Linking IAV, IAM, and ESM: Results of a Interagency Workshop

RICHARD H. MOSS AND KAREN FISHER-VANDEN

25 July 2016

*Thanks to

• Bob Vallario, Gary Geernaert, and Alex Ruane (and other interagency group members)
• Ian Kraucunas, Alex Ruane, Claudia Tebaldi, and Ian Sue Wing (and other science group members)
• Several workshop participants who are also present in Snowmass today
1. Problem statement: why a multi-model framework for impacts analysis?

2. Workshop overview
 - Use perspectives
 - Typology of uses
 - Capabilities
 - Vision for framework
 - Development approach: Community of practice
Why couple IAV-IA-ES models?

- Evidence is accumulating regarding the need to couple IAV, IA, and ES models to explore tightly coupled human-environment systems affected by multiple stresses.
Results differ between single-sector and integrated models of impacts

Figure 4 | Differences between single-sector and integrated model impact indicators for the five European regions used in the Europe Chapter of the PCC AR5. Positive differences indicate that the integrated model produces higher values than single-sector models; negative differences indicate that the single-sector model values are greater. Both positive and negative differences are presented relative to baseline levels at the regional scale. Based on the GFCM21 climate model combined with baseline or future socio-economics.

Challenge: Managing complexity across sectors and scales

- Evidence is accumulating regarding the need to couple IAV, IA, and ES models to explore tightly coupled human-environment systems affected by multiple stresses.
- As more processes and scales are incorporated, modeling challenges grow.
Example interdependencies – climate change and urban systems focus

Types of interdependencies to consider

- Functional: one system is connected to another (water for cooling, energy for pumping water, …)
- Physical: interaction through a physical system (atmosphere-air quality) or infrastructure attribute (freight and passenger rail travel affected by system capacity)
- Geographic: proximity leads to correlated responses in multiple systems
- Economic and financial: e.g., supply chains; market impacts on multiple processes such as investment cycles, price structures, etc.
- Institutional and policy: a law or regulation affects multiple sectors and decisions or transactions
- Social: relations across social groups (individuals or organizations) affect vulnerability, coping, long-term adaptive capacity of other groups

A framework of modeling tools for research and research applications

- Evidence is accumulating regarding the need to couple IAV, IA, and ES models to explore tightly coupled human-environment systems affected by multiple stresses.
- As more processes and scales are incorporated, modeling challenges grow.
- Can we develop a systems framework that brings together data, models, and analytic capabilities in a toolkit to enable independent teams to explore science and use-inspired questions in a coordinated way?
 - What sorts of problems would such a framework be useful for?
 - What resources and functionality are needed?
 - What efforts are already underway and how could they be built upon?
Agenda and participants

Organized by USGCRP interagency group with science committee input

Over 50 experts: federal government, academia, national labs, and private organizations

- Broad range of expertise

Eight breakouts discussed a representative set of example questions/problems to explore the capabilities required

1. Concentrated and connected infrastructure (Day 1 focus)
2. Drought and increased variability of water supply (Day 2 focus)

Cross-cutting themes and synthesis in additional groups and plenary
Agency Example Uses: Concentrated and Connected Infrastructure

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Title</th>
<th>Location</th>
<th>ICG Co-Chair</th>
<th>SSG Co-Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Electric system reliability and demands affected by water quantity/quality</td>
<td>Room 4102, Plenary</td>
<td>Robert Vallario</td>
<td>Scott Backhaus</td>
</tr>
<tr>
<td>1.2</td>
<td>Health services affected by cascading infrastructure failures and interdependencies</td>
<td>Room 4056, Small Conference Room</td>
<td>John Balbus</td>
<td>Christopher Barrett</td>
</tr>
<tr>
<td>1.3</td>
<td>Coastal city inundation affected by sea level rise and extreme weather events</td>
<td>Room 4046, “Classroom”</td>
<td>Charles Covel</td>
<td>Ali Abbas</td>
</tr>
<tr>
<td>1.4</td>
<td>Urban socioeconomic systems and vulnerable communities affected by heat waves and air quality events</td>
<td>Room 3502, JGCRI Third Floor</td>
<td>Jia Li</td>
<td>Jennie Rice</td>
</tr>
<tr>
<td>Representative cases (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agency Example Uses: Drought and Increased Variability of Water Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.1 Reservoir resilience affected by droughts, floods, and changing extremes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 4102, Plenary</td>
</tr>
<tr>
<td>ICG co-chair: Kate White</td>
</tr>
<tr>
<td>SSG co-chair: Patrick Reed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2 State economies, including agriculture, affected by drought</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 4056, Small Conference Room</td>
</tr>
<tr>
<td>ICG co-chair (facilitator listed first): Ronald Sands and Alexander Ruane</td>
</tr>
<tr>
<td>SSG co-chair: Karen Fisher-Vanden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3 Planning for wildfire impacts and management under changing climate, environmental, demographic, and policy futures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 4046, “Classroom”</td>
</tr>
<tr>
<td>ICG co-chair: Linda Langner</td>
</tr>
<tr>
<td>SSG co-chair: Claudia Tebaldi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.4 Surface water quality and ecosystem services affected by droughts, floods, and changing land use/land cover trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 3502, JGCRI Third Floor</td>
</tr>
<tr>
<td>ICG co-chair: Anne Grambsch</td>
</tr>
<tr>
<td>SSG co-chair: Ian Kraucunas</td>
</tr>
</tbody>
</table>
User typology

- Define information needs and hence functional scientific requirements
- Example: Reservoir resilience affected by drought/extremes

<table>
<thead>
<tr>
<th>Typology Field</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>User perspective</td>
<td>Water planners and engineers at state/city scales; water system owners/operators</td>
</tr>
<tr>
<td>Key parameters/metrics</td>
<td>Resilience (recovery time); robustness (reliability); costs/regrets/benefits of operations/resource allocations; tradeoffs in economic and engineering performance measures</td>
</tr>
<tr>
<td>Drivers/uncertainties</td>
<td>Climate-impacted hydrology; changing land use; water demand management; renewable energy use; demographic/socioeconomic impacts on demand; dietary preference and agricultural demand; resource management polices; institutional effectiveness</td>
</tr>
<tr>
<td>Alternatives Under Consideration</td>
<td>Change in operations/resource allocations; investments in infrastructure; land use policy; demand management programs</td>
</tr>
</tbody>
</table>
Capabilities

- Identify available capabilities and gaps
 - Identify common systems and core framework components that will benefit from more organized, interagency development
 - Begin to develop index of models and other resources
- Categories of capabilities identified:
 - 70-80 capabilities in 16 categories identified spanning climate, land, ecological, coastal, fluvial, surface hydrology, air quality, infrastructure sectors, agriculture, economic, demographic, institutional
- Identified spatial (dimensionality, extent, resolution) and temporal characteristics, type of model, examples, etc.
- Common themes across multiple areas:
 - Represent shocks and non-linear processes
 - Characterize uncertainty
 - High resolution
 - Nested
 - Flexible
Space-time scales of capabilities: atmospheric/terrestrial processes and human systems

Community Modeling and Long-Term Predictions of the Integrated Water Cycle
Workshop outcome: framework vision and approach

- An interconnected system of models, data, analysis methods, and decision support capabilities that support building resilience in interdependent systems
 - Meet growing national/international need to prepare for impacts across interdependent systems, manage potential for cascading failures, feedbacks

- Build a community practice and view framework development as a process built around science and capability requirements
 - Importance of “use context” and maintaining connectivity with users to define required outputs and model components, coupling, data, analytic tools, visualization, decision support…
What might a community of practice look like?

- **Common elements**
 - Repository of modeling components
 - Modeling tools/software environment
 - Computational resources
 - Data
 - Communications support for community activities (e.g., work groups)
 - Meetings
 - Educational resources/capacity building

- **Examples:**
 - CESM (more tightly focused on a single overarching science question – JF will provide overview)
 - Community Surface Dynamics Modeling System (CSDMS) (supports a wide range of independent science questions requiring surface dynamics)
Explore Earth's surface with community software
Terrestrial models

Number of models: 76, Number of tools: 72, WMT compliant: 3

Type: Landscape evolution models, avulsion models, sediment transport models, advection diffusion models, ice sheet evolution models, lithospheric flexure models, groundwater models, surface water-quality models, water balance models, etc.

Coastal models

Number of models: 58, Number of tools: 5, WMT compliant: 4

Type: Coastline evolution models, delta sedimentation models, tidal flat models, storm surge models, plume models, turbidity current models, stratigraphic models, wave refraction models, etc.

Hydrological models

Number of models: 58, Number of tools: 43, WMT compliant: 17

Type: Hydrologic models, stream avulsion models, flow routing models, groundwater models, fluvial sediment transport models, etc.

Marine models

Number of models: 48, Number of tools: 6, WMT compliant: 2

Type: Basin circulation models, gravity flow models, wave models, stratigraphy models, etc.
The CSDMS Web Modeling Tool (WMT) allows users to build and run coupled surface dynamics models on a high-performance computing cluster (HPCC) from a web browser on a desktop, laptop or tablet computer.

With WMT, a user can:

- select a Common Component Architecture (CCA) component model from a list to run in standalone mode,
- build a coupled model from multiple CCA components organized as nodes of a tree structure,
- view and edit the parameters for these model components,
- upload custom input files to the server,
- save models to a server, where they can be accessed on any computer connected to the web,
- share saved models with others in the community, and
- run a model by connecting to a remote HPCC where the components are installed.

Although WMT is web-based, the creation and configuration of a model can be done offline. Reconnection is necessary only when saving a model and submitting it for a run.

This article provides documentation for the components, forms, and controls of the WMT interface. For a short tutorial on using WMT, please see the WMT Tutorial.

Contents [hide]

1 The sign-in screen
2 The main interface
 2.1 Header panel
 2.2 Model panel
 2.2.1 Model title
 2.2.2 Model actions
 2.2.3 Model tree
 2.3 Parameters panel
 2.3.1 Parameter title
 2.3.2 Parameter actions
 2.3.3 Parameter table
3 Running a model
 3.1 Model labels
 3.1.1 Using labels when opening a model
 3.1.2 Using labels when saving a model
 3.1.3 Managing labels
4 Notes

The sign-in screen

The sign-in screen allows access to WMT. WMT always starts on this screen.
Data needs

The CSDMS Data Repository describes important data fields useful in CSDMS research, provides links to data centers for download. CSDMS distinguishes between at least 3 data types relevant for modeling:

1. boundary or initialization data,
2. model algorithm test or benchmark data, and
3. integrated datasets for model validation of coupled systems.

Model test files and validation files are explicitly solicited within the model submission process.
Some possible next steps...

- Identify common system elements for multiple use cases, a conceptual structure for human, natural, and climate system components, requirements for integration, decision support
- Inventory/screen/evaluate capabilities and gaps
- Establish metadata standards, coupling requirements for different uses/problem types:
 - Need a “clearing house” for sharing components, capabilities, knowledge developed
 - Create incentives to share documentation and open source standards
- Sensitivity testing and scenario analysis to establish what is important in coupling process representations, for what questions(s) and user(s)
- Develop and integrate new components consistent with framework standards
Relationship to this workshop

- **Snowmass to focus on a subset of scientific issues:**
 - Explore levels of complexity, coupling strategies for integrating different areas of modeling
 - Explore ideas for process, requirements, identification of metadata standards, etc.

- **Some key questions:**
 - For what science or user questions do the research communities believe the state of science is well enough developed to provide reliable information?
 - What can we learn from examples of integrated IAV-IA-ES modeling?
 - What do different areas of modeling need as inputs from other types of models? What can they provide to others?
 - Are there some component capabilities that would be useful for many problems that should be prioritized?
 - …
Discussion
Aspects of interdependency that need to be characterized

- Spatial scale
- Temporal scale
- Interaction strength
- Interaction complexity
- System state
- Range of perturbations
- Socioeconomic context