Approachesfor Performing Uncertainty Analysisin Large-scale
Ener gy/Economic Policy Models

Antje Kann and John P. Weyant
Energy Modeling Forum, Stanford University
Terman Engineering Building, Room 406
Stanford, CA 94305

EMF Working Paper 14.6, June 1999
(appeared in Environmenta Modding and Assessment, Vol. 5, No.1, 2000, pp. 29-46)

Abstract

A number of key policy indghts have emerged from the application of large-
scae economic/energy modds, such as integrated assessment models for
climate change. These ingghts have been particularly powerful in those instances
when they are shared by dl or most of the existing models. On the other hand,
some results and policy recommendations obtained from integrated assessment
modds vary widdly from model to modd. This can limit their usability for policy
andyss. The differences between modd results are mostly due to different
underlying assumptions about exogenous processes, about endogenous
processes and the dynamics among them, differences in vaue judgments, and
different gpproaches for smplifying mode structure for computational purposes.
Uncertainty andyses should be performed for the dud purpose of dlarifying the
uncertainties inherent in model results and improving decison making under
uncertainty. This paper develops a unifying framework for comparing the
different types of uncertainty andyses through their objective functions,
categorizes types of uncertainty anadyses that can be performed on large
models, and compares different gpproaches to uncertainty anaysis by explaining
underlying assumptions, suitability for different modd types, and advantages and
disadvantages. The gppendix presents a summary of integrated assessment
models for climate change that explicitly account for uncertainty.



I ntroduction

With rapid advances in computing power over the last decade, large-scale model s have become
essentia to decison making in public policy. For example, policy makersin the areaof globa
dimate change rely on avariety of integrated assessment modes' as an important tool for
andyzing the consequences of different policies. These models, which originate from a group of
globdly digtributed, diverse and interdisciplinary researchers, aide policy makersin determining
actions to mitigate climate change. However, in some cases results and conclusons vary widdy
across the different models, which has made it difficult for scientists and policy makers to know
how to use the results of integrated assessment models. Thus, policy makers' high demand for
reliable mode results has not yet been fulfilled. Other areas of policy andys's, such as hedth
policy, are affected by Smilar issues of modd inconsstency.

The disparities among model results can be ascribed to afew dominant factors:

- Different underlying assumptions about processes exogenous to the model. Thisisreflected
in discrepancies among input parameters across the models.
Different underlying assumptions about endogenous processes and the dynamics among
them, resulting in different mode structures.
Differencesin vaue judgments, such asthe vaue of ahuman life.
Different approaches for smplifying model structure for computational purposes.

In an effort to increase the use and usefulness of integrated assessment moded s in policy anays's,
assumptionsinherent in the different modd s need to be laid out explicitly, so that models can
ether be better synchronized or their differences be better understood. In addition to clarifying
the assumptions on modd inputs, modders should be more explicit aoout their level of
confidence in modd outputs. 1dedly, policy makers should be provided with recommendations
for policies tha are robust in the face of large uncertainty about future outcomes, and with
suggestions on how to reduce that uncertainty efficiently.

Many modeders have spent congderable effort on fine tuning their models to replicate dynamics
in physicd and socid sciences at levelsthat reflect current scientific knowledge and that can
replicate historica data. The fact that both historica data and scientific knowledge of many
dynamics are not exact has often been overlooked in the process of moded improvement.
Therefore, many observers have requested that the next stage in the model devel opment
process include a collective effort to better understand the assumptions and data that provide
input to the models and to better describe the uncertainty inherent in the modd outputs, with the
ultimate god of making model results more accessible to policy makers.

! Integrated assessment models combine scientific and economic modelsto allow for an integrated analysis
of complex policy problems[IPCC 1995].



Understanding uncertainty is aso the prerequisite to resolving uncertainty. Many types of
uncertainty can be at least partialy resolved by committing resources towards research efforts
that represent uncertainty. In light of limited resources, policy andysts need to determine which
research efforts represent the most effective and efficient use of resources.? Subjecting existing
modd s to uncertainty analys's can help to determine which types of uncertainty should be
addressed firgt.

What Defines an Uncertainty Analysis?

While our understanding of many physica and socioeconomic dynamics has progressed notably
over the last few decades, new scientific areas that are not yet completely understood, such as
HIV research and globd climate change, have emerged. For example, thereis dill Sgnificant
uncertainty about the nature of climate change, damages from climate change, and the costs of
preventing climate change. Despite such large uncertainties, most integrated assessment models
for dimate change are determinidtic, i.e., they perform one evauation of a given Sate of the
world and assumptions, reflected in asingle set of input variables, thus ignoring uncertainty.
Policy makers, on the other hand, need a measure of the robusiness of the modd outputs and
condusionsto variaionsin modd inputs. In addition, thisinformation is useful only if it is
presented in a manner comprehensible to policy makers.

Investigating the reliability of modd results requires severd steps, including:
quantifying the extent to which output variables depend on variations in input,
determining which of the input variables have the most significant effect on variationsin
outputs, and
determining which inputs are least understood or least predictable.

Idedl results of an uncertainty andysis would include
probability weighted vaues of the output variables,
optima decisonsin light of imperfect knowledge,
ameasure of risk or disperson about the outcome, and
the vaue of information for key variables.

Uncertainty in models can be characterized into the following two generd categories.
parametric uncertainty, which arises due to imperfect knowledge, and
gochadticity, which is due to naturd variability in certain processes.

’For example, some advocates of integrated assessment modelsin policy analysis have proposed
identifying a“portfolio of actions’ to minimize the collective effects of climate change [IPCC, 1996]. Such a
portfolio might include adaptation measures, emissions reduction, research and devel opment on better
technologies, and continued scientific research on the likelihood and effects of climate change. The latter
activity is effectively the effort of reducing uncertainty. While some of the other actions might seem more
tangible, reducing uncertainty through scientific research is akey contributor to increasing the
effectiveness of the other measures.



Asour knowledge about dynamicsin the physicd and socid sciences improves over time, we
expect to reduce parametric uncertainty.® On the other hand, natura variability will dways
occur, and stochastic uncertainty is not reduced over time.*  Stochastic uncertainty can have a
cumulative effect on the overdl modd uncertainty in problems with along time horizon. In such
cases the effect of stochastic variability may contribute more to outcome uncertainty than
parametric uncertainty [Zapert et al., 1998].

There are some additiona categories of uncertainty analys's, including uncertainty about vaues
and uncertainty about modd Structure. A prime example of uncertainty about valuesin
economic modds are the value of a human life and the intertemporal discount rate. Policy
choices that affect future generations tend to be very sensitive to the choice of discount rate, and
most climate change models can obtain results on dl ends of the spectrum by varying the
discount rate. There is widespread disagreement about the "true”’ value of a discount rate and
the extent to which it istied to the rate of return on capitd [Portney et d., 1999]. While the rate
of return on capitd is a stochagtic uncertainty, the discount rate's link to therate of returnisa
vaue uncertainty. Idedlly, policies should be robust over areatively large range of discount
rates and other “value uncertainties’.

Uncertainty about mode structure impliesthat a physical or socioeconomic process cannot be
replicated accurately in amode, for reasons such as limited computing resources or incomplete
understanding due to lack of empirical data. For example, there are various population growth
models and different types of damage functions among which modelers can choose. Peck and
Teisherg show that the form of the damage function (in addition to the choice of damage
parameters) can greatly affect the optima carbon control policy in their modd: if damageis
linear in temperature, little control is optima, but if damage is a cubic power function of
temperaure rise, ahigh leve of control is optimal by the end of the next century [Peck and
Teisherg, 1992]. Thisresult not only underscores the importance of identifying nonlinear
regponses in human and naturd systems, but also in identifying the sengtivity of outcomesto
different assumptions and submodels.

In some cases, modelers differ on what defines an uncertain parameter®.  If it is possible to
exert some control over an uncertain parameter through commitment of resources, there might
be some contexts where such a parameter could also be consdered adecison variable. For
example, population growth and energy efficiency are two important uncertainties in climate
models that can be influenced significantly. Spending funds on population control could have a

% Though sometimes we realize that we know even less about a parameter than previously believed. Insuch
an instance, the measure of uncertainty about the parameter was inadegquate and needs to be increased with
the additional knowledge rather than decreased. See the section on Alternative Approaches. Higher Order
Uncertainties for more on this subject.

* Note, however, that stochastic uncertainty is described in models through parameters, the knowledge of
which may improve over time. Thus, even if variability remains constant over time, we may be able to
improve our understanding of it and “reduce” some of the stochastic uncertainty in that way.

® See al'so van Asselt (1999) for a detailed treatment on different types and sources of uncertainty.



great impact on population growth in terms of lowering both the mean and the variance of that
parameter, and spending funds on improving energy efficiency can result in more efficient
technologies. Thus, rather than treating energy efficiency or population growth as uncertain
parameters, the amount of money to spend on these factors could also be treated as adecision
varidble®

Some Practical Implications

Idedlly, dl policy models should be subjected to an uncertainty analysis. However, depending
on the type of model and andysis performed, uncertainty analyses can be complex and
computationdly intensive. Asaresult, many modelers have performed only very basic types of
uncertainty analyss. To date, the mgor obstacle to performing al-inclusve uncertainty andyses
isthe limitation of computing resources, especidly sSnce many large models dready face an
important trade-off between the level of detail of andyssand run-time. A full uncertainty
andysis may require hundreds of thousands of model runs, atask that isfeasble for only the
amplest of models. Thus, wesker model dynamics and less modd detall could dlow for more
exhaugtive uncertainty analysis [Parson and Fisher-Vanden, 1997].

In addition to the Sze of amodd (such as the number of variables and complexity of interna
dynamics), the modd type a0 affects the feagbility of different kinds of uncertainty andysis.
Most large-scde policy models, especidly in the energy/economic field, can be classified either
as policy evaluation models or optimization models. Policy evduation modds evauate given
policy scenarios and tend to berich in physical detail, while optimization models optimize over
key decison variables to achieve a certain objective, such as cost minimization or wefare
maximization [IPCC, 1996]. Mot policy evaluaion modds lend themsdves more easly to
uncertainty andys's than optimization modes, ance they require less computation than
optimization modds.

Other difficult issues that need to be considered when modding uncertainty are:

- Modd cdibration: Most models are not cdibrated for extreme cases of input parameters.
Thus, they areimplicitly designed to provide the most accurate answers when parametric
uncertainties are relatively small.”

Subjectivity: Descriptions of uncertainty can be somewhat arbitrary and may vary dragticaly
across different experts[Tversky et d., 1974]. Some modders provide “intervals of
uncertainty” for important parameters, which represent ranges of values considered as
appropriate by scientists but have no satistica interpretation [Braddock et a., 1995]. At
the same time, parameters that describe uncertainty, such as highvlow percentiles,

®However, it would take unrealistically large amounts of funding to convert these two parameters to true
decision variables.

"For example, quadratic functions are generally good approximations for small excursions around point
estimates, but they can be very poor approximations for large excursions, particularly if the underlying
function exhibits non-linear or abrupt changes.



distributions, and discrete probabilities, strongly influence the outcome uncertainty?. In
order to maintain comparability of policy recommendations and outcome uncertainties
across modes, consstent input uncertainties should be gpplied.

The remainder of this paper first presents a unifying framework that darifies the relationship
between the different types of models that incorporate uncertainty in mathematica terms on the
badis of their objective functions. It then offers a guide on how to convert an existing
deterministic model to amodd that explicitly incorporates uncertainty. This guide describes
different types of uncertainty andysesin detall and outlines underlying assumptions, advantages
and limitations for each type.

FRAMEWORK FOR COMPARING MODELSWHICH
INCORPORATE UNCERTAINTY ANALYSIS

We compare the different types of policy models that explicitly account for uncertainty by
describing the relationship between their objective functions. The framework developed in this
paper uses stochagtic dynamic optimization (as explained later) as a unifying concept for
andyzing uncertainty in large-scale mode's and then describes different variations of this generd
concept that are performed out of the practical needs described above. Thus, the framework
proceeds from the most general and computationally intensive gpproach, to more restrictive and
less complex approaches.

Stochastic dynamic optimization is an agppropriate tool to modd policy problems that are
characterized by the interaction between actions taken today and consegquences experienced
tomorrow in the light of uncertainty. While stochagtic dynamic programming theoreticaly
represents the most comprehensive gpproach of andyzing uncertainty in this context, it usudly
does not pass the test of practicdlity. This motivated the approach of framing the other types of
uncertainty andyss as pecial cases of this general concept that arise out of practical needs,
each incorporating a different set of assumptions that makes computation feasible. These
amplifications can take the shape of reducing mode detall, redtricting how uncertainty is
modeled, or restricting how optima choices are made. Figure 2 presents an overview of the
framework:

8 This paper is based on the assumption that probability is the most effective way to express uncertainty
[Lindley, 1982].
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Figure 2: Complexity Hierarchy of Types of Uncertainty Analysis

The framework developed in this section is based on the premise that most policy models
evauate variables (some or dl of which may be uncertain) over time, and then combine these
varidbles into an overdl performance measure which is maximized or minimized, or Smply
evaluated. This performance messure can vary widdy from modd to modd. For example,
maost economic models sum the discounted utility of consumption over time, but different
variables could also be added or averaged directly. In al cases, we shall refer to the evauation
of the performance measure as the objective function.

Our framework describes the objective function of a dynamic optimization modd with
uncertainty in its most genera form and then points out the differences that arise when
smplifying assumptions need to be made. As described above, the type of the underlying
deterministic modd (policy evauation mode versus optimization model) determines how
uncertainty can be incorporated into an anadysis. This framework incorporates these differences
by describing representative objective functions for the different mode types. We acknowledge
the fact that some modes might not be described completely by this framework, and thet there
may be hybrid models which may fall into severd categories.

The varigbles found in most policy models can be grouped into the following categories:

- A st of date variables, which describe the sate of the key variables, such as economic or
climateindicators.
A set of control variables, which describe the policy, e.g., dlocated resources.
A st of information variables describing uncertainty, such as moments of a distribution.
Information variables are only present in models that account for learning, i.e. updating of
information. In these modds, information variables are observed at certain time periods
which are the basis for revised decisons.



Figure 3 presents the framework, which is explained in the subsequent paragraphs.
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Sequential Decison Making under Uncertainty

Sequential decision making under uncertainty includes those models that determine optima
policies a more than one point in time. Modds in this category range from a smple two-period
decison andyss to an infinite-horizon sochadtic optimization.

The most generd objective function, which formsthe bass for this framework, isthat of
stochadtic optimization models which have an infinite horizon and dlow for periodic decisons
based on uncertain variables which are updated in each period:

¥
max a r'e(p,1,,C)) (Infinite-horizon Stochastic Optimization)

t t=0

The decision maker maximizes the sum of the discounted expected utilities at each time period.
The physcd variables P and the information variables | are updated at every period t.
Optimization of the control variables C; takes place at every period, based on the information
avalable a thetime. The expectation a each timeis based on the knowledge of al previous
periods variables, i.e, the physica variables and the updated information varigbles at t-1. This
results in some very complex intertempora dependencies.

The infinite time horizon implies that an andytic solution may be found, resulting in an optimd
decision function based on the state of the vectors a each time [Stokey and Lukas, 1989]. As
this solution process presents sgnificant andlytical chalenges, afinite time horizon is often
assumed. Finite-horizon problems can be solved numericaly through dynamic programming.
However, dynamic programming is computationdly very expensive [Puterman, 1994], and the
assumption that uncertainty is resolved at every period must be restricted as well.

While infinite-horizon stochastic optimization models can theoreticaly provide the most
exhaudtive and redigtic andyss of policy problems, anaytica and computationd chalenges
generate the need for smpler, though more restrictive, gpproaches. In the following sections,
we distinguish different approaches for andyzing uncertainty according to the nature of the
underlying deterministic mode (optimization mode versus policy evauation modd).

Optimization Models

With the additiondl assumptions of afinite horizon and limited number of decison periods, the
objective function for afinite-horizon stochastic optimization model can be represented asa
gpecid case of sochagtic dynamic optimization:

J

a1 0 . . . . .. .
max a Egé rtu(P, rt,»ét )g (Finite-horizon Stochastic Optimization)

t =l t=t; I}

The vector of physicd varidbles P is updated at every period, but the information variables and
decisions are updated only at alimited number of predetermined periods denoted by {t;,
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j=1...3}. Note that the control variables may be different from period to period, but optimal
policies are determined as sets { C, ..C, .} only & timest;.

Policy Evaluation Models

The andogous case for policy evauation modds s referred to as multi-period decision
analysis. The objective function for thistype of problemisvery similar to that of the sochastic
finite horizon optimization model, with the exception of discrete (versus continuous) dternatives.

m 4 ECA rue.i )Y (Muli-period Dedision Ardlysis
C|(:1 'a)jlelzl t=t.

Smilar to sochedtic finite horizon optimization modds, the vector of physica varigbles P is
updated at every period, and the information variables and decisions are updated at a limited
number of J periods. The main difference isthat the “optimization” takes place over afinite
number N; of discrete decision dterndtives that are available at each of the J decision periods.

Uncertainty Propagation

When there is no learning involved, an optima policy is determined only once, & the beginning
of the modd time frame. Models that incorporate uncertainty, but no learning, can be referred to
as uncertainty propagation modes. Agan, adistinction is made between optimization models
and policy evaduation modds.

Optimization Models

The objective function of an optimization modd which propagates uncertainty without learning
can be represented as a specia case of stochastic dynamic optimization:

T s
Egemcax a r'u(B,C )g (Optimization with Resolved Uncertainty)
t t=0

In this case, optimization takes place at time 0, once for each possible uncertain sate. Thus, the
optimization is performed asif the true sate of the world is known, and the expected vdueis
taken over the results of these optimizations.

Policy Evaluation Models

The objective function of apolicy evauation mode with discrete decison dternativesis amilar,
but evduates the expectati on and maximization operators in the opposite order:

max Ega rtu(P Ct‘)g (Single-period Decision Andysis)
ci {cl cN} et=0 17}

Sincethereis afinite number of discrete dternatives, the reduced computationa complexity

makes it possble to evauate dl possible states of the world for each decison dternative, i.e.,
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the decision is made before uncertainty isresolved. This more closaly resembles the Stuation of
adecison maker a time zero. The“optimization” is performed to maximize the expected vaue
of the outcome (as compared to taking the expected vaue of optimizations that were performed
under the assumption that uncertainty has been resolved.)

Findly, the smplest type of uncertainty analyss congsts of evauating a given policy, without
performing any optimization:
T .
Egaa)_ r'u(P,C, )2 (Single-Policy Uncertainty Evaluation)
t=0 9

In this case, the outcome of the modd is the expected vaue of agiven policy which is evduated
under uncertainty. Since this agpproach requires much less computation, it alows for the grestest
detall in model resolution. Accordingly, the dimension of the vector of physicd varigblesis
typicaly much higher for modes of this sort than for those where an optimization is performed.

The above framework describes different mode types that incorporate uncertainty. To provide
apracticd context , the gppendix contains a table that describes and categorizes integrated
assessment models for climate change which explicitly account for uncertainty. Many of the
modds originated as deterministic models which were later adapted to include uncertainty
andyss. For eech modd, the table lists the underlying deterministic mode type, the type of
uncertainty andys's performed, which uncertain variables are andyzed, and the main conclusons
from the andyss.

The next section provides guidance on how to convert an existing deterministic modd into a
model that accounts for uncertainty.

CONVERSION OF DETERMINISTIC MODELSTO
PROBABILISTIC MODELS

Preliminary steps

Depending on the size of the underlying deterministic modd, it may be necessary to smplify the
mode structure for the purpose of performing an uncertainty analyss. For example, Braddock
et d. amplify the very large and complex IMAGE modd to a system of linear equationsin order
to obtain run-times that alow for asmulation of the modd [Braddock et d, 1995]. The
reduction in model detail and its corresponding impact on the accuracy of results needs to be
carefully assessed.

Converting a deterministic mode to a probabilistic mode requires the selection of key uncertain
parameters, and the robustness of the mode to variations in these parameters needs to be
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understood. Sengtivity andys's and scenario andyss can provide useful insghts for this
purpose.

Senditivity Analysis

Sengitivity andysis answers the question “how sengtive are modd outputs to changesin model
inputs?’ It involves varying input parameters that are not known with certainty and recording
the resulting changesin output variables and their effect on decisons. It can be used asatool to
identify which of the modd parameters have the greatest effect on the output variables and
results, to determine which parameters should be treated stochastically in further analysis, and to
determine the break-even points between various dternatives for variaions in a specific
variable. Though it isnot possible to modd stochastic variahility through this method, sengtivity
andysisis covered here due to its essentid role as a prerequisite to a more complex uncertainty
andydss. A sengtivity andyss should be performed for every mode before results are reported.

The amplest and most commonly performed andyssis the single-value deterministic
sengitivity analysis. It involves setting each parameter of interest in adeterministic model to
extreme points (usudly its 5" and 95" percentile values) while holding dl other variables at
nomind vaues. The result is a measure of the functiond relaionship between a single parameter
in question and output variables. For probabilistic modds with non-random input parameters,
probabilistic sensitivity analysis involves varying those parameters in the same manner. The
output of such an andyss conssts of arange of expected vaues and stlandard deviations.

When there are dependencies between variables, sngle-vaue sengtivity analys's does not
sufficiently analyze uncertainty, asthe overal uncertainty can be orders of magnitude larger than
inthe sngle variable case. Joint sengitivity analysis can produce a more accurate measure of
output sengitivity by varying severd parametersjointly. However, quantifying the
interdependencies of variationsin input variables can be a daunting task.

Sengtivity andyssis dso ussful for evauating amodd’ s sengtivity to those parameters which
cannot or should not be modded as uncertain. Specificaly, sengtivity anadysisis an appropriate
tool for anayzing uncertainty about vauation and discounting, Snceit is less gppropriate to
specify probability distributions about these parameters.

Some of the shortcomings of sensitivity andyssinclude:
The range of outcome va ues between the high and low percentiles might not reved some of
the uncertainty involved, especidly if the maximum divergence from the best-guess vaue
occursin the interior of the range [Bankes, 1993].
It is not possible to modd stochadtic variability through this methodology. Thus, itisnot a
subdtitute for performing uncertainty andysis.
Performing a sengtivity andlysis on agiven mode is based on the premise that the mode
structure s correct. |t does not measure or detect specification error.®

° Most of the types of uncertainty analysis represented in this paper share this shortcoming.
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Scenario analysis

Scenarios consst of combinations of different assumptions about possible states of the world,
such as high population growth and low energy efficiency. Scenario andysisinvolves
performing model runs for different combinations of assumptions and comparing the results.
Scenario anayses can be classified as one of two types according to how the scenarios are
generated: 1) scenarios are generated to look at interesting, meaningful, and varied combinations
of states of the world [see Y ohe, 1991], and 2) scenarios are generated from joint probability
distributions on parameters according to technical criteria obtained from sampling

methodol ogies [Iman and Conover, 1980; Nordhaus and Popp, 1996].

Thefirg type of scenario analyss can provide very interesting indghts and helps facilitate
standardization and controlled comparison between assessments. 1t is especidly useful when
multiple models perform runs under identica input assumptions. This relieves different modeing
projects of the need to choose and defend their own inputs [Parson, 1997]. However, asin the
case of sengtivity andysis, thistype of scenario andysisis not a subgtitute for uncertainty
andyss. Frg, the scenarios are generdly not weighted by probabilities. It isindeed difficult to
determine the probability of a scenario, as one needs to determine the joint probability
digribution of uncertain variables which tend to be characterized by high corrdation. In
addition, each modd run is performed with best-guess vaues for a particular scenario, implying
that the possibility of surprisesis usualy not captured.

In the second type of scenario andlys's, scenarios are created by grouping uncertain parameters
for computationd purposes. This case will be covered in alater section.

Shortcomings of scenario andyss are:
It isdifficult to perform arigorous uncertainty anays's usng scenarios. Scenarios would
need to be weighted probabilistically and would need to be mutudly exclusve and
exhaudive (i.e. include dl uncertain Sates).
Scenario andysisis dill an area of active research. Asaresult, thereis not much consensus
as to the best scenario design, terminology often gets confused, and different types of
andysgsfdl under thislabd. For example, the andysis of different policiesis sometimes
termed scenario andydis, whileit is smply apolicy evduation exercise.

Once the modd’ s sengitivity to variationsin parametersis well understood, it can be converted
to aprobabiligic sructure. While the mathematical framework presented in the previous
section proceeds from the most genera but complex to the more regtrictive but Smpler model
types, the following section will gpply a bottom-up approach, starting with the smplest kind of
model structure and proceeding in the order of increasing complexity.

Propagating Uncertainty through a Deterministic M odel

Perhaps the most commonly applied type of uncertainty analysisis the propagation of
uncertainty through adeterministic model. The smplest implementation involves pecifying a
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joint distribution (discrete or continuous) on a selection of input parameters and then
propagating this uncertainty through to the model output. A more complex implementation
involves modeling stochadtic variahility by reformulating a deterministic dynamical syseminto a
gochadtic dynamica system. This approach usudly involves modeling certain variables as a
stochastic process such as Brownian Motion. For an example, see [Zapert et al., 1998].

While a smple uncertainty propagation does not provide optima decisons that consider
uncertainty, the resulting distributions on output variables provide policy makers with a sense of
the risk associated with the outcome. Such digtributions are epecidly important when models
are nonlinear. In nonlinear mode s the mean output vaue is not identica to the output vaue
which corresponds to the mean of the input vaues. Similarly, propagating uncertainty isaso
important in the presence of risk averson. Risk averson impliesthat a decison maker vaues
the average outcome at less than the average of the values for dl outcomes. This could be the
case when a decision maker is more interested in averting a particularly bad outcome under all
circumstances than in sdecting the policy which performs best on average.

In addition to a distribution on output variables, one can obtain measures of the relative
importance of different input variables on the outcome, in the form of partid rank correlation
coefficients or regression coefficients. Partiad rank correlation coefficients are measures of the
contribution of each uncertain input to the output uncertainty, after removing the effects
atributable to other inputs [Iman and Conover, 1980]. After input uncertainties are propagated
through amode and a digtribution of the outcome is obtained, the partia rank correlaion
coefficients can be computed, from which input parameters can be ranked according to their
effect on the outcome. An example of thistype of andysis can be found in Hope et d. (1993),
where partia rank order coefficients were obtained for alarge number of uncertain input
parameters to determine the important contributors to the uncertainty in the results, and the
study identified strong regiona differencesin contribution of cost uncertainty to tota uncertainty.

For computationd purposes, propagation of uncertainty usudly involves sampling from ajoint
digtribution across input values. The most widespread technique used for this purposeisthe
Monte Carlo Method [Rubingtein, 1981]. However, for some models sampling from the full
input distribution may be computationally too expensive, and it becomes necessary to sample
from scenarios which summarize the digtribution.  The literature on sampling techniques includes
suggestions for forming scenarios from the input distributions that will provide Satisticaly
accurate samples [Morgan and Henrion, 1990, Iman and Conover, 1980]. Inthis case, the
combination of parameter values for scenarios does not necessarily represent an interesting Sate
of the world, but rather a st of vauesthat cregte the most statistically significant scenarios for
sampling.'® One of the methods used to compute scenarios is Latin Hypercube sampling [Iman
and Conover, 1980]. Thistype of scenario andyssis sometimes performed in place of afull
propagation of uncertainty (see [Nordhaus and Popp, 1996] for an example).

1 However, there might be feasibility constraints on the combinations of parameter values selected in such a
way.
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To further decrease computing requirements, only a subset of variables could be treated
stochagticaly. The sdection of the subset should be based on an andlysis of the importance of
each variable, for example through rank-order correlation coefficients. It is aso recommended
to perform tests on what fraction of the overall uncertainty is represented by the subset of
parameters [Nordhaus, 1994].

Other issues with propageating uncertainty are:

- Itisdifficult to specify joint digtributions due to sometimes significant correlations between
parameters. In the presence of strong interdependencies among variables, uncertainty could
be grosdy misrepresented if a separate digtribution is specified for each variable.

For computationdly intensve modes it might be impractica to pecify probability
digributions on dl uncertain variables.

Propagation of uncertainty yields different results for optimization modes (“learn now then
act”) versus policy evauation modds (“act now then learn”).

Parameters can contribute to uncertainty but be irrdlevant to decisons. For example, the
outcome can vary greatly with changesin an input parameter, but al policy dternatives
could vary in the exact same manner. A smple uncertainty propagation will not necessarily
identify the policy-relevant parameters™

Depending on whether the underlying deterministic modd is a policy evauation modd or an
optimization model, different methods and implications need to be consdered.

Propagation of Uncertainty as Applied to Policy Evaluation M odels

Sngle-policy propagation of uncertainty. The above genera description of propagation of
uncertainty most closdy describes the andlysis required for smple determinigtic policy evauation
modds. The output of this andyssisameasure of risk for the outcome of a deterministic model
that evauates a single palicy, represented in a distribution on the possible states of the world,
given today's uncertainty.

Sngle-period decision analysis: In addition to the above genera description of uncertainty
propagetion, decison andysis formaizes the evauation of different policies. A decison andyss
evaluates a set of predetermined policies policy aternatives under consideration of probability
digtributions across uncertain variables. The evauation can be based on multiple attributes of the
decison criterion. The result is arecommendation of the optima dternative (the aternative with
the best expected value), given the current state of information [Raiffa, 1968].

Compared to continuous optimization models, decision analyss sdlectsthe optima solution
from afinite set of pre-specified dternatives. While thisis alimitation, it dso makes decison
andysis an especidly appropriate tool for andyzing those problems where alimited set of

" This may not be considered a drawback if stochastic variability propagation is not done to reveal policy-
relevant parameters, but to assess the robustness of the model results.
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decison dternativesis avalable. In Stuations where politics or other outsde influences limit the
policy choices, a decison anayss which evauates the available dternatives can give more
redlistic recommendations than amode which optimizes over aset of continuous variables'?.

It isimportant to distinguish decison andys's from scenario andyss. Decision andyss
incorporates some elements of scenario analys's, as adeterministic mode is run for a variety of
combinations of assumptions and decisons. However, a decision andyssincorporates
probabiligtic distributions across dl uncertain Sates of the world and can andyze sequentid
decisons. Its output includes explicit distributions of the outcome variables under different
policy dternatives, while sengtivity andyssis limited to ranking outcomes under afew scenarios
of interest.

One problem inherent in decison andysis models is the "curse of dimensondity.” For each
uncertain variable, the dimension of the problem increases by afactor equa to the number of
uncertain states. Depending on the number of uncertain variables and the number of their states,
the underlying deterministic mode might be run a very large number of times. The high
dimensiondity of most modds dso implies that each scenario cannot be individualy tracked.

Other issues associated with decison andyssinclude:
A decision analys's does not optimize over continuous variables and is therefore limited to
evauating predetermined policies. Thislack of resolution on the decison aternatives can
imply that the optima policy recommended by a decison analysis might be a suboptima
solution.
Obtaining joint distributions for events can be a very cumbersome process.
The curse of dimengondity imposes limitations on the number of states and variables that
can be incorporated into the modd.
Decison andys's cannot contribute to the selection of a suitable “portfolio of actions’, as
desired by some policy makers, beyond comparing predetermined portfolios that are
passed into the problem.

Propagation of Uncertainty as Applied to Optimization Models

Optimization with Resolved Uncertainty: Propagating uncertainty through optimization
models is achieved with the same methodology as used for policy evauation models, but
represents a different type of andyss. Fundamentd differences in the underlying deterministic
models explain this difference: Policy evauation modds caculate an outcome for a given set of
inputs, which implies that the result of a propagation of input uncertainties in a policy evauation
mode is a digtribution on the possible states of the world, given today's uncertainty. In contradt,
optimization models search for the most efficient way to address a problem, given our current
date of knowledge. The digtribution that results from propageating uncertainty through an

12 A continuous optimization model could theoretically achieve the same "reality bound" outcome by adding
aset of constraints which restrict the outcomes to the same alternatives.
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optimization model thus needs to be interpreted as follows: each point on the output distribution
represents the result of an optimization for a particular uncertain state of the world represented
intheinput variables. Thisimpliesa“learn now, then act” gpproach in which the uncertain Sate
is revedled before action is taken, which can be interpreted as optimization with resolved
uncertainty.™ In redlity, the policy maker’s situation is not one of resolving uncertainty now and
acting optimally according to the revedled knowledge. Rather, the policy maker needsto
optimize now in light of uncertainty, while knowledge is not revedled until alaer time. A more
appropriate gpproach of including uncertainty in optimization models would be to creste a
sequential decision making modd.**

Adding Uncertainty to a Sequential Decision Making M odel

The previoudy identified types of uncertainty andyss share one very strong assumption: The
optimal policy is determined only once, today, with the currently available knowledge, and
uncertainty isreveded after the decison has been made. A more redlistic approach would take
into account the fact that decisons are made nearly continuoudy over time as long-term
uncertainty isreduced. In such asetting, adecision at each time need only be optimal for the
period up to the next decision point. Since this more accurately describes the problem that most
policy makers face, modds should assist in identifying such short-term drategies in the face of
long-term uncertainty, and andyze the effect of learning and adaptation on optima policies.

Sequentid decision making under uncertainty assumes thet there are severd pointsin time a
which policy makers may make decisons that react to outcomes, and that their knowledge
increases with time. At each such point in time, adecison is made based on ajoint ditribution
that describes the possible outcomes that may occur during the following periods. Outcomes
may be defined in this context either as Sates of the world or a new distribution (possibly with a
different mean and/or with less spread than the previous digtribution). In the subsequent period,
another decison is made based on the updated knowledge, and so on. Thus, it is not necessary
to assume that uncertainty is completely resolved at certain pointsin time, but rather that a
probability digtribution is updated. This processis frequently referred to in policy modds as
learning.

The Learning Process

Three main types of learning are represented in policy modds [Kolstad, 1994]:

1) Activelearning, whereby the effect of policy choices on certain key variablesis observed
for the purpose of obtaining information about uncertain parameters. For example, inthe
area of globa warming policy, experiments such as perturbing emissons could reved

3 K nowing that policy X isthe best policy in the state of the world x and that policy Yisthe best policy in
the state of the worldy does not tell us how to choose an optimal policy before the state of theworld is
revealed [Ermoliev et d., 1988].

“However, if the optimal solution isinsensitive to variationsin the uncertain parameters, optimization with
resolved uncertainty can indicate that the policy recommendation is robust in the face of uncertainty.
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information about uncertain parameters by observing their effect on the economy and the
dimate system. *°

2) Purchased learning, whereby knowledge is purchased (e.g., by alocating resourcesto R&D
efforts).

3) Autonomous learning, where the mere passage of time reduces uncertainty.

Delaying action in order to learn more involves severd tradeoffs:

- Waiting to learn more versus preventing irreversible damage: When learning is possible, and
in the absence of irreversible outcomes, it tends to be advantageous to delay action until
some uncertainty is reduced [Dixit and Pindyck, 1994]. On the other hand, the less learning
is anticipated and the more irrevergbilities are present, the more aggressive the short-term
strategy should be.

Waiting to learn more versus higher cogts later: Even when damages are not irreversible, the
mitigation costs may increase during the waiting period. In this case, the benefits from
increased knowledge may be offset by the increased codts.

Wiaiting to learn more versus beneficid effects from early action: Early policy action may
have additiond benefits such as triggering private sector R& D and innovation. Thus, the
rate of uncertainty resolution could actudly be increased by not waiting to learn more.

Issues surrounding learning abound in the fild of climate change policy. The literature on
integrated assessment models reveds that learning is usualy modeed as an endogenous process
(type 3), and that for computationa purposes, most models have not considered more than 2
periods of learning. Some climate models have shown, and intuition supports the notion, that
policy srategies which are adaptive and use results from learning to change the decison will on
average perform sgnificantly better than one-time optimd drategies which optimize over the
entire time period of interest [Lempert et d., 1996]. Thus, it isusudly preferable to adopt a
sequentid decision process and update decisions as new information is obtained. The decisions
made before al uncertainty is resolved are suboptimal relative to sequentia decisions made with
perfect information [Kelly and Kolstad, 1996).

The sequentid decision making framework aso makesiit possible to identify hedging
strategies, which baance the risk of waiting with those of premature action [Manne and
Richels, 1995]. Hedging can be viewed as building contingency plans and responding to
opportunities and dangers as they become apparent, as opposed to averaging the different
policies which are optimal for different states of the world. Inthefield of climate change,
hedging strategies could be part of the portfolio of actions that minimize the risks of climate
change, eg., R&D programs for non-emitting technologies that would increase the likelihood
that abatement costs would drop in the future [Lempert et dl., 1996].%

®In reality, experiments cannot be conducted for many variables due to irreversibility, long time lags, and
detection problems [Hammit, 1994].

'8 An Energy Modeling Forum study compared the application of hedging strategies across seven
Integrated Assessment models. The study showed varying sensitivity of results to hedging strategies
across the different models, but generally showed that some delay of action isoptimal. However, the
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Other issues associated with the learning process described above are:
Due to computationa issues, the process of updating information needs to be modeled at
discrete pointsin time, which tends to greetly oversmplify the decison making process. In
redity, decisons are not made every 20 or 50 years, but adjustments to policies are made
continuoudy as information is updated. Whether or not a policy isrevised may aso depend
on the gate of the information reveded.
The learning process is not straightforward, but rather obstructed by noise, natural
variability, measurement errors and imperfect understanding of socia and physica
dynamics. An adaptive strategy will outperform one-time optima strategies only if the
observed phenomenawill yield meaningful information [Lempert et a., 1996].

Expected Value of Information

One of the useful by-products of sequentid decision making under uncertainty isthe ability to
identify the expected value of information for key uncertain variables. The vadue of
information for an uncertain variable is determined by subtracting the modd’ s expected net
benefit when the uncertainty about the variable is not resolved until after the decison is made (or
optimization is performed), from expected net benefits when uncertainty about the varidble is
resolved before the decison is made (or optimization is performed). In the former case, a
policy decision is made based on the expected outcome, whereasin the latter case, different
policies are chosen for each known state of the world [Howard, 1966).

The vaue of information is a useful tool in assessing the value of resolving the uncertainty about
an uncertain variable. If it was possible to completely reved the true vaue of an uncertain
variablefor agiven price, then one should pay this priceif it islower than the vaue of
information for that variable. For those models whose objective function measures the utility of
consumption, the expected vaue of information can aso be interpreted as the amount of
consumption that society iswilling to forego in exchange for information on the true Sete of the
uncertain variables [Chao, 1995].

Depending on the nature of the uncertain variables on which information can be obtained,
synergigtic effects among the variables should be explored. When severd uncertainties are
resolved a once, their joint vaue of information may be very different from, and in certain
ingances much larger than, the sum of the individua vaues [Peck and Teisberg, 1993,
Nordhaus and Popp, 1996]. If the joint vaue of information dominates the sum of the individua
vaues, policy makerswould gain higher benefit from performing comprehensive research rather
than narrowly focused research.

In most cases, we do not know at what point in time uncertainties will be resolved. Another
important question is then whether the resolution of uncertainty is urgent or whether strategies

analysis also showed that most cases call for some degree of immediate action. The optimal degree of
immediate action was stronger than in the deterministic case [Manne, 1995].
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are robugt to the timing of uncertainty resolution. If the timing is urgent, policy makers should
spend more funds improving knowledge through research, wheress if srategies are robust to
timing, more funds can be dlocated to other activities such as mitigation and adaptation
[Nordhaus, 1994]. The expected value of early revelation of uncertainty is computed by
determining the value of information at different times of resolution of uncertainty and subtracting
it from the value obtained a time zero. The differencesin these vaues reved the vaue of early
knowledge.

Comput| ng the expected vaue of information raises the following issues:
The vaue of information for a certain variable can exhibit large differences across different
modes. These differences represent either the emphasis that different models place on
certain variables, or the dipersion of the distribution that was assgned to the variable.
Uncertainty ranges are often subjective, but have large impact on the vaue of information.
Computing the vaue of information individualy for different variables might not provide
answers to the questions that policy makersface. Mogt likdly, policy makerswill not trade
off studying natural science versus economic impacts, but rather will need to dlocate funds
across the board. However, computing the joint value of information for severd uncertain
variables may require caculaions that are too complex to perform, especidly in the
presence of correlations among the variables.
The expected vaue of information is not necessarily correlated with the importance of a
variable as determined by a deterministic sengitivity andyss. In other words, the variable to
which utility is most sengtive is not the one with the highest vaue of informetion, if
knowledge of that variable does not change the optima policy much. New informétion is
most vauable for parameters most closdly related to policy making [Nordhaus and Popp,
1996].
The information obtained is usualy not perfect, which makes the concept of diminating
uncertainty unreglistic. To be more accurate, one should determine the value of reducing
uncertainty from one level to another, less uncertain, leve.
In certain policy areas such as climate change the identity of the decision maker who would
place vaue on the information is not clear.*’

Sequential Decison Making under Uncertainty, as Applied to Policy Evaluation
Models

Thetypica framework for sequentid decision making under uncertainty, as applied to policy
evaduation modds, is multi-period decision analysis. Multiple sequentia decisons can usudly
be andyzed with rdlative ease through this methodology. Decison andysis dso provides a
graghtforward gpproach for solving for the expected vaue of information. All commentsin the
above section on single-period decision analysis gpply to the multi-period setting as well.

" Whilethisissueis raised frequently in connection with the value of information, it is actually amore
general problem that underlies most modeling efforts (e.g., whose utility function, discount rate, etc. should
be used).
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Sequential Decison Making under Uncertainty, as Applied to Optimization M odels

This category is often referred to as stochastic optimization and encompasses a variety of
methodologies. Optimization models tend to be computationdly intensive, even when
uncertainty is not modded explicitly. In the context of sequentid decison making under
uncertainty, the complexity increases by multiple dimensions, as optimizations have to be
performed for every uncertain state of the world a every point in time where uncertainty is
resolved. Accordingly, the many different approaches to stochastic optimization represent
different tradeoffs regarding detall in the description of uncertainty, the type of optimization, the
dimension of tractable variables, and run-time.

The main difficulties associated with this class of modds are:
While policy evauation models can easily be converted to multi-stage decison andysis
modds'®, optimization modes require structural modification to incorporate multi-stage
uncertanty.
Due to the computational complexity of optimization modds, sequentia decison making
under uncertainty can only be performed for avery limited set of uncertain sates of the
world. This represents a tradeoff between resolution in policy and exhaustive representation
of uncertainty.
Due to computationa complexity and long run times, certain optimization models may need
to neglect various feedback |oops among the different ements of physica and
socioeconomic systems once uncertainty andysisis included.
When a stochastic congtraint is binding, the high shadow price associated with the congtraint
can affect the outcome disproportionately and result in unredistic recommendations.

Solution methods depend strongly on the number of stages at which uncertainty is resolved and
on the choice of time horizon of the problem, i.e. finite or infinite [Kloeden et al., 1993].

Two-stage Stochastic Optimization

The most common gpproach to sequentia decision making under uncertainty, as gpplied to
optimization modelsis a two-stage moddl, where the first stlage consists of decisions taken
before the uncertainty is resolved, and second stage decisions are taken after uncertainty has
been resolved. The set of second stage decisions can be different depending on the outcome of
the experiment. The class of modesin which some decisions or recourse actions can be taken
after uncertainty is disclosed is dso referred to asrecourse programs  An exhaudtive trestment
of two-stage stochadtic linear programs with fixed recourse is given in Birge et a. (1998).

To perform such an andlys's, the mode is transformed into a set of paradld optimization
problems. Each of the parald problems represents a different sate of the world with an
gppropriately adjusted condtraint set. The outcome vaues of the paralel problems are then
combined by a probability weighted objective function. An additiona set of condraintsis

18 Essentially, decision analysis can be perceived as a“front end” that feeds parametersinto the
deterministic model.
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necessary to ensure that the solution is the same for al states of the world during the first stage,
i.e. the time frame before uncertainty is resolved.

In the field of climate change, severd optimization models have been included in a collective
effort of developing smple two-period optimization models, labeled as "act then learn” models.
Maost modding groups have limited this type of analysis to two uncertain states of the world
[Manne, 1995].

Multi-Stage Finite-horizon Stochastic Optimization

This gpproach is a generalization of the two-stage approach. However, due to the increased
modeling complexity, it requires different solution techniques. At each stage, dl possible states
of the world need to be considered, and the decision variables depend on the redlization of the
stochadtic variables in each previous period. Multi-stage optimization problems are typicaly
solved by dynamic programming.

One of the solution methods employed in stochastic optimization is dynamic programming.
Dynamic programming presents the solution for each decison period compeactly asa pair
conssting of the optimal action as a function of the current state of the world and the expected
vaue of dl future actions, assuming the optima action is followed a each time [Howard, 1960;
Ross, 1983]. With afinite time horizon, the problem can be solved recursively from the last
time period backwards, though the curse of dimensiondity limits the number of time periods and
number of stochagtic parameters for which thisisfeasble. With large state spaces, this
gpproach becomes quite computationaly cumbersome [Puterman, 1994], and typicdly, only
vectors of very smdl dimensions can be accommodated.

An example of adeterminigtic linear program that was converted to a sochastic dynamic
programming mode can be found in Fragniere et d. (1995).

Infinite Horizon Stochastic Programming

Another gpproach isto consder an infinite horizon and use discounting to establish a Sationary
policy so that one need only find an optima decison associated with a state for any stage. In
the case of an infinite time horizon, the moded can be congtructed to find an andytica solution
consgting of adecison function which is employed in each period and avaue function. The
decison at each stage depends only on the uncertain state of the world [Howard, 1960]. The
solution space for infinite horizon stochastic dynamic programming modelsis a function space,
whichisinfinite dimensond. Finding asolution function can be very difficult and requires some
strong assumptions on the function space [Stokey and Lucas, 1989]. Usudly, only one or two
parameters can be modded in such away, given current computing resources [Kely and
Kolstad, 1996].

Mot infinite-horizon stochastic optimization can be distinguished by the assumption on whether

time is continuous or modeled in discrete stages. Discrete time models often use Markov
processes to mode the random movements of variables (see Stokey and L ucas, 1989),
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wheress continuous time models represent uncertain variables in continuous-time stochastic
processes, such as Brownian Motion [Harrison, 1985].

| ssues associated with infinite-horizon stochastic optimization are:
The solution techniques for an infinite horizon mode require Sationarity of the problem, i.e,
the parameters describing the stochastic process may not change over time.
This processis andyticdly very chdlenging and requires mathematicad expertise, thus limiting
its accesshility to many modders. In addition, solution functions may not exist for the
problem to be andyzed.
Determining parameters for a stochastic process may require statistical methods that are
more difficult than those involved with defining probability distributions on uncertain
variables.

Despite the computationd intengty and the resulting limitations on the number of parameters that
may be modeled stochadticdly, the infinite horizon approach offers one mgor advantage: Once
a solution function has been found, further analyses can be performed without complicated
computations. Since the solution is an anayticd function of modd inputs, the effects of
vaiationsin input values may easily be examined [Kedly and Kolstad, 1996]. Thus, stochastic
optimization with an infinite horizon offers away to incorporate sochadticity in key processes
into the analysi's, and at the same time offers a smple way to perform sengtivity andysson
other parameters.

Alternative approaches

Cultural theory

Culturd theory specifies pergpective-based dternative modd routesin which not only
parameters but aso relationships are varied according to the bias and preferences of a particular
perspective. Thisresults in dternative model structures [Van Asselt and Rotmans, 1995]. While
culturd theory can provide fresh perspectives on the types of uncertainties, it does not yield
quantitative results.

Exploratory modeling

Exploratory modeling extends uncertainty andys's beyond parametric variations. In traditiona
uncertainty andysis, input parameters are varied dong a distribution.  Exploratory modeling,
however, emphasizesthat the modd itself should not be taken for granted and explores around
different modd variants. Thus, it can reved regimes of quaitatively different behavior which
result from excurdgons over non-linear functions and/or functiond uncertainty about the system
under study [Bankes, 1993].

The drawbacks of exploratory modding are:
It requires ahigh degree of andyds, and is thus impracticd for large modds.
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It does not provide a distribution of outcome variables because the sampling across the
uncertainty space is non-random.

Higher order uncertainties

Not al distributions about uncertain parameters are equaly well understood, some being more
ambiguous than others. Ambiguity isanotion of exactness in the parameters of a probability
digribution. The gpproachesto uncertainty andysis presented in this paper do not account for
different types of uncertainties. Well understood uncertainty is consdered no different than
ambiguous and very subjective uncertainty.

Paul Fischbeck has proposed atheory to incorporate ambiguity, i.e., uncertainty about
probabilities, into the normative framework of decison analys's, which aso accounts for
decison maker’ s preferences towards ambiguous probabilities. This method uses amultiple
level probability framework which captures a complete uncertainty description of any event. By
maximizing the multiple level expected utility, the decision maker can account for risk and
ambiguity [Fischbeck, 1991].

The main drawback of thistheory isthat each level of uncertainty adds another dimension to the
problem. In a Stuaion where dimensondity is dready the main problem, it would not be
feasble for dl moddersto perform thistype of analyss.

Minimax Regret Strategies

This gpproach finds optimal strategies that take into account multiple states of the world, but
which do not use expected utility as the criterion. As the only requirement is identifying the
possible gtates of nature, it thus avoids the subjective task of estimating probabilities. The most
common way to implement this gpproach, which is aso known as Robust Programming isto
andyze the regret of different policies. Theregret of apolicy is defined as the difference
between the payoff of the optimal policy under perfect information and that with the given
policy, and it is determined for each uncertain scenario. The policy which hasthe smdlest regret
under condderation of al uncertain Satesis optima [Savage, 1951]. An gpplication to alarge
energy policy modd can be found in Kanudia et a. (1998).

Conclusion

This paper presented an overview of different types of uncertainty andysis that have been
performed on integrated assessment modd s and introduced a framework for comparing the
different types of uncertainty anayses through their objective functions. Due to the different
assumptions and implications inherent in each modd, there are limitations on what types of
uncertainty analysis can be performed. The main purpose for developing a unifying framework
was to clarify the different assumptions and limitations that underlie eech type of andysis.

The main obstacle to performing afull uncertainty andyss which includes dl variablesis the lack
of sufficient computational resources. Given current limitetions, a tradeoff needs to be made
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among modd detail and uncertainty analyss. If aproblem is characterized by sgnificant
uncertainty or potentialy important feedbacks, computer resources might be better spent on
exploring alarge number of dternative problem formulations than to increase the resolution in
the best-estimate model.

It is conceivable that a some point in the future, tochastic dynamic optimization could be
performed for integrated assessment models with many uncertain parameters. In the meantime,
sequentia decision making under uncertainty is one methodology that can provide reasonable
comparisons across model types.

One god of performing uncertainty andysesis to increase the ussfulness of integrated
assessment model s to policy makers. Thisgoa should be kept in mind when communicating the
results of an uncertainty andyss. Quantifying the many types of uncertainty about amodd and
the underlying processes and values can be a daunting task, and communicating al the results
can leave the end-user confused. While modelers should perform as many types of uncertainty
andyses as their resources will sustain, only a subset of these should be considered for
publication of results to policy makers, while others should be performed mainly as good
modeling practice and to increase confidence in model structure and choice of parameters.
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Appendix: Modédswhich explicitly account for uncertainty in the model structure:

Model Underlying | Type of Uncertainty Analysis Which uncertainties Key result
Model Type
ASExM Policy Exploratory modeling (explicitly climate sensitivity Best-estimate policiesincur large costs relative to optimum policy if
evaluation, comparing the performance of damages from temp. change state of the world turns out to be different from what was assumed by
Simulation; alternative strategies against a abatement cost reduction from | best-estimate policy. Choice between best-estimate policiesis strongly
Optimization | large number of plausible futures); technological innovation dependent on society’ s expectations about all three uncertainties.
Compares an adaptive strategy Adaptive strategy, with ability to make midcourse corrections, performs
with two best-estimate policies. better on average than best-estimate policies unless society isvirtually
certain that one best-estimate is correct.
Lempert, R. J., M. E. Schlesinger and S. C. Bankes, When we don’t know the costs or the benefits: Adaptive Strategies for Abating Climate Change, Climatic Change, 1996.
CETA Optimization | Sequential decision making under | - warming per CO2 doubling If an optimal control policy is used, the benefit of resolving uncertainty

uncertainty

level parameter in damage
function

power parameter in damage
function

ishigh, but resolving uncertainty now vs. in 20 yearsis not worth
much. If an arbitrary political policy isused, and if resolving
uncertainty now would imply that an optimal policy would be used,
then there is a high premium on resolving uncertainty now vs. later.

Peck, Stephen C. and Thomas J. Teisberg, Global Warming Uncertainties and the VValue of Information:

An Analysisusing CETA, Resource and Energy Economics 15, 1993.

CETA-R

Optimization

Stochastic L osses (represented in
the utility function)

largeloss

Results are very sensitive to the risk perception of the experts
considered in the specification of the loss probability function. No
significant control occurs before 2060, even with the high risk.

Peck, Stephen C and Thomas J. Teisherg, Optimal CO2 Control Policy with Stochastic L osses from Temperature Rise, Climatic Change, Vol. 31, 1995.

HCRA

Policy
evaluation

Sequential decision making under
uncertainty

climate sensitivity

economic costs of emissions
reductions

climatetarget deltaT.

Value uncertainties may be more salient for policy choice. Policiesthat
are sequentially revised as new information becomes available may be
superior.

Hammit, James K., Outcome

and Vaue Uncertaintiesin Global Ch

ange Policy, 12/94.

DIAM

Optimization

Sequential decision making under
uncertainty

- stabilization limit (stochastic
constraint)
impact costs

Possibility of low levels of stabilization limits has large influence on
optimal path. Even though this occurs with low probability, the large
cost assigned to the constraint drives the outcome.

Consideration of impact costsleadsto different time profiles than
optimization under a stabilization constraint (fixed or stochastic.)

Grubb, Michael, Technologies, energy systems and the timing of CO2 emissions abatement, Energy Policy, Vol. 25, No.2, 1997.

DICE

Optimization

Monte Carlo Analysis (using
representative scenarios);
Sequential decision making under
uncertainty

rate of population growth
productivity growth
discount rate

GHG-output ratio

damage function intercept
climate-GHG sensitivity
mitigation cost fctn. intercept

atmospheric detention rate

Carbon tax might be a more efficient instrument in light of enormous
uncertainties. Carbon tax is more invariant across resolution of
uncertainties than optimal GHG control rate. Value of Early Information
can help understand how investments of resources to obtain better
information about the future climate and social sciences pay off.

Nordhaus, W., Managing the Global Commons, MIT Press, Cambridge, 1994.




FUND 1.5

Optimization/
Simulation

Monte Carlo analysis;
Propagation of selected
parameters.

selected parameters, including:

- socio-economic drivers
carbon cycle/climate
climate change impacts
emissions reduction

- Thebusiness as usual scenario leads to an unbounded |oss when
uncertainty isincluded (though the divergenceis slow). Thisdoes
not occur with the emissions reduction scenarios.

Optimal emissions reduction ismore strict under uncertainty than
under certainty.

Under uncertainty, there is no emission trajectory that avoids risk of
both severe costs of emission reductions and severe impacts of

climate change.

Tol, Richard S. J., Tvd Burg, HMA Jansen, H. Verbruggen, The Climate Fund, Some notions on the socioeconomic impact of greenhouse gas emissions and emission reduction
in an international context, Institute for Environmental Studies, RG5/03, Vrije Universiteit, Amsterdam, 1995.
Tol, Richard S. J., A Decision-Analytic Treatise of the Enhanced Greenhouse Effect, Institute for Environmental Studies, RG5/03, Vrije Universiteit, Amsterdam, 1997.

ICAM-2 Simulation; Propagation of uncertainty parameters (up to 25) Optimal decision depends on the decision rule.
Various decision rules and metrics None of the policies are stochastically dominant.
decisionrules model structure
Dowlatabadi, Hadi and Matt Ball, An overview of the Integrated Climate Assessment Model Version 2, (ICAM-2), presented at the Western Economics Association
Conference, 6/29/94.
Kelly/ Stochastic Sequential decision making under uncertainty about climate Interplay between |earning about the climate change problem and
Kolstad infinite uncertainty with endogenous and sensitivity coupled with random | decisionsto control the problem: It can take avery long timeto resolve
horizon continuous learning about unobserved shock to the uncertainty, during which significant suboptimal control can take
optimization | uncertain parameter. temperature place (relative to perfect information).

Kelly, David L., and Charles D. Kolstad, Tracking the Climate Change Footprint: Stochastic Learning About Climate Change, University of California Santa Barbara Economics
Working Paper 3-96R (Nov. 1996).

MERGE 2.0 | Optimization | Sequential decision making under high-damage and low-damage With asmall chance of high damages, a hedging strategy departs only
uncertainty scenario slightly from the low-damage case.
Hedging strategy is sensitive to date at which uncertainty is resolved.
Manne, Alan and Richard Richels, The Greenhouse debate—Economic Efficiency, Burden Sharing and Hedging Strategies, April 1995.
PAGE 95 Policy Propagate uncertainty about input | 80 uncertain parameters: Important factors come from all four groups of inputs to the model.
evaluation; parameters through model; scientific Most important parameters are preventive costs of CO2 and
Stochastic Partial Rank Coefficients between costs of control temperature sensitivity.
simulation. inputs and output. costs of adaptation

- vauation of impacts

Plambeck, Erica L. and Chris Hope, Page 95, An updated valuation of the impacts of global warming, Energy Policy, Val. 24, No. 9, 1996.

PEF

Policy
evaluation;
Deterministic
models and
decision tree.

Decision analysis

- (scenariosonly ?)

As climate change becomes worse, more action iswarranted
Uncertainty in impacts may be asimportant as uncertainty in extent of
climate change.

Adaptation policies could have larger effects on impacts more quickly.

Mitigation isless effective when adaptation is high, but not vice versa.

Cohan, David, Stafford, R., Scheraga, J., Herrod, S., The Global Climate Policy Evaluation Framework, A& WMA, 4/1994.

PRICE

Optimization

5 different approaches to estimate
Value of Information about
uncertain parameters;

Value of Early Information

8 uncertain parameters (sameasin
DICE);
5 states of the world.

Damages from Climate change and costs of reducing GHG emissions are
most important. Resolving their uncertainties would contribute 75 % of
the value of improved knowledge.




| Nordhaus William D., and David Popp, What isthe Va ue of Scientific Knowledge? An application to Global Warming using the PRICE Model, 2/19/96.




SLICE

Finite horizon
stochastic
program/
Optimization

Sequential decision making with
continuous learning (rate of
learning is exogenous parameter)

- climate damage

Theirreversibility of investment capital has a stronger effect than
irreversibilitiesin climate change. Thus uncertainty and learning tend to
bias emission control downward relative to the case of uncertainty but
no learning.

Kolstad, CharlesD., Learning

and Stock Effectsin Environmental Regulatlon The Case of Greenhouse Gas Emissions, JEEM, 31.1-18 (1996).

TARGETS

Stochastic
simulation

Cultural Theory;

The parameters selected are those
that serve as accessories for
model routes used in cultural
theory, while cultural perspectives
serve to determine the distribution
interval.

CO2 fertilization

- soil moisture changes

migration of ecosystems

- temp. feedback on vegetation
- temp. feedback on production
- sulphate aerosols

- water vapor

- clouds

- policy measures

Takesinto account avariety of perspectivesin relation to uncertainty,
which allows for rendering subjective judgment explicit.

Vol. 6 No. 2, 1996.

van Assdlt, Marjolein B.A. and Jan Rotmans, Uncertainty in Perspective, Global Environmental Change

Y OHE/Con
necticut

Optimization

Sequential decision making under
uncertainty

population growth

- technological changein energy

supply

- depletion factor in fossil fuel

price
interfuel elasticity of
substitution

- othersthat play less significant

rolesin the distribution of
emissions

Little or no emissions reduction is warranted over the near term even
as a hedge against the possibility of having to meet severely binding
concentration limitsin the not too distant future.

Modest emissions reduction can be supported when hedging against
high consequence/low probability events across a wide range of
emissions futures

Hedging to achieve “tolerable windows” proposed by German
Advisory Board on Climate Change would require significant near
term emissions reduction at enormous cost.

Y ohe, Gary and Rodney Wallace, Near term mitigation policy for
Assessment, Vol. 1, No 1,2, June 1996.

Environmental Modeling and

global change under uncertainty: Minimizing the expected cost of meeting unknown concentration thresholds,

Zapert et
al.
adaptation
of IMAGE

Policy
Evauation

Propagation of uncertainty

Initial state and/or stochastic
noise are modeled for 155

uncertain parameters (mostly
physical climate descriptors)

Even conservative uncertainty estimates result in scenario overlap of
several decades during which the consequences of any actions
affecting the environment could be difficult to identify with sufficient
level of confidence.

In general, the stochastic fluctuations contribute more to the
uncertainty than the initial state measurements.

Zapert, R., Gaertner, P. S, Filar, J. A., Uncertainty Propagation within an Integrated Model of Climate Change, Energy Economics, Vol. 20, No. 5-6, December 1998.




