releases size-resolved aerosol inclusions to sea ice, snow	2000	J04d	Yes	303
In- or below-cloud liquid drop freezing				
Heterogeneous-homogeneous freezing				
Freezing rate a function of liquid drop size, temperature, time	2000	J03	No	
Freezing moves liquid hydrometeor particles and their inclusions to graupel distribution	2000	J03	Yes	304
Contact freezing				
Size-resolved coagulation of DSCRAP with liquid HP initiates freezing at subfreezing temperatures.	2000	J03	Yes	305
Solved with COAGSOLV	2000	J03	Yes	306
Freezing moves liquid HP and inclusions to graupel distribution	2000	J03	Yes	307
reezing moves inquid in and inclusions to grauper distribution	2000	J 03	105	307
Evaporative freezing	2000	102		200
Below-cloud evaporation cools drop surface	2000	J03	Yes	308
Evaporation a function of drop surface temperature, size	2000	J03	Yes	309
Lower temperature enhances het./homogeneous freezing rate	2000	J03	Yes	310
Freezing moves liquid HP and inclusions to graupel distribution	2000	J03	Yes	311
Melting of ice crystals and graupel				
Melting rate a function of temperature, evaporation rate, conductivity,	2000	J03	No	
ice crystal and graupel size Evaporation retards melting	2000	J03	Yes	312
Evaporation retards menting	2000	102	Tes	512
Horizontal/vertical advection/diffusion				
All photochemically-active gases are transported in 3-D	1993	J94c, J96b	Yes	313
Winds/diffusion coefficients for advection/diffusion of gases, particles predicted by online dynamics module	1993	J94c, J96b	Yes	314
Region/global advec./diffusion w/ 4 th -order finite element scheme of T89	1990	J94c, J96b	Yes	315
Used for all gases, AP, AP components of all sizes of all distributions	1990	J94c, J96b	Yes	316
Regional advection/diffusion w/ 2 nd -order finite difference scheme used to	1996	J97d	Yes	317
transport water vapor, energy in MMTD	1000	1064	Vac	210
Used for all gases, AP, AP components of all sizes of all distributions Change in air density during advection exactly consistent with change in	1990 1990	J96b J96b	Yes Yes	318 319
air density from regional dynamics module	1990	1900	res	519
Global advection w/ 13-point, 4th-order scheme of A95 used to transport	1995	J01c	Yes	320
water vapor energy in global dynamics module.	1007	101	V	221
Used for all gases, AP, AP components of all sizes of all distributions	1995	J01c	Yes	321
Change in air density during advection exactly consistent with change in air density from global dynamics module	1995	J01c	Yes	322
	1998	J01c	Yes	323
Global/regional advection/diffusion w/ positive-definite, monotonic, nonoscillatory scheme of W98/W00	1990			
Global/regional advection/diffusion w/ positive-definite, monotonic, nonoscillatory scheme of W98/W00 Used for all gases, AP, AP components of all sizes of all distributions	1998	J01c	Yes	324

Vertical diffusion operator split from advection	••••			
Unconditionally stable 2 nd -order solution to diffusion	2004	J07d	No	
Scheme conserves moles/number and constant mixing ratio exactly	2004	J07d	?	
Used for all gases, DSCRAP and components in all size distributions	2004	J07d	Yes	326
Used for all DSCRHP and inclusions in air when clouds are not resolved	2005	J07d	Yes	327
Used for all DSCRHP and inclusions in clouds when clouds are resolved	2005	J07d	Yes	328
Used for vertical diffusion all ocean chemicals	2004	J05c	Yes	329
Turbulent diffusion coefficients for momentum/energy				
Calculated from online resolved winds, temperatures, moisture	1993	J96b	No	
Turbulent diffusion coefficients for gases limited by molecular diffusion	1993	J96b	No	
Turbulent diffusion coefficients for DSCRAP and DSCRHP include	2004	J05e	Yes	330
Brownian diffusion coefficient versus particle size				
Hybrid scheme of L95				
Regional scales	1993	J96b	No	
Global scale	1994	J01c	Yes	331
2.5-order prognostic equations for TKE of M82				
Accounts for feedback of stratus clouds to turbulence	2000	J02b	No	
Regional scales	2000	J04b	No	
Global scale	2000	J02b	No	
	2000	3020	110	
Wind turbine momentum extraction to produce electricity and reduce winds				
Momentum extracted from winds by wind turbines in global model as a	2012	J12c	Yes	332
function of instantaneous wind speed, using turbine power curve				
Turbines resolved vertically in global and regional model when extracting	2012	J12c	Yes	333
Momentum Momentum extraction from turbines directly to determine saturation wind	2012	J12c	Yes	334
power potential (SWPP) in jet streams and near surface in global model	2012	JIZC	105	554
Conversion of electric power generation from wind turbines back to heat	2012	J12c	No	
returned to the atmosphere.	2012	JIZC	INU	
returned to the atmosphere.				
Dry / wet removal of gases, aerosol particles, hydrometeor particles				
Dry deposition of gases				
Deposition equations solved together with emissions	1990	J94c, J96b	No	
Resistance approach	1993	J94c, J96b	No	
Surface resistance over land based on landuse type	1997	J99d, J01c	No	
At water-air interfaces, gas-water transfer equations solved	2004	J05c	Yes	335
Wet deposition of gases	2000	102	V	226
All gases dissolve in/evaporate from liquid precip. (see gas washout)	2000	J03	Yes	336
Dry deposition of DSCRAP				
Deposition equations solved together with emiss./sedimentation	1990	J94c, J97a	No	
Resistance approach	1993	J97a, J99d	No	
Sedimentation of DSCRAP				
Sedimentation equations solved together with emissions/dry dep.	1990	J94c, J97a	No	
Resistance approach	1993	J97a, J99d	No	
······ · · · · · · · · · · · · · · · ·				
Wet deposition of DSCRAP				
DSCRAP enter DSCRHP by nucleation scavenging and aerosol	2000	J03	Yes	337

washout. Precipitation particles that fall to the ground contain				
DSCRAP (see nucleation scavenging and aerosol washout)				
Wet deposition of DSCRHP (see Precipitation to ground)				
Spectral radiative transfer	1001		3.7	220
Online spectral UV/Visible radiative transfer for actinic fluxes/photolysis	1991	J94c, J96b	Yes	338
Use of spectral two-stream code of T89	1991	J94c, J96b	Yes	339
Feedback of time-varying gases to spectral radiative transfer for photolysis in online coupled air quality-meteorological model	1993	J94c, J96b	Yes	340
Feedback of time-varying DSCRAP to spectral radiative transfer for photolysis in an online coupled air quality-meteorological model	1993	J94c, J97b	Yes	341
Feedback of DSCRAP to ozone through photolysis in an online coupled 3-D air quality-meteorological model.	1993	J97b, J98b	Yes	342
Currently 84 UV and visible wavelengths for photolysis	2001	J04d, J05b	Yes	343
	1992	J040, J050 J94c	Yes	343
Online spectral radiative transfer for visibility in 3-D	2003	J940 J05f	Yes	344
Online spectral radiative transfer for PAR in 3-D				
Online spectral (rather than broadband) UV/Vis/NIR/TIR radiative transfer for heating rates	1993	J94c, J96b	Yes	346
Use of spectral two-stream code of T89	1991	J94c, J96b	Yes	347
Feedback of time-varying gases to spectral radiative transfer for heating rates in online coupled air quality-meteorological model	1993	J94c, J96b	Yes	348
Feedback of time-varying DSCRAP to spectral radiative transfer for heating rates in online coupled air quality-meteorological model	1993	J94c, J97b	Yes	349
Feedback of time-varying DSCRAP to temperatures in an online coupled 3-D air quality-meteorological model	1993	J97b, J98b	Yes	350
Feedback of time-varying DSCRAP to winds through heating rates in an	1993	J97b, J06b	Yes	351
online coupled 3-D air quality-meteorological model	2001	J04d, J05b	Yes	352
Currently 676 wavelengths/probability intervals for heating rates	2001		Yes	353
84 UV and visible wavelengths224 NIR (28 wavelengths, each with 8 probability intervals)	2001	J04d, J05b J04d, J05b	Yes	354
368 TIR (46 wavelengths, each with 8 probability intervals)				
508 TIK (46 wavelengins, each with 8 probability intervals)	2001	J04d, J05b	Yes	355
Spectral optical properties of DSCRAP				
Spectral optical properties of all aerosol particles of all sizes in multiple	1991	J94c, J97a,	Yes	356
size distributions.		J02a		
Spectral forward, total scattering/absorption efficiencies vs. size	1991	J94c,J97a,b	Yes	357
Mie solver for stratified spheres of T81 used	1991	J97a,b	Yes	358
Single particles in each size bin divided into core and shell in 3-D	1994	J97a	Yes	359
BC core / mixed shell	1994	J97a, J99b	Yes	360
Mixed core / ammonium nitrate shell	1997	J99b	Yes	361
Shells divided into solution/nonsolution components	2000	J02	Yes	362
Solution refractive indices from partial molar refraction theory	2000	J02	Yes	363
Size-resolved shells or cores include spectral UV/Visible absorption by				
Black carbon (BC)	1994	J97a, J99b	Yes	364
Ammonium nitrate	1997	J99b	Yes	365
Nitrated aromatic aerosols	1997	J99b	Yes	366
Benzaldehydes	1997	J99b	Yes	367
Benzoic acids	1997	J99b	Yes	368
Aromatic polycarboxylic acids	1997	J99b	Yes	369
Phenols,	1997	J99b	Yes	370
Polycyclic aromatic hydrocarbons (PAHs)	1997	J99b	Yes	371

Organic bases	1997	J99b	Yes	37
Iron oxide	1998	J01a	Yes	37
Aluminum oxide	1998	J01a	Yes	37
Spectral optical properties of bulk hydrometeor particles				
Liquid water/ice from cumulus/stratus parameterization	1994	J01a, J01b	No	
Assume modified gamma distribution to determine size segregation	1994	J01a, J01b	No	
Spectral optical props. account for discrete liquid/ice HP sizes in 3-D	1994	J01a, J01b	Yes	37
Spectral optics of discrete size- & composition-resolved HP (DSCRHP)				
Accounts for liquid, ice, and graupel discrete size distributions	2000	J02b, J03	Yes	37
Hydrometeor optical calculation historically assumed				
Pure liquid, ice, or graupel in each hydrometeor size bin	2000	J02b, J03	Yes	37
Liquid, ice, or graupel shell containing a single concentric BC core	2004	J06a	Yes	37
in each size bin (CSA approximation)				
Liquid, ice, or graupel containing multiple randomly-spaced BC	2004	J06a	Yes	37
inclusions in each bin (DEMA approximation)				
Liquid, ice, or graupel containing multiple randomly-spaced BC, tar	2011	J12b	Yes	38
ball, and/or soil dust inclusions in each bin				
Solve spectral radiative transfer through DSCRHP	2000	J02a, J10c	Yes	- 38
Solve spectral radiation transfer through DSCRHP containing	2004	J06a	Yes	- 38
multiple or individual BC inclusions (Cloud Absorption Effect I)				
Solve spectral radiation transfer through DSCRHP containing	2011	J12b	Yes	- 38
multiple or individual tar ball and/or soil dust inclusions				
Solve spectral radiative transfer through DSCRAP in a cloud	2000	J02a, J10c	Yes	- 38
Determine LWC for interstitial DSCRAP at relative humidity of cloud	2011	J12b	Yes	- 38
to ensure correct coating of water on DSCRAP				
Solve spectral radiative transfer through DSCRAP in a cloud with	2011	J12b	Yes	- 38
aerosol LWC determined at the relative humidity of the cloud				
(Cloud Absorption Effect II)				
Solve spectral radiation transfer through DSCRHP containing	2004	J06a, J10c	Yes	- 38
multiple or individual BC inclusions and through interstitial				
DSCRAP simultaneously at the RH of the clear sky				
Solve spectral radiation transfer through DSCRHP containing	2011	J12b	Yes	- 38
multiple or individual BC inclusions and through interstitial				
DSCRAP simultaneously at the RH of the cloud				
Solve radiative transfer three times each model time step for	2011	J12b	Yes	- 38
unresolved clouds; the first two times to determine the temperature				
change of the clouds due to absorbing inclusions and interstitial				
aerosol particles, and the third to determine the final radiative				
properties of the modified clouds				
Solve for cloud drop or ice crystal shrinkage or growth during a time	2011	J12b	Yes	39
step due to cloud heating/cooling during the step by absorbing				
inclusions and interstitial aerosol particles				
Calculate BC aerosol mass absorption coefficient online throughout	2011	J12b	Yes	39
model domain for both externally- and internally-mixed BC during				
the same simulation, accounting for BC aging.				
Calculate BC hydrometeor mass absorption coefficient online	2011	J12b	Yes	39
throughout model domain.				
throughout model domain. Ice crystals/graupel shape approximated as collection of spheres of	2004	J05f	Yes	39

Spectral optical properties of scattering gases (Rayleigh scattering)	1990	J94c, J96b	No	
Spectral antical properties of all absorbing / photolyging gapes				
Spectral optical properties of all absorbing / photolyzing gases	1991	J94c, J96b	Yes	39
Spectral opt. props of all absorbing/photolyzing gases treated online	1991	J94C, J900	168	39
UV/Visible gas absorption	1990	104a 106h	Vas	39
Spectral absorption cross sections of all photolyzing gases for heating	1990	J94c, J96b	Yes Yes	39
Temperature-dependence of absorption cross sections for heating	1993	J94c, J96b		39
Spectral UV/visible absorption by nitrated aromatic gases		J99a	Yes	35
Spectral quantum yields of all photolysis processes	1990 1993	J94c, J96b	No	20
For use in coupled air quality-meteorological model		J94c, J96b	Yes	39
Temperature-dependence of quantum yields	1993	J94c, J96b	Yes	39
Solar-IR, thermal-IR gas absorption	1000	10.4 10(1	V	40
Spectral absorption coefficients from T89 in 3-D	1990	J94c, J96b	Yes	40
$H_2O, CO_2, CH_4, O_3, O_2$	1990	J94c, J96b	Yes	40
Spectral absorption coefficients from M97 in 3-D	1996	J98b	Yes	40
H ₂ O,CO ₂ ,CH ₄ ,O ₃ ,N ₂ O,CH ₃ Cl,CFCl ₃ ,CF ₂ Cl ₂ ,CCl ₄	1996	J98b	Yes	40
Multiple absorber method	2001	J05b	Yes	40
Spectral absorption coefs. parameterized from HITRAN data	2001	J05b	Yes	40
Method accounts for multiple absorbing gases simultaneously	2001	J05b	Yes	40
H ₂ O,CO ₂ ,CH ₄ ,CO,O ₃ ,O ₂ ,N ₂ O,CH ₃ Cl,CFCl ₃ ,CF ₂ Cl ₂ ,CCl ₄	2001	J05b	Yes	40
Function of temperature, pressure, mixing ratio	2001	J05b	Yes	40
Currently 592 solar-IR and thermal-IR wavelengths and probability	2001	J04d, J05b	Yes	40
intervals in each grid cell				
Spectral surface albedos / emissivities				
Snow / sea ice albedo / emissivity predicted	2002	J04d	Yes	41
Rad. transfer solved through many air layers, one snow or ice layer	2002	J04d	Yes	41
Albedo, emissivity = upward/downward irradiance above snow or ice	2002	J04d	Yes	41
Accounts for absorption by BC in snow/ice from dry deposition	2002	J04d	Yes	41
Accounts for absorption by BC in snow/ice from ary deposition	2002	J04d	Yes	41
Accounts for absorption by soildust in snow/ice from dry deposition	2002	J07c	Yes	41
Accounts for absorption by solidust in snow/ice from recipitation	2006	J07c	Yes	41
Accounts for absorption by solidust in snow/ice from precipitation Accounts for absorption by tar balls in snow/ice from dry deposition	2000	J12b	Yes	41
Accounts for absorption by tar balls in snow/ice from try deposition	2011	J12b	Yes	41
Prognostic equation for change in snow particle radius due to aging	2011	J120 J12a	No	41
	2010	J12a J12a		41
Online spectral radiative calculation through snow layer for albedo accounts for snow aging	2010	J1∠a	Yes	42
Prognostic equation for concentration of chemicals in snow	2006	J07c	Yes	42
Accounts for precipitation and dry deposition source	2006	J07c	Yes	42
Accounts for burial and sinking of chemicals through snow	2002	J04d	Yes	42
Ocean water albedos/emissivities predicted	2003	J07a	Yes	42
Refractive index of ocean water a function of composition	2003	J07a	Yes	42
Accounts for optical properties size-resolved phytoplankton in ocean	2010	J10c	Yes	42
Other surfaces, albedos/emissivities from 1-km data	1999	J01d	No	
,				
Daily variation of Earth-sun distance for spectral radiative transfer	1990	J99d, J05d	Yes	42
Zenith angle affected by space-atm. refraction for spectral rad, transfer	2002	J04d	Yes	42
Topographical shading for spectral radiative transfer	2000	J04d	Yes	42
Separate column spectral radiative transfer calc. for clear/cloudy sky	2000	J02b	Yes	43
Results weighed by cloud fraction to obtain grid-cell averaged spectral	2000	J02b	Yes	43
irradiances, actinic fluxes				1

Surface processes				
Bare-soil, grid-scale subsurface (10-layer) soil moisture module	1993	L95	No	
Sixteen subgrid classes (13 soil,1 water, 1 road, 1 rooftop) in each cell	1999	J01c	Yes	432
Fractions of each class determined from soil, landuse data	1999	J01c	Yes	433
Vegetation fraction over each subgrid soil class in each grid cell	1999	J01c	Yes	434
Determined from landuse, vegetation data	1999	J01c	Yes	435
Landuse data				
Provides canopy height over each subgrid soil class in each cell	1999	J01c	Yes	436
Provides road/rooftop fraction in each cell	1999	J01c	Yes	437
Provides water (lakes and oceans) fraction in each cell	1999	J01c	No	
Provides agricultural fraction of each subgrid soil class in each cell	2006	J07c	Yes	438
Determination of albedo of agricultural versus nonagricultural land from	2006	J08b	Yes	439
agricultural fraction and observed albedo of mixed pixel				
LAI in each subgrid soil class is found by combining vegetation fraction of	2007		Yes	440
each class with grid-cell-averaged LAI from 1-km data, ensuring soil-				
class LAI weighted by veg. fraction equals grid-cell LAI				
Treats daily irrigation in each grid cell for California	2006	J08b	Yes	441
Treatment of subgrid roof and road surfaces at actual size in global model	2001	J01c	Yes	442
Climate response of subgrid roof and road surfaces in global model	2011	J12a	Yes	443
Climate response of subgrid white roofs in global model	2011	J12a	Yes	444
Equations developed to solve subgrid snow depth	1999	J01c	Yes	445
Snow depth increases due to precipitation of size-resolved ice and	1999	J01c, J03	Yes	446
graupel and due to vapor deposition at surface				
Snow depth decreases due to melting at top or bottom of snow layer and	1999	J01c, J04d	Yes	447
sublimation at top of snow layer				
Snow converts to sea ice when the weight of snow plus ice submerges	2010	J12a	No	
part of the snow below water.				
Snow density varies with depth	2010	J12a	No	
Heat conduction through snow accounts for the continuous variation of	2010	J12a	Yes	448
thermal conductivity with snow density and depth	1000	70.1		1.10
Equations developed to solve subgrid sea ice depth	1999	J01c	Yes	449
Sea ice depth increases due to precip. of size-resolved ice, graupel,	1999	J01c, J03	Yes	450
vapor deposition at surface	1000			4.5.4
Sea ice depth decreases due to melting at top or bottom of ice layer and	1999	J01c, J04d	Yes	451
sublimation at top of ice layer	2012		N	
Sea ice horizontal velocities are calculated as a function of air and ocean water velocities and drag coefficients.	2012		No	
6	2012		Na	
Sea ice is advected horizontally with calculated sea ice velocities	2012		No	
Equations developed to solve surface/soil temperature/moisture over Subgrid soil covered with vegetation	1999	I01a	Vac	150
Calculates temp/moisture of foliage, air in foliage, ground iteratively	1999	J01c J01c	Yes Yes	452 453
Calculates soil temperature/moisture below subgrid surface over time	1999	J01c J01c	Yes	453
	1999	J01c J01c	Yes	454
Subgrid soil covered with snow over vegetation Subgrid bare soil covered with snow	1999	J01c J01c	Yes	455
Subgrid bare son covered with snow	1999	J01c J01c	Yes	450
Accounts for conduction between road surface and soil below	1999	J01c	Yes	457
Accounts for dew/rain accumulation/runoff on road surfaces	1999	J01c	Yes	458
Subgrid rooftops	1999	J01c	Yes	459
Account for multiple layers of different roofing material on each roof	1999	J01c	Yes	460
Account for multiple layers of different roofing material on each roof Account for conduction between rooftop and air below roof	1999	J01c	Yes	461
Account for conduction between rootop and air below root Account for dew/rain accumulation/runoff on roof	1999	J01c J01c		462
Account for dew/ram accumulation/runoi1 on root	1777	JUIC	Yes	403

Subgrid roads/rooftops covered with snow	1999	J01c	Yes	464
Subgrid water bodies	1999	J01c	Yes	465
Subgrid water bodies covered with sea ice	1999	J01c	Yes	466
Subgrid water bodies covered with snow over sea ice	1999	J01c	Yes	467
Grid-scale radiative, latent heat, sensible heat fluxes calculated from	1999	J01c	Yes	468
subgrid fluxes, weighted by subgrid surface class fraction		-		
Energy release during biomass burning added to the thermodynamic	2006	J09, J10c	Yes	469
energy equation in each surface grid cell where burning occurs.				
Energy release during biofuel burning added to the thermodynamic energy	2010	J12d	Yes	470
equation in each surface grid cell where burning occurs.				
Energy release during thermal power plant combustion used to evaporate	2010	J12d	Yes	471
cooling water and remainder is used in the thermodynamic energy				
equation in each surface grid cell where combustion occurs.				
Energy release during vehicle combustion used in the thermodynamic	2010	J12d	No	
energy equation in each surface grid cell where combustion occurs.				
Ocean dynamics / chemistry				
Equilibrium chemistry in coupled atmosphere-ocean model is solved in 10	2004	J05c	Yes	472
layers below the surface of each ocean grid cell and below each subgrid				
surface water class (e.g., lakes)				
Ocean-atmosphere exchange solved for all atmospheric gases between	2004	J05c	Yes	473
each top water layer and the air				
Vertical diffusion of all chemicals solved in all subsurface water layers	2004	J05c	Yes	474
2-D ocean dynamics is solved globally in the surface mixed layer	2001	K09, J02b	No	
Vertical diffusion of energy solved in all subsurface water layers	2004	J07d	No	
CO ₂ chemical weathering loss at ocean bottom	2008	J10a, J10c	No	
3-D Ocean equilibrium chemistry				
EQUISOLV O solver	2004	J05c	Yes	475
Conserves moles, charge, unconditionally stable, positive-definite	2004	J05c	Yes	476
Solves any number of ion-liquid-solid equilibrium equations	2004	J05c	Yes	477
Now: Na-Cl-Mg-Ca-K-H-O-Li-Sr-C-S-N-Br-F-B-Si-P system	2004	J05c	Yes	478
Accounts for nonideality of ocean solutions	2004	J05c	Yes	479
Solves ocean ionic and molecular composition, including carbon	2004	J05c	Yes	480
Used to determine composition of sea spray emissions	2007	J09	Yes	481
Solves ocean pH, salinity, alkalinity, density, ionic strength	2004	J05c	Yes	482
Ocean-atmosphere exchange				
OPD (Ocean Predictor of Dissolution) solver	2004	J05c	Yes	483
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean	2004	J05c	Yes	484
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O	2004 2004	J05c J05c	Yes Yes	484 485
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean	2004	J05c	Yes	484
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite	2004 2004	J05c J05c	Yes Yes	484 485
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09	2004 2004 2004	J05c J05c J05c	Yes Yes Yes	484 485 486
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09 Predicts velocities, mixed-layer depths, temperatures in online coupled	2004 2004	J05c J05c	Yes Yes	484 485
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09 Predicts velocities, mixed-layer depths, temperatures in online coupled air quality-meteorological-ocean model	2004 2004 2004	J05c J05c J05c K09, J02b	Yes Yes Yes Yes	484 485 486
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09 Predicts velocities, mixed-layer depths, temperatures in online coupled air quality-meteorological-ocean model Conserves potential enstrophy in frictionless, barotropic flow limit	2004 2004 2004 2004 2001	J05c J05c J05c K09, J02b K09, J02b	Yes Yes Yes	484 485 486 487
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09 Predicts velocities, mixed-layer depths, temperatures in online coupled air quality-meteorological-ocean model Conserves potential enstrophy in frictionless, barotropic flow limit Conserves total energy for frictionless, adiabatic flow	2004 2004 2004 2001 2001 2001	J05c J05c J05c K09, J02b K09, J02b K09, J02b	Yes Yes Yes Yes Yes Yes	484 485 486 487 487 488
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09 Predicts velocities, mixed-layer depths, temperatures in online coupled air quality-meteorological-ocean model Conserves potential enstrophy in frictionless, barotropic flow limit Conserves total energy for frictionless, adiabatic flow Conserves potential enthalpy for adiabatic flow and mass	2004 2004 2004 2001 2001 2001 2001	J05c J05c J05c K09, J02b K09, J02b K09, J02b K09, J02b	Yes Yes Yes Yes Yes Yes Yes	484 485 486 487 487 488 488 489
OPD (Ocean Predictor of Dissolution) solver Transfers all model gases between atmosphere and ocean Accounts for current ocean composition from EQUISOLV O Noniterative, conserves moles, unconditionally stable, posdefinite 2-D ocean dynamics scheme of K09 Predicts velocities, mixed-layer depths, temperatures in online coupled air quality-meteorological-ocean model Conserves potential enstrophy in frictionless, barotropic flow limit Conserves total energy for frictionless, adiabatic flow	2004 2004 2004 2001 2001 2001	J05c J05c J05c K09, J02b K09, J02b K09, J02b	Yes Yes Yes Yes Yes Yes	484 485 486

ain qualit-	meteorological-ocean model				
	ratures feed back to ocean/atmosphere exchange	2004	J05c	Yes	493
	atures feed back to ocean albedo, emissivities	2004	J05e	Yes	494
<u> </u>	attics feed back to occan alocdo, emissivities	2003	J 07a	103	7/7
Vertical diffusion	on of energy / chemicals to deep ocean				
	w the all ocean grid cell surfaces	2004	J05c	No	
	lly stable 2 nd -order solution to diffusion	2004	J07d	No	
	serves moles/number and constant mixing ratio exactly	2004	J07d	?	
Diffuses all	dissolved gas, ions, solids, and energy in ocean	2004	J07d	Yes	495
Health effects					
	of the health impacts of ozone particulate matter, and	2010	J10a	Yes	496
	c air pollutants online from time-varying gridded				
	ons in the model.	0011	T 12	37	407
	f the health impacts of radionuclides from time-varying	2011	T12	Yes	497
	odeled concentrations, country-specific age distributions,				
and organ-s	pecific relative risks.				
AEI	= Analytical equilibrium iteration				
AGCM	= UCLA Atmospheric General Circulation Model				
AP	= aerosol particles				
APC	= Analytical Predictor of Condensation scheme				
APD	= Analytical Predictor of Dissolution scheme				
APNDC	= Analytical Predictor of Nucleation, Condensation, and D	issolution s	cheme		
AS	= Arakawa-Schubert cumulus parameterization				
	Financia Denaceri eannaras parameterization				
CCN	= cloud condensation nuclei				
	-				
COAGSOLV	= cloud condensation nuclei				
CCN COAGSOLV DEMA DSCRAP	= cloud condensation nuclei = coagulation solver				
COAGSOLV DEMA	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation 	ticles			
COAGSOLV DEMA DSCRAP	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles 	ticles			
COAGSOLV DEMA DSCRAP DSCRHP	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par 	ticles			
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver 	ticles			
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II 	ticles			
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver 				
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model 	on model	cale Model		
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation 	on model and Mesoso		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATOR GATORG GATOR-GCMM GATOR-GCMOM	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulati = Gas, Aerosol, Transport, Radiation, General Circulation, 	on model and Mesoso Mesoscale,		1odel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM GATOR-GCMOM GATORM	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, 	on model and Mesoso Mesoscale,		Iodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Chamsport, and Radiation model = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LAI LWC	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Cransport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATORG GATOR-GCMM GATORM GCM HP IDN LAI LWC MFI	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Cransport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulati = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content 	on model and Mesoso Mesoscale,		/lodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LWC MFI MMTD	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration 	on model and Mesoso Mesoscale,		/lodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LMC MFI MMTD NIR PAR	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Chansport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation 	on model and Mesoso Mesoscale,		/Iodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LWC MFI MMTD NIR PAR	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation 	on model and Mesoso Mesoscale,		Iodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LWC MFI MMTD NIR PAR PNG RH	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation = Predictor of nonequilibrium growth = relative humidity 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation 	on model and Mesoso Mesoscale,		Aodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LWC MFI MMTD NIR PAR PNG RH SMVGEAR	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver = Gas, Aerosol, Chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation = Predictor of nonequilibrium growth = relative humidity 	on model and Mesoso Mesoscale,		ſodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LWC MFI MMTD NIR PAR PNG RH SMVGEAR SMVGEAR II	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, General circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation = Predictor of nonequilibrium growth = relative humidity = Sparse-matrix, vectorized Gear code = Sparse-matrix, vectorized Gear code, version II = thermal (far) infrared 	on model and Mesoso Mesoscale,		/Iodel	
COAGSOLV DEMA DSCRAP DSCRHP EQUISOLV EQUISOLV II EQUISOLV O GATOR GATORG GATOR-GCMM GATOR-GCMM GATOR-GCMOM GATORM GCM HP IDN LAI LWC MFI MMTD NIR PAR PNG RH	 = cloud condensation nuclei = coagulation solver = Dynamic Effective Medium Approximation = discrete size- and composition-resolved aerosol particles = discrete size- and composition-resolved hydrometeor par = gas-aerosol chemical equilibrium solver = gas-aerosol chemical equilibrium solver, version II = ocean chemical equilibrium solver = Gas, Aerosol, Transport, and Radiation model = Gas, Aerosol, Transport, Radiation, and General circulati = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, General Circulation, = Gas, Aerosol, Transport, Radiation, and Mesoscale mode = General Circulation Model = hydrometeor particles = ice deposition nuclei = one-sided leaf-area index = liquid water content = mass-flux iteration = Mesoscale Meteorological and Tracer Dispersion model = near (solar) infrared = photosynthetically-active radiation = Predictor of nonequilibrium growth = relative humidity = Sparse-matrix, vectorized Gear code = Sparse-matrix, vectorized Gear code, version II 	on model and Mesoso Mesoscale,		/Iodel	

References

- A74. Arakawa, A., and W.H. Shubert (1974) Interaction of cumulus cloud ensemble with the large-scale environment, part I, J. Atmos. Sci. 31, 674-701.
- A75. Atwater, M.A. (1975) Thermal changes induced by urbanization and pollutants, J. Appl. Meteorol., 14, 1061-1071.
- A77. Arakawa, A., and V.R. Lamb (1977) Computational design of the basic dynamical processes of the UCLA general circulation model, *Methods Comput. Phys.*, 17, 174-265.
- A81. Arakawa, A., and V.R. Lamb (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. *Mon. Weath. Rev.*, 109, 18-36.
- A95. Arakawa, A. (1995) Introduction to the UCLA General Circulation Model, Course Notes, Univ. of Calif. Los Angeles.
- B75. Briggs, G.A. (1975) Plume rise predictions, Chapter 3 of Lectures on air pollution and environmental impact analysis, American Meteorological Society, Boston, Sept 29 Oct 3, 1975.
- B03. Barth, M.C., S. Sillman, R. Hudman, M.Z. Jacobson, C.-H. Kim, A. Monod, and J. Liang (2003), Summary of the cloud chemistry modeling intercomparison: Photochemical box model simulation, J. Geophys. Res., 108 (D7), 4214, doi:10.1029/2002JD002673.
- C70. Clark J.H.E. (1970) A quasi-geostrophic model of the winter stratospheric circulation, *Mon. Wea. Rev.*, 98, 443-461.
- C74. Cunnold, D., F. Alyea, N. Phillips, and R. Prinn (1974) A three-dimensional dynamical-chemical model of atmospheric ozone (1974). J. Atmos. Sci., 32, 170-194.
- C85. Cess, R.D., G.L. Potter, S.J. Ghan, and W.L. Gates (1985). The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one- and threedimensional models, J. Geophys. Res., 90, 12,937-12,950..
- D98. Ding, P., and D.A. Randall (1998) A cumulus parameterization with multiple cloud base levels, J. *Geophys. Res.*, 103, 11,341-11,353.
- G12. Ginnebaugh, D.L., and M.Z. Jacobson, Coupling of highly explicit gas and aqueous chemistry mechanisms for use in 3-D, Atmos. Environ., in press, 2012, www.stanford.edu/group/efmh/jacobson/Articles/I/E85vWindSol.
- G91. Granier, C., and G. Brasseur (1991) Ozone and other trace gases in the Arctic and Antarctic regions: Three-dimensional model simulations. J. Geophys. Res., 96, 2995-3011.
- H69. Hunt, B.G. (1969) Experiments with a stratospheric general circulation model III. Largescale diffusion of ozone including photochemistry, *Mon. Wea. Rev.*, 97, 287-306.
- J94a. Jacobson, M. Z., and R. P. Turco (1994), SMVGEAR: A sparse-matrix, vectorized Gear code for atmospheric models, *Atmos. Environ.*, 28A, 273-284, www.stanford.edu/group/efmh/jacobson/Articles/IX/smvgear.html.
- J94b. Jacobson, M. Z., R. P. Turco, E. J. Jensen, and O. B. Toon (1994), Modeling coagulation among particles of different composition and size, *Atmos. Environ.*, 28A, 1327–1338, www.stanford.edu/group/efmh/jacobson/Articles/VII/VIIa.html.
- J94c. Jacobson M. Z. (1994), Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution. Ph. D. Dissertation, Dept. of Atmospheric Sciences, University of California, Los Angeles, 436 pp.
- J95a. Jacobson, M. Z., and R. P. Turco (1995) Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid, *Aerosol Sci. and Technol.*, 22, 73–92, <u>www.stanford.edu/group/efmh/jacobson/Articles/IX/simCond.html</u>.
- J95b. Jacobson, M. Z. (1995) Computation of global photochemistry with SMVGEAR II. *Atmos. Environ.*, 29A, 2541-2546, <u>www.stanford.edu/group/efmh/jacobson/Articles/IX/compGlob.html</u>.
- J95c. Jacobson, M. Z. (1995), Simulations of the rates of regeneration of the global ozone layer upon reduction or removal of ozone-destroying compounds. *EOS Supplement*, Fall, 1995, p. F119. "Closing the hole," *Geotimes Magazine* (American Geological Institute), April, 1996, p. 9.
- J96a. Jacobson, M. Z., A. Tabazadeh, and R. P. Turco (1996) Simulating equilibrium within aerosols and non-equilibrium between gases and aerosols, J. Geophys. Res., 101, 9079–9091, www.stanford.edu/group/efmh/jacobson/Articles/IX/simEqui.html.

- J96b. Jacobson, M. Z., R. Lu, R. P. Turco, and O. B. Toon (1996) Development and application of a new air pollution modeling system. Part I: Gas-phase simulations, *Atmos. Environ.*, 30B, 1939–1963, 1996, www.stanford.edu/group/efmh/jacobson/Articles/V/devAppI.html.
- J97a. Jacobson, M. Z. (1997) Development and application of a new air pollution modeling system. Part II: Aerosol module structure and design, *Atmos. Environ.*, 31A, 131–144, <u>http://www.stanford.edu/group/efmh/jacobson/Articles/III/IIIb.html</u>.
- J97b. Jacobson, M. Z. (1997) Development and application of a new air pollution modeling system. Part III: Aerosol-phase simulations, *Atmos. Environ.*, 31A, 587–608, www.stanford.edu/group/efmh/jacobson/Articles/III/IIIa.html.
- J97c. Jacobson, M. Z. (1997) Numerical techniques to solve condensational and dissolutional growth equations when growth is coupled to reversible reactions, *Aerosol Sci. Technol.*, 27, 491–498, 1997, www.stanford.edu/group/efmh/jacobson/Articles/IX/numTech.html.
- J97d. Jacobson, M. Z. (1997) Testing the impact of interactively coupling a meteorological model to an air quality model. In *Measurements and Modeling in Environmental Pollution*, pp. 241 - 249, R. San Jose, C. A. Brebbia, eds.. Computational Mechanics Publications, Southampton.
- J98a. Jacobson, M. Z. (1998) Improvement of SMVGEAR II on vector and scalar machines through absolute error tolerance control. Atmos. Environ., 32, 791–796, www.stanford.edu/group/efmh/jacobson/Articles/IX/impSMVGEAR.html.
- J98b. Jacobson, M. Z. (1998) Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed, *J. Geophys. Res.*, 103, 10,593-10,604, 1998, www.stanford.edu/group/efmh/jacobson/Articles/III/IIIc.html.
- J99a. Jacobson, M. Z. (1999). Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res., 104, 3527-3542, www.stanford.edu/group/efmh/jacobson/Articles/III/IIId.html.
- J99b. Jacobson, M. Z. (1999) Studying the effects of soil moisture on ozone, temperatures, and winds in Los Angeles, J. Appl. Meteorol., 38, 607-616, www.stanford.edu/group/efmh/jacobson/Articles/IV/IVa.html.
- J99c. Jacobson, M. Z. (1999) Studying The effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II, Atmos. Environ., 33, 3635-3649, www.stanford.edu/group/efmh/jacobson/Articles/IX/studyEff.html.
- J99d. Jacobson, M.Z. (1999) Fundamentals of Atmospheric Modeling, Cambridge University Press, New York, 656 pp, <u>www.stanford.edu/group/efmh/jacobson/FAMbook/FAMbook.html</u>.
- J00. Jacobson, M. Z. (2000) A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, *Geophys. Res. Lett.*, 27, 217-220, www.stanford.edu/group/efmh/jacobson/Articles/VI/VIa.html.
- J01a. Jacobson, M. Z. (2001) Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res., 106, 1551-1568, www.stanford.edu/group/efmh/jacobson/Articles/VI/VIc.html.
- J01b. Jacobson, M. Z. (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, *Nature*, 409, 695-697, www.stanford.edu/group/efmh/jacobson/Articles/VI/VIb.html.
- J01c. Jacobson (2001) M. Z., GATOR-GCMM: A global through urban scale air pollution and weather forecast model. 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow, J. Geophys. Res., 106, 5385-5402, www.stanford.edu/group/efmh/jacobson/Articles/IX/GATORglob.html.
- J01d. Jacobson, M. Z. (2001) GATOR-GCMM: 2. A study of day- and nighttime ozone layers aloft, ozone in national parks, and weather during the SARMAP Field Campaign, J. Geophys. Res., 106, 5403-5420, www.stanford.edu/group/efmh/jacobson/Articles/V/GATORstudy.html.
- J01e. Jacobson (2001) M. Z., and G. M. Masters, Exploiting wind versus coal, *Science*, 293, 1438-1438, 2001, <u>www.stanford.edu/group/efmh/jacobson/Articles/I/Ia.html</u>.
- J02a. Jacobson, M. Z. (2002) Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions, J. Geophys. Res., 107 (D19), 4366, doi:10.1029/ 2001JD002044, www.stanford.edu/group/efmh/jacobson/Articles/IX/multdist/multdist.html.

- J02b. Jacobson, M. Z. (2002), Control of fossil-fuel particulate black carbon plus organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107, (D19), 4410, doi:10.1029/2001JD001376, www.stanford.edu/group/efmh/jacobson/Articles/VIII/fossil.html.
- J03. Jacobson, M. Z. (2003), Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal, J. Geophys. Res., 108 (D8), 4245, doi:10.1029/2002JD002691, 2003,

www.stanford.edu/group/efmh/jacobson/Articles/IX/cloudaer/cloudaer.html.

- J04a. Jacobson, M. Z., J. H. Seinfeld, G. R. Carmichael, and D.G. Streets (2004), The effect on photochemical smog of converting the U.S. fleet of gasoline vehicles to modern diesel vehicles, *Geophys. Res. Lett.*, 31, L02116, doi:10.1029/2003GL018448, www.stanford.edu/group/efmh/jacobson/Articles/I/effPhoto.html.
- J04b. Jacobson, M.Z., and J.H. Seinfeld (2004), Evolution of nanoparticle size and mixing state near the point of emission, *Atmos. Environ.*, *38*, 1839-1850, www.stanford.edu/group/efmh/jacobson/Articles/II/hiRes a.html.
- J04c. Jacobson, M. Z. (2004), The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17 (15), 2909-2926, www.stanford.edu/group/efmh/jacobson/Articles/VIII/bioburn/index.html.
- J04d. Jacobson, M.Z. (2004), The climate response of fossil-fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, J. Geophys. Res., 109, D21201, doi:10.1029/2004JD004945, www.stanford.edu/group/efmh/jacobson/Articles/VIII/VIIIc.html.
- J05a. Jacobson, M.Z. (2005), A solution to the problem of nonequilibrium acid/base gas-particle transfer at long time step, *Aerosol Sci. Technol*, *39*, 92-103, 2005, www.stanford.edu/group/efmh/jacobson/Articles/IX/nonequilAcid.html.
- J05b. Jacobson, M.Z. (2005), A refined method of parameterizing absorption coefficients among multiple gases simultaneously from line-by-line data, *J. Atmos. Sci.*, 62, 506-517, www.stanford.edu/group/efmh/jacobson/Articles/IX/radAbsPap.html.
- J05c. Jacobson, M.Z. (2005), Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry, J. Geophys. Res., 110, D07302, doi:10.1029/2004JD005220, www.stanford.edu/group/efmh/jacobson/Articles/IX/nonequilAcid.html.
- J05d. Jacobson, M.Z. (2005) Fundamentals of Atmospheric Modeling, Second Edition, Cambridge University Press, New York, 813 pp, www.stanford.edu/group/efmh/jacobson/FAMbook2dEd/index.html.
- J05e. Jacobson, M.Z., D.B. Kittelson, and W.F. Watts (2005) Enhanced coagulation due to evaporation and its effect on nanoparticle evolution, *Environmental Science and Technology*, 39, 9486-9492, www.stanford.edu/group/efmh/jacobson/Articles/II/coagevap.html.
- J05f. Jacobson, M.Z., W.G. Colella, and D.M. Golden (2005) Cleaning the air and improving health with hydrogen fuel cell vehicles, *Science*, *308*, 1901-1905, www.stanford.edu/group/efmh/jacobson/Articles/I/fuelcellhybrid.html.
- J06a. Jacobson, M.Z. (2006) Effects of absorption by soot inclusions within clouds and precipitation on global climate, J. Phys. Chem., 110, 6860-6873, www.stanford.edu/group/efmh/jacobson/Articles/VII/soot incl_clouds.htm.
- J06b. Jacobson, M.Z., and Y.J. Kaufmann (2006) Aerosol reduction of the wind, *Geophys. Res. Lett.*, 33, L24814, doi:10.1029/2006GL027838,

www.stanford.edu/group/efmh/jacobson/Articles/III/Wind_reduction.htm.

- J07a. Jacobson, M.Z. (2007) Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States, *Environ. Sci. Technol.*, 10.1021/es062085v, www.stanford.edu/group/efmh/jacobson/Articles/I/E85vWindSol.
- J07b. Jacobson, M.Z., Y.J. Kaufmann, Y. Rudich (2007) Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions, J. Geophys. Res., 112, D24205, doi:10.1029/2007JD008922, www.stanford.edu/group/efmh/jacobson/Articles/III/IIIe.html.
- J07c. Jacobson, M.Z. (2007) The effects of agriculture and snow impurities on climate and air pollution in
California, Final Report to the California Energy Commission's Public Interest Energy Research
(PIER) Environmental Area, CEC-500-2007-022, 2007,
www.stanford.edu/group/efmh/jacobson/Articles/IV/IVb.html .

- J07d. Jacobson, M.Z. (2007) Consistent solution to diffusion for gases, aerosol particles, hydrometeor particles, energy, moisture, and momentum. Stanford University Report.
- J08a. Jacobson, M.Z. (2008) On the causal link between carbon dioxide and air pollution mortality, *Geophys.* Res. Lett., 35, L03809, doi:10.1029/2007GL031101, www.stanford.edu/group/efmh/jacobson/Articles/V/Ve.html.
- J08b. Jacobson, M.Z. (2008) The short-term effects of agriculture on air pollution and climate in California, J. Geophys. Res., 113, D23101, doi:10.1029/2008JD010689, www.stanford.edu/group/efmh/jacobson/Articles/IV/IVb.html.
- J08c. Jacobson, M.Z. (2008) Effects of wind-powered hydrogen fuel cell vehicles on stratospheric ozone and global climate, *Geophys. Res. Lett.*, 35, L19803, doi:10.1029/2008GL035102, www.stanford.edu/group/efmh/jacobson/Articles/I/fuelcellhybrid.html.
- J09. Jacobson, M.Z., and D.G. Streets (2009) The influence of future anthropogenic emissions on climate, natural emissions, and air quality, J. Geophys. Res., 114, D08118, doi:10.1029/2008JD011476, www.stanford.edu/group/efmh/jacobson/Articles/VII/Influence of futureanthropogenicemissions.html
- J10a. Jacobson, M.Z. (2010) The enhancement of local air pollution by urban CO₂ domes, *Environ. Sci. Technol.*, 44, 2497-2502, doi:10.1021/es903018m,

www.stanford.edu/group/efmh/jacobson/Articles/V/urbanCO2domes.html.

- J10b. Jacobson, M.Z., and D.L. Ginnebaugh (2010) The global-through-urban nested 3-D simulation of air pollution with a 13,600-reaction photochemical mechanism, J. Geophys. Res., 115, D14304, doi:10.1029/2009JD013289, www.stanford.edu/group/efmh/jacobson/Articles/V/3Dgasphotochem.html.
- J10c. Jacobson, M.Z. (2010) Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi:10.1029/2009JD013795,

www.stanford.edu/group/efmh/jacobson/Articles/VIII/controlfossilfuel.html.

J11a. Jacobson, M.Z. (2011) Numerical Solution to Drop Coalescence/Breakup With a Volume-Conserving, Positive-Definite, and Unconditionally-Stable Scheme, J. Atmos. Sci., 68, 334-346, doi:10.1175/2010JAS3605.1,

www.stanford.edu/group/efmh/jacobson/Articles/IX/BreakupPaper1010.html.

J11b. Jacobson, M.Z., J.T. Wilkerson, A.D. Naiman, and S.K. Lele (2011) The effects of aircraft on climate and pollution. Part I: Numerical methods for treating the subgrid evolution of discrete size- and composition-resolved contrails from all commercial flights worldwide, *J. Comp. Phys.*, 230, 5115-5132, doi:10.1016/j.jcp.2011.03.031,

http://www.stanford.edu/group/efmh/jacobson/Articles/VIII/aircraftflights.html.

- J12a. Jacobson, M.Z., and J.E. Ten Hoeve (2011) Effects of urban surfaces and white roofs on global and regional climate, J. Climate, 25, 1028-1044, doi:10.1175/JCLI-D-11-00032.1, www.stanford.edu/group/efmh/jacobson/Articles/IV/IVc.html.
- J12b. Jacobson, M.Z. (2012) Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols, J. Geophys. Res., 117, D06205, doi:10.1029/2011JD017218,

www.stanford.edu/group/efmh/jacobson/Articles/VII/CloudAbsorption.html.

- J12c. Jacobson, M.Z., and C.L. Archer, Saturation wind power potential and its implications for wind energy, *Proc. Nat. Acad. Sci, in press,* 2012, www.stanford.edu/group/efmh/jacobson/Articles/I/windfarms.html.
- J12d. Jacobson, M.Z. (2012) Effects of vehicle and power plant heating, water chemical production, and cooling-water evaporation on local climate and air pollution, in preparation.
- J12e. Jacobson, M.Z. (2012) Solving photochemistry in individual aircraft plumes in GATOR-GCMOM. Stanford University Report.
- Jo76. Joseph, J.H. (1976) The effect of a desert aerosol on a model of the general circulation, Proc. Symp. On Radiation in the Atmosphere. H.J. Bolle, Ed., Science Press, 487-492.
- K09. Ketefian, G.S., and M.Z. Jacobson (2009) A mass, energy, vorticity, and potential enstrophy conserving boundary treatment scheme for the shallow water equations, J. Comp. Phys., 228, 1-32, doi:10.1016/j.jcp.2008.08.009, http://www.stanford.edu/~gsk/.
- L95. Lu, R., and R.P. Turco (1995) Air pollutant transport in a coastal environment, II, Three-dimensional simulations over Los Angeles basin, *Atmos. Environ.*, 29, 1499-1518.
- M82. Mellor, G.L., and T. Yamada (1982) Development of a turbulence closure model for geophysical fluid problems, *Revs. of Geophys. and Space Phys.*, 20, 851-875.

- M86. Malone, R.C., L.H. Auer, G.A. Glatzmaier, M.C. Wood, and O.B. Toon (1986) Nuclear winter: Three-dimensional simulations including interactive transport, scavenging, and solar heating of smoke, J. Geophys. Res., 91, 1039-1053.
- M97: Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iaconco, and S.A. Clough (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16,663-16,682.
- N02. Napari et al. (2002) Parameterization of ternary nucleation rates for H₂SO₄-NH₃-H₂O vapors. J. *Geophys. Res.*, 107 (D19), 4371, DOI:10.1029/2001JD000641.
- P84. Penenko, V.V., A.E. Aloyan, N.M. Bazhin, and G.I. Skubnevskaya (1984) Numerical model of hydrometeorological regime and atmospheric pollution of industrial regions, Meteorologiya I Gidroloqiya, 4, 5-15.
- P92. Pitari, G., S. Palermi, G. Visconti, and R.G. Prinn (1992) Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry. J. Geophys. Res., 97, 5953-5962.
- R95. Rasch, P.J., B.A. Boville, and G.P. Brasseur (1995) A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. *J. Geophys. Res.*, 100, 9041-9071.
- S79. Schlesinger, M.E., and Y. Mintz (1979) Numerical simulation of ozone production, transport and distribution with a global atmospheric general circulation model. J. Atmos. Sci., 36, 1325-1351.
- T12. Ten Hoeve, J.E., and M.Z. Jacobson, Worldwide health effects of the Fukushima Daiichi nuclear accident, *Energy and Environmental Sciences*, 5, 8743-8757, doi:10.1039/c2ee22019a, 2012, <u>http://www.stanford.edu/group/efmh/jacobson/fukushima.html</u>.
- T81. Toon, O.B., and T.P. Ackerman (1981) Algorithms for the calculation of scattering by stratified spheres, *Appl. Opt.*, 20, 3657-3660.
- T85. Thompson, S.L. (1985) Global interactive transport simulations of nuclear war smoke, *Nature*, 317, 35-39.
- T88. Toon, O.B., R.P. Turco, D. Westphal, R. Malone, and M. Liu (1988) A multidimensional model for aerosols: Description of computational analogs, J. Atmos. Sci., 45, 2123-2143.
- T89. Toon, O.B., C. P. McKay, T. P. Ackerman, and K. Santhanam (1989) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94, 16,287-16,301.
- V02. Vehkamki, J. Geophys. Res., 107, 4622, DOI:10.1029/2002JD002184, 2002.
- W98. Walcek, C.J., and N.M. Aleksic (1998) A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with fortran code, *Atmos. Environ.*, *32*, 3863-3880.
- W00. Walcek, C.J. (2000) Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection, J. Geophys. Res., 105, 9335-9348.