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Abstract

Heal's theorem states that if the extraction cost of a depletable
resource increases with cumulative extraction, and a backstop technology
exists, the user cost of the depletable resource declines to zero at the
date of exhaustion. In this note we first present a simple method for
proving this proposition, using a social planning model which determines
the optimal rates of extraction of the depletable resource and production
of the backstop technology. We then present two examples of how this
method can be used to solve more difficult problems in the theory of
resource economics. The first example involves learning-by-doing in the
backstop sector; that is, backstop costs decline with cumulative

production. The second example involves uncertainty over backstop costs,



1. Introduction

In a 1976 article in the Bell Journal, Geoffrey Heal established the

following important proposition concerning the role extraction costs play
in determining the socially optimal price of a depletable resource.
Assume the resource in question is available in infinite amounts, but that
its extraction cost rises with cumulative extraction. An upper bound on
resource costs is provided by a so-called "backstop" technology, which
provides unlimited amounts of the rescurce at a constant cost. Heal
claimed that in such a world the socially optimal price for the resource
must start out well above the marginal extraction cost of the depletable
resource, and move toward it as cumulative extraction grows. Equiva-
lently, the user cost of the resource is initially high, but decliines to
zero at the instant the transition to the backstop technology occurs.
This result contrasts sharply with the case where extraction costs are
constant and the total stock of the depletable resource is finite. Under
these alternative assumptions the socially optimal price starts out close
to the cost of extraction and rises steadily above it as the resource
stock is consumed. The user cost of a constant-cost depletable resource
reaches its maximum at the transition to the backstop.

Heal's statement of these results has been sharpened in several
important ways by subsequent authors. Clark [1978] pointed out that the
user cast need not necessarily decline to zero monotonically, in partic-
ular if the change in the marginal extraction cost with cumulative extrac-
tion is initially small. Hanson [1980] then established an important

relationship between the rate of change of user costs and the curvature of

the resource price path. In particular, Hanson showed that the price path

must be concave as it approaches the level of backstop costs, and the user



cost must be decreasing as well, However, it is perfectly possible
(again, depending on the time rate of change of marginal extraction costs)
for the price path to be convex and user costs to be increasing over an
earlier time interval, In what follows we will denote by "Heal's theorem"
the basic result that the user cost of depletable resources goes to zero
at the transition to the backstop.

In Figure 1 we illustrate the differences between the constant-cost
and increasing-cost formulations. If the unit cost of the depletable
resource is constant at d, and a backstop is available at a cost ¢ > d,
the socially optimal price starts out close to d and rises until it
reaches ¢ at the transition date T (Figure la). The user cost com-
ponent of the price, which measures the cost to society (over and above
the extraction cost) of consuming a unit of the finite stock, rises
monotonically as long as the depletable resource is being consumed,
Because the stock of the depletable resource is finite, consuming a unit
today reduces the quantity available for consumption later. This hidden
cost of consumption is reflected in the user cost, and it naturally rises
as the remaining stock declines toward zero. In Figure 1b we illustrate
the alternative case, where the resource stock is unlimited but the
marginal cost of extraction rises with cumulative extraction. As in the
previous case, the price of the resource rises monotonically to the back-
stop cost at the transition date. However, the marginal cost of extrac-
tion, D(St)’ is rising along with cumulative extraction, St' And, as
the figure shows, as the price nears the level of backstop costs the user
cost is declining., At the transition date price and marginal extraction
cost are equal: the user cost has reached zero, In this case the user

cost reflects the fact that consuming a unit of resource today pushes



society up the cost curve, and in effect makes all future units more
expensive to extract. This shadow cost falls over time simply because the
number of units of the depletable resource left to consume before society
switches to the backstop is shrinking.

Heal's proof of this result is based on an optimal growth model, in
which reproducible capital and the depletable resource are combined to
produce a single homogeneous output. Society must choose not only the
rate at which resources are used in production, but also the division of
current output between consumption and investment. However, the same
result can be proven using a simpler model in which the optimal rates of
consumption of depletable and backstop resources are chosen directly. The
method of proof developed here is both simpler and more intuitive than
that used in Heal's original paper. Moreover, this method generalizes
easily to more complex problems in the theory of depletable resources,
making possible proofs of some results which have previously been
assumed. Our purpose in this paper is to develop this simpler proof of
Heal's theorem, and to illustrate its application in several more
difficult problems.

The paper is organized as follows. In Section II we develop a simple
social planning model with two resources, one depletable and the other the
backstop. The mathematical solution to this optimal control problem is
developed in detail, and Heal's result is seen to follow naturally from a
transversality condition. Then in Section II[ we show how the same
general method can solve a more difficult problem, where backstop costs
decline with cumulative production as a result of learning-by-doing. The

solution to this problem requires a theorem on the value of an optimal



control problem with discounted objective, which is proven in an appen-
dix. In Section IV we study another generalization of the basic model,
one in which backstop costs are uncertain. Again the same method of
attack provides & more thorough analysis than has been available to date.

The paper closes with a brief summary.

I1. The Basic Method and Proof of Heal's Theorem

Consider the problem of choosing the socially optimal rates of con-
sumption of two resources, one a depletable resource whose costs rise with
cumulative extraction, the other a backstop technology with constant
costs, Let St represent cumulative extraction of the depletable
resource, and D(St) the marginal cost of extraction. We will assume
that the available supply of the depletable resource is unlimited and that
D{-) 1is strictly monotonically increasing and unbounded. The backstop
technology provides an unlimited supply of the resource at a constant unit
cost ¢ > D(o).

As 1s standard, we will assume the existence of a concave utility
function wu(+) which measures the gross value to society of consuming the
resource., We will further assume that u'({o) > ¢c. The social planner's
problem is to determine extraction (and consumption) rates of the two
resources which maximize the present value of utility net of extraction

costs. The problem can be formally stated as

Max / e"rt[u(xt + yt) - D(St)xt - cyt]dt 8y

{x } 0

£yt



subject to  S(t) = x(t) ; S(0) =0

x{(t}) >0
y(t) > 0.
where
x(t)} = rate of extraction of depletable resource
y{t) = rate of production of backstop resource

S(t)

cumulative extraction of depletable resource
¢ = cost of backstop resource
u(+) = social utility function

r = social discount rate.

First we show that the solution to (1) involves an initial phase
where extraction of the depletable resource is positive and backstop
production is zero, followed by a phase where only backstop production is
positive. This allows us to recast (1) as a finite horizon, free-end time
control problem in which the single control variable is the extraction
rate of the depletable resource. We them show that Heal's theorem follows
naturally from the transversality condition which links the rates of
extraction of the depletable resource and the backstop at the transition
date.

The Hamiltonian for problem (1) is given by
H = u(xt + yt) - D(St)xt - oy + P\S(t)xt , {2)

where the adjoint variable . (t) can be interprted as a shadow price
measuring the sensitivity of the objective to changes in cumulative

extraction § The three necessary conditions for optimality which

¢
follow from the maximum principle are:



u'(xt + yt) - D(St) * A (t} =0 if x, >0
<0 if X, =0 {3)
U (xt + yt) -c=0 if Ye > 0
<0 if y. =0 (4)
3 - '
As(t) = rhs(t) +D (St)xt . (5)

We first establish

Proposition 1:

In the optimal solution to (1), both resources cannot be produced
simultaneously over any finite interval.
Differentiating (3) and combining the result with (5) yields

it + §t = r[ u'(x,+ y,) - D(St)]/u“(xt +Y¢) when x> 0.

On the other hand, from (4) we have u‘(xt + yt) = ¢ and consequently

it * ¥, = 0 wheny, > 0. Since D(S,) is strictly increasing

when x_ > 0, the above conditions for x,_ > 0 and e > 0 cannot hold

t t
simultaneously on any finite time interval. U

Qur assumption on D{+) implies the existence of some finite §
such that D{3) = ¢, D(S) <c¢ for S <S5 and D(S)>c for S >
S. In other words, there is some finite amounts of the depletable
resource which is cheaper than any unit of the backstop. Since the objec-

tive in (1) is linear in costs, it is optimal to extract depletable enerqgy



as long as its cost is less than the backstop. Furthermore, due to dis-
counting and in view of Proposition 1 that depletable energy should be
used before any backstop energy is produced. These observatins can be

summarized as follows:

Proposition 2:

The solution to (1) requires that the depletable resource be
consumed over the finite interval [0,T], up to the point where the
marginal extraction cost of the depletable resource equals the back-

stop cost. After T, only the backstop resource is used.

In view of Proposition 2 we may rewrite the original problem (1) as
an equivalent finite-horizon control problem. In this problem the planner
seeks the optimal rate of extraction of the depletable resource and a

shut-down date at which the transition to the backstop occurs. Formally

we have
T t
Max e " [u(x,) - D(S,)x 1dt + =(T) (6)
{xt},T 0
subject to  $(t) = Xp 3 S{(0) =0, S(T) =3
x(t) >0
where B(T) = Max | e"rt[u(yt) - c-yt]dt
{yt} T

subject to y(t} > 0.

The function 2{T) can be interpreted as a terminal reward which equals
the net present value of social utility derived from backstop production.

To obtain an explicit expression for ®(T) we need to know the optimal



backstop production rate i We note, however, that this optimal Yy

can be determined pointwise by solving the static problem
Max — [uy,) - ey, 1,
{y(t)}
subject to y(t) > 0.
Thus, the optimal Yy is constant and must satisfy the firt order

condition u'(y*} = c, i.e., marginal utility equals (marginal) cost.

Substituting Yy y* in the above expression for &(T} yields:

o(T) = L e Tru(y*) - cy*] . (7)

3

We turn to the solution of Problem (6). The Hamiltonian here is
t) - D(St)xt () (8)

and by the maximum principle we obtain the necessary conditions:

W(x,) - D(S) + A (t) =0 if x>0

<0 if x =0 (9)
?.\S(t) = ra () + DS, )x, (10)
H(T) = -7 2T (11)

Equation (11) is the transversality condition which applies to a free-end
time control problem. Heal's result which is stated in the followig

proposition follows from this condition.



Proposition 3 (Heal's Theorem):

The shadow cost on cummulative extraction of depletable energy goes

to zero at the instance of transition to the backstop, i.e.,

A(T) = 0. | (12)

Proof;

From (11) and (7) we have

H(T) = "7 2240
= " [T (u(y*) - cy*)]
= u(y*) - cy* .

But from (8) and (9)

H(T) = U(XT) - D(ST)xT + AS(T)xT
= u(xT) - u‘(xT)xT .
Thus
u(xT) - u'(xT)xT = u{y*) - cy* .

Mow since u(k) is concave, the only solution for Xr is
= y*
XT y .

But then since D(ST) =C ,

A,T) = D(S

i
o
|
o
<
*
—
I}
[o]
Lo

- u'{x

( y )

We conclude this part by summarizing the solution to the social ;' :n-
ning problem presented in this section., On the initial phase, from O U,

T, only depletable energy is produced. From (9) and (10} we can show tnat



Xy = r[u'(xt) - D(St)]/u"(xt t )

-

Since u'(xt) > D(St)’ and u"{+) < 0, we can conclude that Xy < 0.

Thus depletable resource production is declining, and marginal utility is
rising, throughout the first phase. Since Xp = y*, total resource use
is continuous across the transition from depletable to backstop use at T.
As a consequence, marginal utility rises smoothly to the cost of the back-
stop and remains constant at that level afterwards. Finally, we know from
Proposition 3 that the shadow cost Rs(t) goes to zero at T. Therefore,

as we illustrate in Figure 1b, the gap between the current extraction cost
and the marginal value of the resource, which is equivalent to its price,
declines toward zero as the transition date approaches. As a final
comment we like to stress that the sharp transition to the backstop is to
a large extent a result of the simplifying assumption of the model. 1In a
recent article, Kemp and Long [1980] show that this result need not hold
in a general equilibrium framework. Their argument is essentially that as
the rate of production of depletable resources declines over time, more
and more factors of production are idled. Efmploying these factors in
backstop production raises welfare over the alternative of delaying back-

stop production until exhaustion of the depletable resource.

[TII. learning-by-Doing

The backstop is by assumption a technology which relies on a super-
abundant resource base. Consequently, its long-run costs should be rela-
tively constant, and not rising as is typical of depletable resources. On
the other hand, the costs of early units of backstop production are likely

to decline as the most efficient production processes are discovered and

-10-



practical experience accumulates. This "lTearning-by-doing" effect is
widespread in new industries, and can account for substantial reductions
in production costs. In this section we analyze a planning model with
learning-by-doing in the backstop sector.

Let Rt represent cumulative production of the backstop resource,
and E(Rt) the marginal production cost. We will assume E(Rt) is
convex and declines toward an asymptote t_, as shown in Figure 2. The

planner's problem for this generalization of (1) can be stated as follows.

=]

{xMa; } é e " ru(x, + Ye) = DS )%, - E(R, )y, Jdt (13)
£2Yt

subject to  S(t) = x(t) : S{(0) =0

=
P Y
o
S
I
«
o
ot
pa—
-
o]
P
o
e
"
(an]
L]

y(t) > 0.

Since the solution to (13) parallels that to (1) in most respects, we will
Teave out many of the details,

First, using essentially the same technique as in the proof of
Proposition 1, we can show that Xy and Yy cannot both be positive over
any finite interval. And again, if any of the depletable resource is
cheaper to extract than the first unit of the backstop is to produce, the
depletable resource will be produced first. Finally, there can be only
one transition; that is, once backstop production begins extraction of the

depletable resource is over forever,

-11-



These considerations allow us to rewrite (13) as the finite-horizon
probiem

-rt
{XS?TT {} e”! [u(xt) B D(St)xt]dt + 2(T) (14)

subject to  S{t) = x(t) ; S(0) = 0O
x(t) >0

where B(T) = Max | e'rt[u(yt) - E(Rt)yt]dt
{yt} T

subject to
R(t) = y(t) ; R(T) =o0.
y(t) >0

Several interesting properties of the solution to the second phase of
(14) are derived in Powell [1983]. We show, for example, that the optimal
rate of backstop production increases over time. And the marginal utility
associated with Yy is always bounded above by E(Rt)’ and approaches
E_ asymptotically. With costs declining as a function of cumulative
production, the user cost associated with current production is negative.
In other words, backstop production is pushed to a point where marginal
utility is less than current production costs, since there is a positive
benefit from moving down the cost curve. But for our purposes the most
interesting aspect of the second phase is that we can express o(T) as a

function of the initial rate of backstop preduction yT. Thus we have

Proposition 4:

3(T) =+ e Tlulyy) - lypygd - (15)

-12-



Proof:

The proof rests on the theorem and corollaries proved in the appen-
dix. These results allow us to express the value of an optimal control
problem with discounted objective in terms of the Hamiltonian at the

initial and terminal times. The Hamiltonian for the second phase is
HT) = uly,) - BE(Ry, + 2 ({t)y, »

where the adjoint variable tr(t) measures the sensitivity of the
objective to changes in cumulative backstop production. Since the

optimality condition for Ye requires
ut(y,) - E(R) = - (1)

we have
H(t) = ulyy) - o'y dy, -

Since u‘(yt) approaches E_, Yy and H(t)} approach constants. Thus,

from Corollary 2 of the appendix

o(T) =2 H(T) = L e Tuly,) - u'(y)y,] -

|

If we compare (15) with the corresponding eguation (7) giving &(T)
in the standard case, we see that u'(yT) and Y1 define an equivalent
constant backstop cost and production level for Problem (14). That is to
say, the solution to the first phase would not change if the backstop were
assumed to have the constant cost u'(yT). But this reduces (14) to (6):

depletable energy will be extracted until D(ST) = u'(yT), at which point

-13-



backstop production will take over. In Figure 3 we illustrate the solu-
tion to (13). Marginal utility rises on [0,T], reaching u‘(yT) at T
along with D(ST). Thereafter u'(+) declines toward E, as Yt
increases.,

Learning-by-doing in the backstop, then, causes no change in the
qualitative nature of the optimal extraction path for the depletable
resource. The optimal path declines over time and marginal utility rises
to the transition at T. Backstop production after T increases over time,
and marginal utility falls. But the initial rate of production at T
defines an equivalent constant backstop cost and production rate; the
optimal rate of production of the depletable resource at the transition
date equals the initial rate of production of the backstop, and while
depletable energy is being extracted its marginal utility is bounded above

by the equivalent backstop cost, u‘(yT).

1V. Uncertain Backstop Costs

Backstop uncertainty has received a great deal of attention in the
literature. To cite just two examples, Hoel (1978) examines the effect of
uncertainty in backstop costs on optimal depletion rates, and Heal (19°9)
examines the impact of uncertainty on both the supply rate and the date of
availability of the backstop. Our purpose in this section is to develnp a
simple model in which backstop costs are uncertain, and to analyse it
using the methods developed earlier in this paper,

The simplest way to introduce uncertainty is to assume that back:' »
costs are given by the probability distribution f(c¢), and that the
social planner must consume all the {finite) stock of depletable eneryy

before he can know the true value of <¢. Both Hoel and Heal work with a

~14-



more complex model, in which some portion of the stock of depletable
energy can be saved for extraction after the true backstop cost is
revealed, The model analysed here, although less realistic, allows for a
much simpler and more suggestive analysis.

Under our assumptions we can pose the problem in a form almost

identical to (6), except that the terminal reward is the expected net

present value of utility from optimal backstop production, taken over the

random variable ¢, Thus we have
Max [ e [u(x,) - D(S,)x, Jdt + E{5(T,c)} (17)
{ t t/'7t
xt},T 0

subject to  S(t) = x(t) ; S(0) =0, S(T) =35

where  (T,c) = Max [ e"[uly,) - ey, ldt
{yt}

subject to y(t) > 0.

Note that the definition of &(T,c) above is identical to the definition
of 2(T) 1in Problem (6). Hence, by (7)
e-rT[

#(Toe) =+ e uly*(e)] - ¢ » yx(c)] (18)

where y*(c) is the solution to the equation u'(y*) = c.
Clearly, the conditions which determine the optimal rate of
extraction of the depletable resource are identical in (17) and (6),

except for the transversality condition which is now,

~15-



HT) = e T EADC)  pupya(e)] - ¢ - oyr(e)) (19)

In order to examine the effect of uncertainty in the backstop cost on the
optimal depletion policy we will compare the solution to (17) with that of
(6) where the deterministic backstop cost is the mean of f(c), €. First

we need to establish the fol]owing'result.

Proposition 5

For any probability distribution on ¢,
ELuly*(c)] - cy*(c)] > uly*(8)] - ey*(¢) ; (20)

i.e., the expected net benefit rate of backstop production is bounded
below by the net benefit rate corresponding to the expected backstop cost.

Using the chain rule, the condition u'(y*) = ¢ and by concavity of
u(+) we obtain

dy*(c) _
dc ~ T u

u{y*(c)) - cy*(c)] = - 1y* > 0.

ja Ty S
2] [AS]

i.e., the function [u(y*(c)) - cy*(c)] is strictly convex. The result

then follows by Jensen's inequality (see Ferguson [1967, p. 76]1). U

The inequality (2) enables us to obtain the following result concern-

ing the effect of uncertainty on the optimal depletion policy.

~16-



Proposition 6

When backstop cost is uncertain with some arbitrary probability
distribution, then the optimal terminal consumption rate of the depletable
energy is higher then when this cost is certain at the mean value of that
distribution, i.e., Xp > y*(&).

Proof

The Hamiltonian and optimality condition for (17) allows us to write
H(T) = ux

But by (19) and Proposition 5, it then follows that,

u(xp) - u' (xp)xp 2 uly*(€)] - ey*(e) . (21)
Since

%;{u(x) -u'(x) ex] = -x <0 for x>0, (22)
Equation (1) implies Xy > y*{(<} 0

The results stated in Proposition 5 allows us to compare the produc-
tion paths under certainty and uncertainty. As we noted before, the two
problems share the same necessary conditions up to the exhaustion date.
Under certainty Xp = y*(€), and under uncertainty Xy > y*(C). Thus it
follows that the entire path of production under uncertainty is higher
than under certainty., Also, the exhaustion date must arrive sooner, since

the initial resource stocks are the same.

-17-



To make this result more intuitive we note that for any probability
distribution on ¢, Equations (20 and {22) imply the existence of some

"certain equivalent" backstop cost c¢* such that
0 <c* < and E{ufy*{c)] - cy*{c)} = uly*{c*)] - c*y*(c*) (23)

Substituting (23) into (19) makes the necessary conditions for Problem
(17) identical to the ones for Problem (6) with backstop cost c*.

It is possible therefore to replace the uncertain problem (17) with a
certain problem in which the backstop cost is c*. This implies that in
presence of uncertainty about the backstop cost it is optimal for the
social planner to act as if that cost is lower than its expected value.

This will have the effect of raising the depletion rate x which in

t’

turn lowers u'(x and moves the exhaustion date up from T(Z) to

i)
T(c*). Figure 4 shows the path of u'(*) to T(E€) under certainty,

and the path of wu'(+) to T(c*) under uncertainty. At T(c*) the true
value of ¢ 1is revealed. Up to this point the planner has been acting as
1f ¢ would turn out to be c¢*, which is less than the mean of f(c).

But if, for the sake of argument, f(c) was symmetric about & , the
actual value of ¢ revealed at T(c*) would exceed c* with a probabil-
ity greater than .5. Thus, in a sense the planner must expect the back-
stop cost to be above c*, and consequently the optimal level of marginal
utility u'ly{c)] to be above c*. This implies that an upward jump at

T in marginal utility, or a downward jump in the production rate, is

inherent in the soluticn to this problem,

-18-



V. Summary

In this paper we have developed a simple method for the analysis of a
class of problems in the theory of resource economics., The method rests
on the fact that in certain problems with two resources it is optimal to
produce from one resource first and then from the other. This two-phase
property allows us to replace an infinite-horizon optimal control problem
having two control variables, with a free-end time finite-horizon problem
having one control variable. This procedure is simpler and more general
than that now in use. It allows us to derive Heal's theorem in a
straightforward way. It also allows us to fully solve several complex
resource problems, one in which the backstop technology is characterized
by declining costs, and another where the cost of the backstop is

uncertain.

-19-



APPENDIX

In this appendix we prove a theorem and two corollaries concerning

the optimal value of a general control problem with discounted objective.

Theorem A.1:

Let J* be the optimal value of the objective function for the

control problem

ty
Max [ et L{x{t),u(t),t)dt (P1)
{u(t)}y t1

subject to x(t) = f{x{t),u(t),t) .

Then g =Lle lne) -e 2 Hit)] + L) et Mg

ot

Proof:

First-order necessary conditions for this problem can be derived from the

current-.value Hamiltonian:
Ho= L(x(t),u(t),t) + a(t) « f{x(t),u(t),t) . (A.1)

The state-control pair x{t), u(t) must satisfy

AH
= =0, (A.2)
and X(t) = f(x(t),u(t),t); (A.3)

while the adjoint variable A(t) obeys

~20-



Mt) = maqe) - & (A.4)

Along the optimal trajectory we have

2
[ e Lx(t),u(t),t)dt -
t
ts
[ eTH Lix(t),ult),t) + A()[F - XT)dt
t
1
t
= [ e T"tH - oa(e)Rldt . (A.5)
t

Integrating by parts we get

ty tr b
[ eyt - ”‘:}' -Ft oy +-} [ et %{f dt . (A.6)
Y Hoooh
Substituting (A.6) into (A.5) then gives:
ts . ty
I, TR ()1t = - ety o et A a)R]at
1 1

(A.7)

Note that H s a function of x(t), u(t), x(t), and (in general) t

itself, Thus

dH _aH °  aH " aH D aH
I - (A.8)

= i X

aE T ax * T A

But from {A.2} and (A.4) and &aH/ax = ; , we have

=D E) - AT+ x5 2 (A.9)

-21-



Thus

1
[oe Tt AR L )R]at
£ r dt
1
t2
= [ e THAgE)x - 2aa(t) - 2 a)x - a(t)x o+ 22 ldt
t r r ot
1
t2
21 -rt aH
—;:ft e’ " op dt . (A.10)
1
Substituting (A.10) in (A.7) yields the theorem:
E: Y k2
[ e TEL e ) (Fex)Mat = - Loyl T el T et oM gy
1 1 1
(A.11)

The following corollaries are direct consequences of the theorem.

Corollary 1:

If the Hamiltonian for P1 is not a direct function of time (i.e.,

aH/3t = 0), then

-rt -rt
_1 1 2
g* = e H(t,) - e H(tz)] .

Corollary 2:

If the upper limit tz in P1 is + =, and the Hamiltonian

approaches a constant as t + =, then

-rt

1 1
J*—Fe H(tl} .

_27-
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