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nously determined by the chosen emission policy. The policymaker can display ambiguity aversion
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temperature threshold is not known with confidence. Our simulations show that tipping points
can increase the near-term social cost of carbon by 50% under reasonable assumptions. Regime
shifts that directly increase temperature or damages for a given CO2 concentration have a stronger
impact on optimal policy than do regime shifts that increase the atmospheric lifetime of CO2. The
possibility of a tipping point is more important for the social cost of carbon than is ambiguity
about the temperature threshold.
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1 Introduction

The threat of climate tipping points motivates calls for aggressive near-term emission reductions
to prevent global average temperature from increasing by 2◦C relative to pre-industrial levels (e.g.,
Hansen et al., 2008; Ramanathan and Feng, 2008; Rockström et al., 2009). Tipping points—
or irreversible changes in the climate system caused by increasing carbon dioxide (CO2) and
temperature—are poorly understood, difficult to model, and of increasing concern (Alley et al.,
2003; Overpeck and Cole, 2006; Smith et al., 2009). By connecting today’s climate policy decisions
to expectations of future wealth and warming, integrated assessment models (IAMs) estimate the
social cost of carbon for use in evaluating emission policies and in cost-benefit analyses. However,
because they have not included tipping point possibilities in their system dynamics, these IAMs
might consistently underestimate the social cost of carbon.

We answer three questions about the implications of tipping points for IAMs’ policy outcomes.
First, how do different kinds of tipping points affect the social cost of carbon and optimal abatement
policy? Second, how sensitive is optimal policy to prior beliefs about a temperature threshold’s
location? Third, is aversion to ambiguity about the threshold’s location important for the social cost
of carbon? We find that tipping points which increase the response of temperature to CO2 are more
important than tipping points which increase either the damages incurred by high temperatures
or the quantity of non-CO2 greenhouse gases. The least important of the studied tipping points
increases the atmospheric lifetime of CO2. Optimal policy is not highly sensitive to the form of the
threshold distribution, and it avoids the temperature trigger if it is known to be at 2.5◦C or above.
Aversion to the ambiguity arising from lack of knowledge about the location of the temperature
threshold only mildly affects near-term optimal policy.

To answer these questions, we extend a standard IAM to include endogenous regime shifts,
learning about the threshold that triggers a regime shift, and a welfare evaluation based on the
smooth ambiguity model. Our first extension incorporates tipping points into a recursive version
of the Dynamic Integrated model of Climate and the Economy (DICE), a welfare-optimizing IAM
(Nordhaus, 2008). A tipping point occurs upon crossing some temperature threshold. Each tipping
point irreversibly changes the climate system from its conventional representation in DICE to a
new regime that depends on the type of tipping point under consideration. Emission decisions
affect whether tipping points occur by determining the temperature expected in each period. The
decision-maker anticipates how it would choose emissions and consumption in the post-threshold
world. The timing, probability, and welfare consequences of a regime switch are endogenous because
they depend on the policies chosen before and after the threshold occurs.

We explore four tipping points (Table 1), whose effects are illustrated by the thick arrows in
Figure 1.2 The first tipping point changes the response of temperature to increased CO2 con-
centrations. More specifically, it increases climate sensitivity, which is the equilibrium warming
produced by doubling CO2 concentrations. This change would occur if land ice sheets begin to
retreat on a shorter-than-expected timescale. The second tipping point affects the relation between

2We do not model tipping points that might increase welfare because beneficial tipping points are not much
discussed in the climate science literature. An interesting analogue of a beneficial tipping point is a new technology
that changes the dynamics governing abatement cost. We also do not model tipping points that bring the planet to
a cold equilibrium (Zaliapin and Ghil, 2010).
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Figure 1: A simplified schematic of the modeled relation between the economy and the climate.
Dashed arrows indicate the decision variables of consumption, investment, and abatement, and
boxes indicate stock variables. Tipping points alter the relationships shown with thick arrows and
are labeled as: a) increased climate sensitivity, b) increased convexity of damages, c) weakened
CO2 sinks, and d) increased non-CO2 forcing.

Table 1: The four tipping points that can occur from crossing a temperature threshold. Each model
run uses only one of these post-threshold regimes.

Post-threshold regime Threshold event

Climate sensitivity increased from 3◦C to 6◦C Land ice sheets retreat faster than expected

Damages become a cubic function of temperature West Antarctic ice sheet collapses

CO2 decay reduced by 75% CO2 sinks weaken

Non-CO2 forcing increased by 1.5 W m−2 Warming releases methane from hydrates

temperature and output. It increases the convexity of the damage function, which determines the
percentage of world GDP that is lost when temperature increases. The convexity of the damage
function would be increased by abrupt events that raise sea level (as in the collapse of the West
Antarctic or Greenland ice sheets) or that produce unexpectedly nonlinear responses in agricultural
production (as in sudden shifts in rainfall patterns). The third tipping point reflects the possibility
that carbon sinks weaken beyond the predictions of the simple carbon cycle model represented in
DICE. These weakened sinks decrease the decay rate of CO2, which in turn increases the time for
which emitted CO2 affects the atmosphere. Finally, the fourth tipping point produces a perma-
nent increase in forcing from non-CO2 greenhouse gases. This corresponds to a large, sustained
release of methane from melting permafrost or subsea hydrates, which would raise greenhouse gas
concentrations independently of further economic activity.

Most IAMs assume that the dynamics governing the climate and the economy evolve smoothly
over time.3 However, the tipping points described above can be relatively abrupt (Hansen et al.,
2008; Lenton et al., 2008). The omission of tipping points has long been recognized as potentially
important (e.g., Nordhaus, 1993; Hall and Behl, 2006). One form of sudden change is a generic
catastrophic impact that reduces every future period’s utility (Gjerde et al., 1999). In contrast,

3In DICE-2007, some abrupt damages are included in the calculation of willingness-to-pay used to parameterize
the damage function (Nordhaus, 2008), but the dynamics of passing into catastrophic scenarios are not modeled.

2



Lemoine and Traeger Tipping points and ambiguity in IAMs

we model sudden temperature-induced changes as altering underlying system dynamics. Further,
unlike the more restricted policy setting of Lempert et al. (1994), we embed these shifts in a model
of dynamic policy that optimizes welfare at each timestep. Both before and after crossing the
threshold, our decision-maker optimizes consumption, CO2 abatement, and, via residual output,
investment.

Our second extension recognizes that the temperature threshold for a tipping point is unknown.
The decision-maker learns about the temperature threshold by observing whether a threshold has
or has not been crossed as the world reaches higher temperatures. The chosen emissions determine
the probability that a tipping point occurs, and this probability itself depends on the temperature
produced by previous emission decisions. Increasing global temperature produces a greater chance
of a tipping point occurring when temperature is already high. Both the probability of a tipping
point occurring and the decision-maker’s knowledge of the probability distribution are endogenous
in the sense that they depend on chosen emission levels. Similarly to our work, Keller et al.
(2004) extended DICE to endogenously determine when a threshold is potentially crossed. They
considered an abrupt collapse of the thermohaline circulation (or Gulf Stream) that permanently
shifts the damage function. Our model differs by including pervasive temperature stochasticity and
by having the decision-maker endogenously learn about the threshold’s location through the chosen
emission path.

Several studies have analyzed uncertainty in DICE by drawing model parameters from a distri-
bution and then determining optimal policy under certainty for each realization (e.g., Nordhaus,
2008; Ackerman et al., 2010). They approximated the optimal policy under uncertainty as the
average policy from the various deterministic model runs. The resulting policy is usually not the
same as optimal policy under uncertainty (Newbold and Daigneault, 2009). Other models have
optimized consumption in the face of persistent stochasticity but imposed exogenous greenhouse
gas policies (Gerst et al., 2010). We instead convert DICE into a recursive dynamic programming
model (compare Kelly and Kolstad, 1999; Leach, 2007; Crost and Traeger, 2010). This enables us to
analyze optimal policies under uncertainty about temperature change and about the temperature
threshold that triggers a regime shift. Each period’s optimal policies reflect the possibility that the
next period’s temperature will not be as expected and, moreover, that a climate threshold will be
crossed.

By extending a full numerical IAM, we estimate the effect of uncertain tipping points on the
social cost of carbon. Other relevant work has investigated the effects of uncertain climate tipping
points in less complex models. It has considered how the possibility of a climate catastrophe affects
the optimal steady state CO2 concentration (Tsur and Zemel, 1996), how the endogenous risk of
especially high-damage outcomes affects irreversible investment in abatement capital (Fisher and
Narain, 2003), and how hyperbolic discounting increases the salience of a low probability, distant
catastrophe (Karp and Tsur, 2007). Another pair of studies considered optimal control problems
in the presence of uncertain thresholds that cause a stream of disutility (Nævdal, 2006; Nævdal
and Oppenheimer, 2007). Finally, if emissions cannot be fine-tuned but instead are controlled only
by discrete policies of predefined magnitude, then the policymaker must choose when to adopt the
emission policies. This timing depends in part on how their adoption affects the possibility of a
catastrophe (Baranzini et al., 2003; Guillerminet and Tol, 2008).

Beyond the climate context, other work has considered how an endogenous, uncertain threshold
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that makes pollution stop decaying altogether can produce multiple optimal paths for consump-
tion and environmental quality (Ayong Le Kama et al., 2011). This threshold’s effect on system
dynamics is similar to our tipping point with weakened CO2 sinks. A separate effort analytically
modeled a shift in pollutant loading upon crossing a stochastic, reversible threshold (Brozović and
Schlenker, 2011). They found that precaution is non-monotonic in the variance of the distribution
for the threshold level: precaution at first increases with the variance as pollution levels just below
the expected threshold have a greater chance of crossing it, but precaution eventually decreases
when the variance becomes especially high because more probability mass then falls on thresh-
old values that are either too high or too low to warrant precaution.4 In contrast, we consider
a fixed, irreversible threshold and model learning about its location. The possibility of collapse
or altered system dynamics also arises in the optimal use of renewable resources. Polasky et al.
(in press) considered a regime shift that reduces the resource’s growth function. They found that
the pre-threshold policy becomes more precautionary when the possibility of the regime shift is
endogenous. Our work also examines the implications of an endogenous regime shift that affects
system dynamics, but we do so with a nonlinear utility function that allows for risk aversion and
we explore several different types of regime shifts.

Our third extension of the standard IAM distinguishes different types of uncertainty when eval-
uating welfare. Specifically, our decision-maker can be more averse to poorly understood tipping
point uncertainty than to better understood temperature risk. We use “objective risk” to describe
uncertain outcomes whose probabilities can be gleaned from data. In our model, this describes tem-
perature stochasticity. We use the term “subjective uncertainty” to describe uncertain outcomes
when there is less information available for determining probabilities. This deficiency in proba-
bilistic knowledge applies to tipping points, which are more poorly understood than other climate
phenomena (Alley et al., 2003; Lenton et al., 2008; Ramanathan and Feng, 2008; Kriegler et al.,
2009; Smith et al., 2009). Distinguishing between types of uncertainty reaches back to Keynes
(1921: Chapter VI) and Ellsberg (1961), who added an additional confidence weight to proba-
bilities in order to describe uncertainty more comprehensively. We employ the Klibanoff et al.
(2005, 2009) smooth ambiguity model to capture the decision-maker’s ambiguity attitude, or the
decision-maker’s attitude to varying confidence in probability judgments. The model is consistent
with conventional decision-theoretic axioms, including time consistency and a minimally modified
version of the von Neumann and Morgenstern (1944) axioms (Traeger, 2010). Lange and Treich
(2008) applied the Klibanoff et al. (2005) model to analytically explore the implications of ambi-
guity about a climate damage parameter. Millner et al. (2010) applied the multiperiod evaluation
function of Klibanoff et al. (2009) to evaluate exogenous consumption paths from DICE simulations
under ambiguity about climate sensitivity. They explored the response of this evaluation to changes
in ambiguity attitude. Finally, Hennlock (2009) applied robust control theory to a two-sector ana-
lytic version of DICE. The robust control model can be interpreted as the limiting case of extreme
ambiguity aversion in our smooth ambiguity framework. Our work differs from these in numerically
implementing a model of ambiguity aversion that is not only used to generate endogenous policy
paths but also entails optimal updating of the ambiguous distribution.

4Because we have exogenous variables evolving in time, one additional difference between our model and that of
Brozović and Schlenker (2011) is that the cost of the policies needed to stay just below a known threshold changes
over time.
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Section 2 explains how we extend DICE, emphasizing the inclusion of tipping points and the
generalized welfare evaluation. In section 3, we discuss the details of our four tipping point scenar-
ios. Section 4 presents the results for each tipping point with a known threshold, with an unknown
threshold, and with ambiguity aversion. We conclude in section 5 with a discussion of the implica-
tions for climate science, economics, and policy. The two appendices describe the model calibration
and equations.

2 Introducing tipping points and ambiguity aversion into DICE

Our infinite horizon model extends Crost and Traeger (2010), which is a stochastic dynamic
programming relative of the DICE-2007 model by Nordhaus (2008). DICE is a Ramsey-Cass-
Koopmans growth model that has an aggregate world economy interacting with a climate module.
Gross economic output (or potential GDP) is determined by an endogenous capital stock, an ex-
ogenously growing labor force, and exogenously improving production technology. Gross output
produces CO2 emissions. Non-abated CO2 emissions accumulate in the atmosphere and ultimately
translate into global warming, which causes damage proportional to world output. The control
variables of the model are abatement and consumption, and residual output not allocated to these
two options becomes capital investment (Figure 1). We implement a recursive modeling structure
for the following reasons. First, we can account for temperature stochasticity. Second, we can
model endogenous regime shifts and learning about the temperature thresholds that trigger them.
Third, we can employ a more comprehensive approach to welfare evaluation that distinguishes
between aversion to temperature risk and aversion to ambiguous tipping point occurrences. In
order to replicate DICE in a stochastic dynamic programming framework, we use the state vari-
ables of capital, the stock of CO2 in the atmosphere, and time. But in order to avoid the curse of
dimensionality, we approximate the carbon cycle and the cooling effect of ocean heat capacity as
interpolated functions of the CO2 stock and time rather than as additional state variables. More-
over, we translate DICE’s intrinsic warming delay into increased strength of the cooling reservoirs.5

The two appendices provide more details on the equations governing the economy and the climate
system as well as on the calibration and interpolation procedures.

In the following, we explain the richer uncertainty and welfare structure of our model. We
represent maximized aggregate welfare by the function Vψ(kt,Mt, t), where ψ indicates whether
a threshold has been crossed. The state variables are capital kt (per effective unit of labor), the
stock Mt of CO2 in the atmosphere, and time t.6 Crossing the threshold causes an irreversible
switch from a pre-threshold regime (indicated by ψt = 0) to a post-threshold regime (indicated by
ψt = 1). A regime switch immediately after period t means that ψs = 0 ∀s ≤ t and ψs = 1 ∀s > t.
Welfare in a period is defined by aggregating immediate utility u(ct) = c1−η

t /(1 − η) from per
capita consumption ct with the expectation of future welfare. The parameter η is the Arrow-Pratt
measure of relative risk aversion, and η−1 gives the intertemporal elasticity of substitution. Thus,

5We are working on implementing our model with a temperature state variable to include DICE’s delay equation
for temperature. We currently adjust the transient feedback (or cooling reservoir) to calibrate our baseline model to
DICE’s optimized output.

6Including time as a state variable enables other variables to evolve exogenously.
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η captures the preference for consumption smoothing over time and over risk. Once the regime
switch occurs, all that matters for the decision problem are the post-threshold equations of motion
and the state variables; the pre-threshold value function Vψ=0(kt,Mt, t) is irrelevant after crossing
a threshold. The post-threshold value function Vψ=1(kt,Mt, t) is defined recursively by optimizing
over consumption ct and the abatement rate µt so as to maximize welfare under the constraints of
the equations of motion governing the economy and the climate system described in Appendix 2.
This gives the dynamic programming equation:7

Vψ=1(kt,Mt, t) = max
ct,µt

c1−η
t

1− η
+ βt Et [Vψ=1(kt+1,Mt+1, t+ 1)]

= max
ct,µt

c1−η
t

1− η
+ βt

∫
Vψ=1(kt+1,Mt+1, t+ 1) dIP , (1)

with the random variable affecting the output constraint as described below. Future welfare is
discounted with the factor βt. The discount factor captures a rate of pure time preference of 1.5%
as in DICE-2007. It also adjusts for population growth so that equation (1) effectively measures
welfare as the population-weighted sum of instantaneous per capita utility.8 As discussed below, we
solve the dynamic programming problem for the value function Vψ=1 numerically for four different
post-threshold regimes. We use a function iteration approach employing Chebychev polynomials
for the value function approximation at a set of Chebychev nodes in the three-dimensional state
space.

Once the threshold has already been crossed, welfare in period t+ 1 is uncertain only because
of climatic fluctuations affecting the realized temperature. Cumulative temperature change affects
the total output available for allocation to consumption, abatement, and, as a residual, investment
(Appendix 2). Temperature is determined by an independent, normally distributed multiplicative
shock having probability measure IP. We calibrate the mean-1 shock to the years 1881-2010 in
the NASA Goddard Institute for Space Studies (GISS) Surface Temperature Analysis dataset.9

We take expected temperature in each year to be the mean of the surrounding 10 years’ realized
temperatures. The estimated standard deviation of the resulting time series of multiplicative shocks
is 0.0061.10 This multiplicative noise captures period-to-period temperature variability that makes
extreme outcomes more likely as CO2 increases.

Once we have solved for the post-threshold value function, we use it to solve the pre-threshold
value function. We assume that the system passes from the pre-threshold regime (ψt = 0) into
the post-threshold regime (ψt+1 = 1) if the expected temperature change Et[Tt+1] relative to pre-
industrial levels crosses a threshold.11 We make the threshold depend on expected temperature

7As in Crost and Traeger (2010), the model is actually solved using a transformation mapping the infinite time
horizon to the unit interval. Compare also Kelly and Kolstad (1999).

8We originally have an instantaneous utility function Ltu (Ct/Lt) as in DICE. For convenience of representation
and of numerical solution, we divide through with the population Lt and represent welfare as a function of per capita
consumption ct = Ct/Lt. The discount factor then has to pick up the exogenous change in population on top of pure
time preference.

9Available at http://data.giss.nasa.gov/gistemp/.
10We implement the continuous distribution numerically using a Gauss-Legendre quadrature rule with 8 nodes.
11The effect of making a tipping point lag the crossing of a temperature threshold would depend on when the
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rather than on actual temperature realizations because, first, expected temperature captures the
intuition that medium-term changes in temperature are more likely to trigger tipping points and,
second, it saves a state variable.12 When the threshold temperature is known to be T ∗, we call it
a “certain threshold”. In general, however, the decision-maker does not know where the threshold
lies, making the threshold temperature a random variable T̃ . The probability distribution for
T̃ follows from assuming that a tipping point is sure to occur by the time the world reaches a
temperature T̄ and that any temperature between present levels and T̄ has an equal chance of
being the threshold. In most runs, we assume that the time 0 (i.e., year 2005) expected value for
the threshold is 2.5◦C: E0 T̃ = 2.5◦C, which combines with the assumed uniform distribution for
T̃ to give T̄ = 4.33◦C (Figure 2a). This value for E0 T̃ is consistent with the political 2◦C limits
for avoiding dangerous anthropogenic interference. Further, in Smith et al. (2009), 2.5◦C is in the
upper end of the temperature region that produces significant risk of large-scale discontinuities and
is just below the temperatures that produce severe risk. In the baseline optimal policy scenario
without a threshold, temperature rises above 2.5◦C in the year 2098 and never reaches 4.33◦C.
We vary T̄ between 3◦C and 5◦C to assess the sensitivity of the results to the upper bound of
the uniform distribution. The probability of crossing the threshold between periods t and t + 1
conditional on not having crossed the threshold by time t is:

h(Et[Tt+1]) = max

{
0,

min{Et[Tt+1], T̄} − Et−1[Tt]

T̄ − Et−1[Tt]

}
. (2)

This expression gives the hazard rate for a contemplated temperature increase. The time t expec-
tation of temperature at time t+ 1 is conditional on the CO2 stock and the transient feedback at
time t + 1 (see Appendix 1).13 These are known at time t, and expectations are formed over the
noise term generating stochastic temperatures. The hazard rate for further temperature increases
is greater when the current temperature is greater (Figure 2b). However, the hazard rate as a
function of changes in CO2 does not always rise with the current CO2 concentration. While greater
current CO2 corresponds to greater current temperature (raising the hazard rate), additional CO2

has less of an effect on temperature when the CO2 concentration is already high (decreasing the
hazard rate). A period’s hazard rate is endogenously determined by the decisions made given the
realized state variables.

Expected welfare in the pre-threshold regime is the sum of the known current welfare and the
discounted uncertain future welfare. If the threshold is not crossed during the next period, welfare

policymaker learns the threshold was crossed and on whether the tipping point’s effects are irreversible once the
threshold is crossed.

12In DICE-2007, the CO2 stock increases monotonically until the model reaches a sufficiently high level of abate-
ment. From this point on, the decay rate of CO2 outweighs the flow of emissions, making the CO2 stock decrease
monotonically. With an increasing CO2 stock, the probability of crossing the threshold is proportional to the dif-
ference between expected temperature in the next period and the expected temperature for the current period (as
determined by the current CO2 stock). For a decreasing CO2 stock, the probability of crossing the threshold is 0.
As long as expected temperature is a quasiconcave function of time, we do not need an additional state variable to
keep track of the highest historic expected temperature. As in DICE-2007, CO2 concentrations in our model follow
a path that is quasiconcave in time, with the policymaker selecting the CO2 path so that expected temperature is
also quasiconcave in time.

13Our uncertain threshold is therefore distributed in the two-dimensional state space of time and the CO2 stock
(compare Nævdal, 2006; Nævdal and Oppenheimer, 2007).
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(a) Probability distribution for T̃ (b) Hazard rate

Figure 2: As the time t expected temperature increases without crossing a threshold, the probability
distribution for the threshold level T̃ places more mass on temperatures yet to be reached. Each
additional increase in temperature therefore also produces a greater risk of crossing the threshold.

is given again by the pre-threshold welfare function Vψ=0 (evaluated at the next period’s states and
subject to the temperature uncertainty captured by IP). However, with a probability given by the
hazard rate, next period’s welfare is determined by the post-threshold regime in the function Vψ=1.
Therefore, expected welfare in the next period is the weighted average of welfare with and without
crossing the threshold, where the weights follow from the hazard rate. This gives the pre-threshold
dynamic programming equation:

Vψ=0(kt,Mt, t) = max
ct,µt

u(ct) + βt

∫
f−1
amb

[
[1− h(Et[Tt+1])]famb[Vψ=0(kt+1,Mt+1, t+ 1)]

+ h(Et[Tt+1])famb[Vψ=1(kt+1,Mt+1, t+ 1)]

]
dIP

= max
ct,µt

c1−η
t

1− η
+

βt
1− η

∫ [
[1− h(Et[Tt+1])]

[
(1− η)Vψ=0(kt+1,Mt+1, t+ 1)

] 1−γ
1−η

+ h(Et[Tt+1])
[
(1− η)Vψ=1(kt+1,Mt+1, t+ 1)

] 1−γ
1−η

] 1−η
1−γ

dIP . (3)

The function famb captures smooth ambiguity aversion (Klibanoff et al., 2005, 2009), or intertempo-
ral aversion to subjective uncertainty (Traeger, 2010). In our case, subjective uncertainty character-

izes the chance that a tipping point is crossed. We adopt a power function famb(V ) = ((1− η)V )
1−γ
1−η .

In a one-commodity setting, γ can be understood as a measure of Arrow-Pratt relative risk aversion
with respect to subjective uncertainty (or to poorly understood uncertainty). As described earlier,
the probability of crossing the threshold before the next period is generally less confidently known
than is the distribution for temperature in a given period. For this reason, we have γ ≥ η, allowing
the decision-maker to be more averse to the chance of a threshold crossing (determined by h(·))
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Table 2: The welfare specifications used to assess the effect of ambiguity aversion when tipping point
probabilities are considered more subjective. All specifications employ an aversion to intertemporal
substitution and objective risk of η = 2 as in Nordhaus (2008).

Preference specification Aversion to tipping point uncertainty (γ)

Ambiguity neutrality 2
Moderate ambiguity aversion 9.5
Strong ambiguity aversion 50

than to the risk produced by not knowing the next period’s temperature exactly (determined by
IP). We solve for the pre-threshold value function employing the same method as described above
for the post-threshold value function.

When η = γ, the policymaker is ambiguity-neutral and the welfare evaluation is as in DICE
(Table 2). Runs with this parameterization do not disentangle preferences over the tipping point
lottery from preferences over time and over the temperature change lottery. To assess the effect of
ambiguity aversion, we consider a case with moderate ambiguity aversion close to the calibration
result of Ju and Miao (2009) in the asset pricing context (γ = 9.5) and also a case with stronger
ambiguity aversion (γ = 50).

3 Modeled tipping points

We now further describe the four tipping points listed in Table 1 and illustrated in Figure 1.
Appendix 2 shows how optimal policy responds to the modeled changes in system dynamics. It
helps to first introduce the equations describing equilibrium temperature change, damages, and the
evolution of the CO2 stock. Equilibrium temperature change Tequil relative to pre-industrial levels
is given by:

Tequil = s
ln(Mt/Mpre) + EFt/5.35

ln 2
. (4)

The parameter s is climate sensitivity, Mt and Mpre are the time t and pre-industrial CO2 stocks,
and EFt is the exogenous time t non-CO2 forcing. To obtain expected time t temperature change
Et−1[Tt], we adjust Tequil for the cooling reservoir described in Appendix 1. Let Ygross be the
total output produced by the time t capital stock. Then the output available for allocation to
consumption, abatement, and investment is Ygross/(1 +D). The function D gives damages due to
temperature change:

D = b2T
b3
t . (5)

The parameter b2 equals 0.0028388 as in DICE-2007. The damage function in DICE is quadratic,
giving b3 = 2. Finally, the CO2 stock Mt evolves according to the following transition equation:

Mt+1 = Mpre +
(
1− φ(M, t)

)(
Mt −Mpre

)
+ et , (6)

where et gives time t emissions. The function φ(M, t) is defined in Appendix 1. It determines the
decay of the CO2 stock towards pre-industrial levels. This decay is a function of time and the CO2
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stock and is based on values inferred from the output of DICE-2007.
The first tipping point occurs if we observe land ice sheets to be retreating over shorter-than-

expected timescales in response to an experienced increase in temperature. Common definitions
of climate sensitivity assume that these “slow feedbacks” do not affect temperature on relevant
timescales. If they do begin to operate, they amplify the warming predicted using conventional
estimates of climate sensitivity. This tipping point shifts our model into a post-threshold regime
with increased climate sensitivity ŝ:

ŝ = 2s . (7)

Climate sensitivity in the pre-threshold regime is 3◦C as in DICE, and post-threshold climate
sensitivity becomes 6◦C (Hansen et al., 2008). Each unit of emissions causes more temperature
change than previously expected, which quadruples damages from equilibrium temperature change.

The second tipping point occurs when a sudden, irreversible change such as the collapse of
the West Antarctic or Greenland ice sheets increases impact assessments for higher temperatures
(Oppenheimer, 1998; Vaughan, 2008; Notz, 2009). DICE uses a damage function that is quadratic
in temperature, but many have raised concerns about the fit of a quadratic function at high lev-
els of temperature change (e.g., Wright and Erickson, 2003; Ackerman et al., 2009; Newbold and
Daigneault, 2009; Weitzman, 2009; Ackerman et al., 2010; Hanemann et al., 2010). This tipping
point increases the convexity of the damage function by changing the exponent on Tt to b̂3. We pa-
rameterize this as making damages a cubic function of temperature in the post-threshold regime:14

b̂3 = b3 + 1 = 3 . (8)

Each unit of temperature change reduces output by more than it would have prior to crossing the
threshold. Damages are now multiplied by an additional factor equal to current temperature.

The third and fourth tipping points model degradation of carbon sinks and and activation of
methane sources. The third tipping point reflects the possibility that carbon sinks weaken beyond
the predictions of coupled climate-carbon cycle models (Raupach et al., 2008). The many processes
through which the climate and carbon cycle affect each other are difficult to model and to calibrate
(Luo, 2007), making it hard to rule out extreme outcomes (e.g., Sitch et al., 2008). Warming-
induced changes in oceans (Le Quéré et al., 2007), soil carbon dynamics (Eglin et al., 2010), and
standing biomass (Huntingford et al., 2008) could affect the uptake of CO2 from the atmosphere.
In order to represent an extreme form of weakened sinks, we parameterize this tipping point as
causing a 75% reduction in the decay rate of CO2:

φ̂ = φ/4 . (9)

The change from φ to φ̂ increases the time for which a unit of emitted CO2 affects atmospheric
CO2.

The fourth tipping point corresponds to a permanent increase in forcing from non-CO2 green-
house gases, as if from a large, sustained release of methane from melting permafrost or subsea

14This regime with more convex damages is similar to the case considered by Azar and Lindgren (2003), but their
regime switch can happen only in 2035 and with a low probability that is exogenous (i.e., does not depend on emission
decisions).
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Table 3: The model runs used to assess the effects of climate tipping points and additional aversion
to tipping point uncertainty.

Model Description

Base case No thresholds can occur
Certain threshold Policy precisely controls when and whether a threshold occurs
Uncertain threshold Policy controls the probability that a threshold occurs
Ambiguity aversion Additional aversion to threshold uncertainty

hydrates (Hall and Behl, 2006; Archer, 2007; Schaefer et al., 2011). A large methane release is
one of the hypothesized triggers for ancient periods of rapid warming (Zachos et al., 2008). We
represent this tipping point as permanently increasing each period’s non-CO2 forcing by 1.5 W
m−2:

ÊF t = EFt + 1.5 . (10)

The 1.5 W m−2 additional forcing is at the low end of a range of plausible methane emission rates
during ancient warming (Schmidt and Shindell, 2003), and it is equivalent to increasing the CO2

concentration by 30%. The methane event corresponding to the permanent increase in forcing is a
large initial release followed by an ongoing release of declining magnitude. The additional forcing
from the initial release tends to decrease as methane decays to CO2, but the ongoing release offsets
this decay.

4 Results

We compare several sets of model runs to assess how the social cost of carbon and optimal CO2

concentrations respond to different tipping points, to uncertainty about the temperature threshold
for a tipping point, and to additional aversion to tipping point uncertainty (Table 3). The baseline
version of the model is the standard DICE model plus temperature stochasticity. Period-to-period
temperature uncertainty has a negligible effect on policy in these runs. Temperature variability
affects residual output (i.e., investment), but the independently distributed fluctuations are not
important enough to affect the consumption and abatement policies chosen before a period’s tem-
perature variability is resolved. A second set of runs has a tipping point occurring at a known
threshold. The decision-maker knows that the world will change once reaching the temperature
T ∗. She can therefore adjust emissions to delay or avoid crossing the threshold and also adjusts
optimally after crossing the threshold. A third set of runs makes the decision-maker uncertain
about the temperature threshold that triggers the tipping point. Additional emissions increase the
chance of crossing into the new regime, and the decision-maker updates beliefs about the threshold
based on whether a tipping point has occurred. Finally, a fourth set of runs includes aversion to
tipping point ambiguity, which makes the decision-maker more averse to tipping point uncertainty
than to temperature change uncertainty. In each model run with tipping points, the decision-maker
only faces one type of tipping point and knows which type that is.

11
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The effect of each tipping point’s occurrence on optimal policy and welfare determines how pre-
threshold policy responds to awareness of the tipping point. Pre-threshold policy affects the chance
of crossing the tipping point and also affects the capital and CO2 stocks at the time the threshold is
crossed. Figure 4 depicts the optimal time paths of the social cost of carbon (optimal carbon tax)
and CO2 concentrations conditional on not having crossed the threshold. The depicted paths have
each year’s temperature take its expected value. We show optimal policy conditional on not having
crossed the threshold because we want to inform the choice of policy when tipping points still
might occur. Each graph compares the baseline scenario without tipping point awareness to runs
with tipping point awareness and with moderate and strong ambiguity aversion. Comparing time
paths in graphs on different rows shows the effects of different types of tipping points. A possible
tipping point can increase the year 2015 social cost of carbon by 50% (Table 4), and optimal policy
may still incur a substantial (though reduced) chance of crossing the uncertain threshold (Table 5).
The effects of tipping point considerations on the near-term social cost of carbon and on the peak
CO2 concentration are not highly sensitive to the upper bound used in the uniform distribution
for the threshold’s location (Figure 5). If the threshold is known with certainty to be at 2.5◦C
or higher, the policymaker will ensure that it is not crossed, but the abatement required to avoid
lower thresholds may be overly costly (Figure 6).

In order to understand the effects of tipping points on optimal policy, we analyze the effect
of an additional unit of emissions on a policy program’s value. In the baseline scenario without
tipping points, the loss from an additional unit of emissions is given by the derivative of the pre-
threshold value function with respect to emissions: d Vψ=0(k∗t ,M

∗
t , t)/dMt. However, when tipping

points are possible, this derivative only captures the change in value conditional on staying in the
pre-threshold regime. The social cost of carbon also depends on the change in value conditional on
crossing into the post-threshold regime and on the change in the probability of crossing into the
post-threshold regime. To more readily analyze the right-hand side of equation (3) at the optimum,
we suppress all arguments that do not change for an additional unit of emissions et. Then the value
of the program is:

u∗ + βt

∫
f−1
amb

[ [
1− h(e∗t )

]
famb

[
Vψ=0(Mt+1(e∗t ))

]
+ h(e∗t )famb

[
Vψ=1(Mt+1(e∗t ))

]︸ ︷︷ ︸
Veff (e∗t )

]
dIP ,

where h(e∗t ) = h(Et[Tt+1(e∗t )]). The change in value from an additional unit of emissions is then
given by:

βt

∫
d f−1

amb

[
Veff (e∗t )

]
d Veff

{[
1− h(e∗t )

]d famb[Vψ=0(Mt+1(e∗t ))
]

d Vψ=0

∂Vψ=0(Mt+1(e∗t ))

∂Mt+1

+ h(e∗t )
d famb

[
Vψ=1(Mt+1(e∗t ))

]
d Vψ=1

∂Vψ=1(Mt+1(e∗t ))

∂Mt+1

+
d h(Et[Tt+1(e∗t )])

dEt[Tt+1]︸ ︷︷ ︸
i

dEt[Tt+1(e∗t )]

d et︸ ︷︷ ︸
ii

(
famb[Vψ=1(Mt+1(e∗t ))]− famb[Vψ=0(Mt+1(e∗t ))]

)
︸ ︷︷ ︸

iii

}
dIP .

(11)
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When temperature is decreasing, there is no chance of crossing a threshold in the next period
(h(e∗t ) = 0 = d h(e∗t )/d et). In this case, only the first line contributes to the damage from addi-
tional emissions, and as in the baseline scenario without tipping points, the social cost of carbon
is determined by the effect of an increased carbon stock on the next period’s pre-threshold value
function. When there is positive probability of crossing a threshold, the decision-maker also consid-
ers the effect of an increased carbon stock on the next period’s post-threshold value function (via
the second line in the equation above). This additional consideration does not greatly affect the
social cost of carbon in our simulations because the difference between the value function deriva-
tives in the first and second lines is not large enough to matter after weighting by the small annual
hazard rate. However, the social cost of carbon is not simply a convex combination of the effects
of a higher CO2 stock in the pre- and post-threshold regimes. Instead, additional emissions also
affect the probability of crossing the threshold as in the third line above. Additional emissions
increase the temperature expected in the next period (term ii), and if this expected temperature
is above any historical level, then the additional emissions also raise the hazard of crossing into
the post-threshold regime (term i). The cost of the regime switch is proportional to the difference
between the pre- and post-threshold value functions (term iii). If, on the other hand, the expected
temperature is not greater than historic levels, then the third line does not contribute to the social
cost of carbon because the hazard rate will be zero with or without the additional emissions.

The contribution of the third line to the social cost of carbon (the “hazard effect”) is crucial
to understanding the influence of possible tipping points on optimal policy. The value lost from
switching regimes (term iii) is often large. As long as optimal temperatures are increasing (so term
i is nonzero), the hazard effect increases the social cost of carbon relative to a scenario without
tipping points. As CO2 concentrations increase, term i grows bigger while term ii grows smaller.
The change in term i usually dominates in our model, which makes the hazard effect become more
important as CO2 increases. The effect of tipping points on the social cost of carbon therefore tends
to increase over time. Eventually, abatement becomes cheap enough that it is no longer optimal for
temperature to increase. Figure 3a describes the relation between the marginal benefit of abatement
and the marginal cost of abatement. When marginal abatement cost is high, optimal emissions
are greater than the level ê that would stabilize temperature (point a). There is a discontinuity in
the marginal benefit of abatement at ê, as the hazard effect is positive for greater emissions and
zero for lower emissions. When marginal abatement cost becomes low enough to cross marginal
benefit at this discontinuity (point b), it is optimal to stabilize temperature and thereby eliminate
the contribution from the second and third lines in equation (11). The benefit from the next unit of
abatement would be less than the cost of the additional abatement because there is no hazard effect
for further emission reductions, but the benefit from the last unit of abatement was greater than
the cost of that abatement because additional emissions would indeed produce a nonzero hazard
rate. Abatement is set so as to keep temperature constant, making CO2 concentrations nearly level
out (see Figure 4).15 When temperature is held constant, the marginal benefit of abatement differs
between the last unit emitted—to which only the first line in equation (11) contributes—and the
next unit emitted—to which all three lines contribute. Figure 3b shows the social cost of carbon

15Because the CO2 decay rate, the ocean cooling adjustment, and the non-CO2 forcing change over time, keeping
temperature constant implies slightly decreasing the CO2 stock over time.
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(a) (b)

Figure 3: On the left, marginal damage (i.e., the marginal benefit of abatement) exhibits a dis-
continuity at the net emission level ê that keeps temperature constant. Marginal abatement cost
(dashed lines) falls over time. On the right, the benefit from the next unit of abatement (dotted
line) is less than the benefit from the previous unit of abatement (dashed line) when optimal policy
holds temperature constant. The plotted values are results for an unknown temperature threshold
that would increase climate sensitivity.

for the last unit emitted as a dotted line and the social cost of carbon for the next unit emitted as
a dashed line. The solid line depicts optimal marginal abatement cost. These three lines diverge
once it is optimal to hold temperature constant, as the calculation of marginal benefit depends
on whether emissions have a nonzero hazard rate and marginal abatement cost depends on the
emissions needed to hold temperature constant. Once marginal abatement cost falls far enough,
the decision-maker reduces optimal emissions below ê (point c), making temperature fall. Finally,
once the economy reaches full abatement, the marginal benefit of abatement and the marginal
cost of abatement diverge once more (point d). Because the DICE model does not allow negative
emissions, the decision-maker uses a boundary solution in abatement even though the benefit of
the last unit of abatement exceeds its cost.

We see the effects of each tipping point possibility in Figure 4. All increase the social cost of
carbon and decrease optimal CO2. The climate sensitivity tipping point has the greatest effect
on optimal pre-threshold policy, increasing the near-term cost of carbon by 50% and decreasing
peak CO2 from around 680 ppm to below 530 ppm. The tipping points with the next strongest
effects on pre-threshold policy are the damage convexity and non-CO2 forcing tipping points, which
increase the near-term cost of carbon by about 40% and decrease peak CO2 to around 540 ppm and
555 ppm, respectively. The decay rate tipping point has the least effect on optimal pre-threshold
policy, increasing the near-term cost of carbon by only 12% and decreasing the pre-threshold peak
CO2 concentration to around 625 ppm. The effect of each tipping point on the social cost of
carbon grows with time as the effect of emissions on the hazard rate increases with time (due to
the increasing value of term i from equation (11) at higher CO2 concentrations). Some tipping
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Table 4: The social cost of carbon ($/tCO2, current value) in 2015 under expected draws. It is
calculated from marginal abatement cost and is $12/tCO2 in the baseline case.

Tipping point

Climate Damage CO2 sinks Non-CO2

sensitivity convexity weakened forcing
increased increased increased

Uncertain threshold 18 16 13 16
Ambiguity aversion 18 16 13 16
Strong ambiguity aversion 19 17 13 17

points affect policy more than others because the total loss Vψ=0 − Vψ=1 from crossing a threshold
(term iii) depends on the effect of the tipping point on system dynamics. The climate sensitivity
tipping point quadruples damages for the equilibrium temperature, though its effect is smaller for
the transient temperature modeled. The damage convexity tipping point multiplies pre-threshold
damages by a factor equal to the temperature outcome, which means damages are usually not
even tripled. The non-CO2 forcing tipping point also has a smaller effect on damages than does
the climate sensitivity tipping point, but its exact relation to the damage convexity tipping point
depends on the current temperature and CO2 stock. However, the effects of these two regime shifts
on damages are often comparable. Finally, the decay rate tipping point has the smallest effect on
optimal policy because the reduction in value that it causes is undercut both by the time it takes
CO2 to accumulate in the atmosphere and by the concavity of the relationship between temperature
and CO2.

Introducing tipping points requires considering the effect of emissions on the post-threshold
continuation value and on the expected loss from crossing a threshold; in contrast, introducing
ambiguity aversion (i.e., making famb concave rather than linear) does not introduce a new term
but changes the evaluation of each of these other terms. The most significant effect is on the loss
from crossing a threshold (term iii in equation (11)), as increasing ambiguity aversion raises the
perceived distance between the two continuation values. The importance for optimal policy of the
total loss from crossing a threshold depends on the effect of additional emissions on the hazard rate.
As discussed above, the effect of emissions on the hazard rate generally increases along the optimal
path as the change in term i dominates the change in term ii for high CO2 stocks. Ambiguity
aversion increases the effect of tipping points on the cost of carbon through term iii, and ambiguity
aversion itself becomes more important for policy over time as tipping points themselves become
more important for policy through term i. When we implement ambiguity aversion in our recursive
version of DICE, we find that the near-term effect on the social cost of carbon is usually minor even
for strong ambiguity aversion (Table 4). Further, the optimal policy for a moderately ambiguity-
averse decision-maker gives about the same chance of eventually crossing a threshold as does the
optimal policy for an ambiguity-neutral decision-maker. Even a strongly ambiguity-averse decision-
maker reduces the probability of a tipping point occurring by fewer than 6 percentage points relative
to an ambiguity-neutral decision-maker (Table 5).

15



Lemoine and Traeger Tipping points and ambiguity in IAMs

Social cost of carbon Optimal CO2 stock

Climate
sensi-
tivity
increased

Damages
more
convex

CO2

decay
decreased

Non-CO2

forcing
increased

Figure 4: Time paths for the social cost of carbon (current value) and the CO2 stock under each type of

tipping point and using expected draws. With an uncertain threshold, we simulate a path that happens to

never cross a threshold in order to see how the modeled policymaker adjusts to the possibility over time.
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Table 5: The probability that the threshold will ever be crossed. This is determined by the peak
temperature in a simulation with expected draws and a threshold that happens to never be crossed.
In parentheses, the expected year of crossing, conditional on the threshold being crossed at some
point and determined by repeated simulations. This expected crossing will tend to occur earlier
when policy makes temperature peak earlier.

Tipping point

Climate Damage CO2 sinks Non-CO2

sensitivity convexity weakened forcing
increased increased increased

Uncertain threshold 0.46 0.48 0.61 0.51
(2050) (2052) (2062) (2053)

Ambiguity aversion 0.45 0.48 0.61 0.50
(2049) (2051) (2062) (2053)

Strong ambiguity aversion 0.40 0.44 0.61 0.47
(2046) (2049) (2061) (2050)

The baseline policy path has a 68% chance of ever crossing the unknown
threshold with standard preferences. It crosses a 2.5◦C threshold in 2098,
and its expected year of crossing conditional on crossing at some point is
2068. The decision-maker follows the baseline path if unaware of tipping
point possibilities.
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(a) Social cost of carbon in 2015 (b) Peak CO2 concentration

Figure 5: The sensitivity of the year 2015 social cost of carbon and of the peak CO2 concentration
to the upper bound T̄ for the uniform distribution over the temperature threshold T̃ . All of these
runs use ambiguity-neutral preferences, and the simulations use expected draws for temperature
while assuming the realized threshold is above the peak temperature reached.

Because the scientific literature does not support a particular distribution for the temperature
threshold, it is important to assess the sensitivity of our conclusions to the bounds on the uniform
distribution. We parameterized our base case distribution so that the year 2005 expected threshold
was at 2.5◦C, implying an upper bound of T̄ = 4.33◦C. To assess sensitivity, we also vary the upper
bound T̄ between 3◦C and 5◦C.16 The resulting optimal policies never lead temperature across T̄ .
As expected, by reducing the threshold risk implied by a given temperature outcome, raising the
threshold distribution’s upper bound increases peak CO2 and decreases the near-term social cost
of carbon. Decreasing the upper bound to 3◦C has a slightly greater effect on peak CO2 and the
near-term cost of carbon than does modeling strong ambiguity aversion. Our results regarding the
relative importance of each type of tipping point and the influence of tipping points on optimal
policy are therefore not highly sensitive to the precise form of the uniform distribution for the
unknown threshold.

Finally, we consider the case where the temperature threshold’s level is known with certainty. As
described above, marginal damage depends on how the additional CO2 stock affects each possible
continuation value and on how additional emissions affect the probability of crossing the threshold
before the next period. However, now the decision-maker knows—and controls—exactly which
continuation value will hold in the next period. The decision to eventually cross the threshold
or not depends on the cost of imposing a temperature constraint relative to the cost of switching
regimes. If the threshold is sufficiently high, then the known tipping point is irrelevant because
the temperature constraint would be slack. If the threshold is too close to the initial temperature,
then the cost of avoiding it is extremely large and marginal damage is determined by the effect of
additional CO2 in the post-threshold regime. If the threshold is instead in an intermediate region,

16We are currently exploring sensitivity to greater upper bounds.
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Figure 6: The social cost of carbon in 2015 (current value) when the temperature threshold is
known to be at a certain level. Solid lines connect points for which the policymaker plans to avoid
the threshold. All of these runs use ambiguity-neutral preferences. Note that these results are as
yet only indicative and will change once we implement an improved solution method.

then optimal policy has temperature approach the threshold but never cross it. The social cost
of carbon is then determined by the cost of adjusting future policy to still avoid the threshold. If
future policy cannot be adjusted because additional emissions would trigger the tipping point, then
these additional emissions bear the entire cost of the regime shift. This produces a discontinuity
in marginal benefit as in Figure 3. For threshold levels that are worth avoiding, the cost of carbon
decreases as the known threshold increases, but the cost of carbon can actually increase with a higher
threshold if the higher threshold makes the decision-maker choose to avoid crossing it (Figure 6).
The tipping points that impose greater damages are worth avoiding at lower thresholds. In these
cases, optimal policy takes temperature up to the threshold and holds it constant until abatement
becomes sufficiently cheap.

5 Conclusions

We have described an original extension of DICE to include the endogenous possibility of climatic
tipping points, learning about the temperature threshold that triggers tipping points, and aversion
to ambiguity about the threshold’s location. Tipping points that increase the lifetime of CO2 are
less important than tipping points that increase the damage at a given time per unit of atmospheric
CO2. While previous work has shown that optimal policy is sensitive to the chosen value of climate
sensitivity and to the convexity of the damage function, we have shown that it is also sensitive to
the anticipation of endogenous, discontinuous changes in climate sensitivity or damage convexity.
Ambiguity attitude does not become crucial to our evaluation of tipping point uncertainty until
the probability of tipping points becomes much greater than in our model’s early years. The type
of tipping point faced is more important for near-term policy than is additional aversion to tipping
point uncertainty or the precise form of the uniform distribution for the temperature threshold.

Our conclusions have implications for climate science, economic modeling, and climate policy.
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First, it is important for IAMs that climate science improve knowledge about both the effects of
tipping points on system dynamics and the types of temperature paths that trigger them (Alley
et al., 2002, 2003). It is also important to translate tipping point results into the reduced climate
models used by IAMs. Which variables might a tipping point affect? Is a tipping point triggered
by medium-term average temperature, by short-term temperatures, by interannual variability, or
by the rate of warming? What does the distribution for its occurrence look like? How might we
expect to learn about tipping point risks? IAMs’ conclusions might be sensitive to each of these
answers and should be updated as the climate science literature progresses.

Second, economic modeling should gauge which simplifications are likely to be crucial for the
results used in policy assessments. We have shown that optimal policy paths are sensitive to as-
sumptions about damage convexity and climate sensitivity and to assumptions about the possibility
of tipping points. Modeling exercises that do not vary key parameters or that assume smooth, pre-
dictable system dynamics need to be explicit about the omitted factors that tend to push their
estimates in a given direction. This is especially important when all models tend to omit the same
factors. In that case, the spread of models’ estimates for the social cost of carbon should not di-
rectly give the distribution used in policy analysis. Past compilations of IAMs’ estimates (e.g., Tol,
2008) described a set of models that omitted climatic features that we have shown could strongly
affect the reported results. Further, by building uncertainty into the decision environment, we have
shown that the information structure around tipping points has policy consequences. For instance,
optimal policy is quite different if a threshold is known to be at 2.5◦C versus if it is uncertain but
currently expected to be at 2.5◦C. As a result, it is important that other IAMs include uncertainty
in a realistic way and vary the information structure. In some cases, certainty makes a variable less
relevant, but in other cases, certainty means more effort will be expended to control a variable’s
effects. Because not much is known about tipping points or how to model them, they constitute an
important form of model uncertainty that covers the effects of tipping points as well as knowledge
about them.

Third, regarding climate policy, we find that including tipping points can increase DICE’s
estimate of the year 2015 social cost of carbon by 50% and can decrease DICE’s year 2015 industrial
CO2 emissions by over 1 Gt CO2. Using a recent bottom-up abatement cost curve, this increase
in the social cost of carbon could increase the economical emission reductions in the U.S. by 0.25
Gt CO2 per year (Creyts et al., 2007). Estimates of the social cost of carbon play an increasingly
important role in the evaluation of government policies (e.g., Interagency Working Group on Social
Cost of Carbon, 2010; Masur and Posner, 2010; Greenstone et al., 2011) and may well affect the
carbon price eventually targeted by carbon taxes and cap-and-trade policies. The best estimate of
the social cost of carbon probably does not treat tipping points as impossible, but it is not clear
which type of model comes closest to representing the world we face. In any case, much work
remains to make IAMs’ representation of tipping points more realistic (Hall and Behl, 2006). The
challenge when choosing values for the social cost of carbon is one also faced in, among others, the
choice of climate projections for planning and policy evaluation (Knutti et al., 2010; Lemoine, 2010),
of emission factors in transportation policy (Plevin et al., 2010), and of interest rates in monetary
policy (Hansen and Sargent, 2001): policymakers must consider and combine the results not just of
different models but also of different possible structures for a given model. The decision is further
complicated when only a small set of model structures has been explored. It is therefore desirable
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that policy consider both how a given model’s predictions change with its assumptions and how
to adapt to the results of future modeling efforts. While we have shown how the possibility of a
threshold affects the shadow value of CO2 emissions in a standard IAM, climate policy constitutes
buying insurance against not just the assumed possibility of a tipping point but also against the
prospect that the available models do not adequately capture future changes in the climate and
the economy.

6 Appendix 1: Model calibration

This appendix describes the feedback representation of temperature change, the decay of atmo-
spheric CO2 over time, and the model’s calibration to DICE-2007. We simplify the carbon cycle
and temperature change representations from DICE in order to include the tipping point possibil-
ities that might produce a more realistic model.

DICE determines time t surface temperature from the stock of CO2, from temperature in the
previous period, and from the difference in the previous period between temperature at the surface
and in the deep ocean. We use a more parsimonious relationship to capture the influence of time
t CO2 on time t temperature, and we calibrate this representation so as to capture the marginal
relationships important for economic evaluation. We model expected time t temperature change
Tt relative to pre-industrial levels as determined by the CO2 stock Mt and by the net feedback
fatm + ft (Roe, 2009):

Et−1[Tt] =
λ[R(Mt) + EFt]

1− (fatm + ft)
=
λ[5.35 ln(Mt/Mpre) + EFt]

1− (fatm + ft)
. (12)

The function R(Mt) = 5.35 ln(Mt/Mpre) gives the additional radiative forcing in W m−2 caused by
changing CO2 concentrations from the pre-industrial level Mpre to the time t level Mt (Ramaswamy
et al., 2001: Table 6.2), and EFt is the exogenous non-CO2 forcing in W m−2. The parameter
λ = 0.315 ◦C (W m−2)−1 gives the reference system (black body) temperature change per unit of
radiative forcing (Soden et al., 2008; Roe, 2009). The sum fatm + ft is non-dimensional and must
be less than 1. As described in the main text, realized temperature is given by Tt = εtEt−1[Tt],
with εt an independent, normally distributed shock with a mean of 1 and a variance calibrated to
historical temperatures.

Feedbacks determine the change in temperature generated as the earth system responds to a unit
of temperature change in the reference system. When feedbacks are positive, each non-dimensional
feedback factor f represents the portion of the total system’s temperature change produced by its
associated processes. When the CO2 concentration increases, the atmosphere traps more outgoing
radiation (given by R(Mt)) even as incoming radiation has not changed. The planet heats up to
restore the balance between outgoing and incoming radiation at the top of the atmosphere. This
effect is given by the constant λ. However, the increase in surface temperature causes changes in the
earth system that in turn cause further changes in surface temperature. For instance, the warmer
atmosphere now holds more water vapor, which traps additional outgoing radiation and causes
the surface to warm faster. This amplifying response is captured by a positive feedback factor.
We assume that feedbacks are linear functions of temperature and affect each other only through
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temperature. This common assumption allows us to aggregate the “atmospheric” feedbacks of sea
ice, clouds, and water vapor-lapse rate in the constant fatm (Soden et al., 2008; Lemoine, 2010).
Climate sensitivity s is the equilibrium temperature change from doubled CO2 concentrations:

s =
5.35λ ln 2

1− fatm
, (13)

where being in equilibrium means ft = 0. DICE-2007 uses a climate sensitivity of 3◦C, which
implies fatm ≈ 0.61.

The time-varying feedback factor ft represents transient feedbacks. It adjusts equilibrium feed-
back strength to give time t temperature. DICE-2007 has one state variable for surface temperature
and another for deep ocean temperature. The interaction between the two allows the ocean’s heat
capacity to moderate each period’s temperature change. Further, DICE-2007 also delays the effect
of radiative forcing on temperature. We use ft as a reduced-form version of the difference between
time t temperature and equilibrium temperature for a given CO2 concentration (Baker and Roe,
2009). When CO2 concentrations are increasing, ft should always be a negative feedback because
ocean heat uptake prevents all of the equilibrium surface warming from occurring immediately.
When the CO2 stock is constant, ft should weaken (i.e., move towards 0) with time as the ocean
and atmosphere equilibrate. When CO2 concentrations are decreasing, ft can be positive as the
ocean transfers stored heat to the atmosphere.

We also simplify the representation from DICE-2007 of the evolution of atmospheric CO2.
DICE-2007 has one state variable for atmospheric carbon, another for shallow ocean carbon, and a
third for deep ocean carbon. These state variables and their associated transition matrix constitute
a simple carbon cycle model determining how atmospheric CO2 changes from period to period. We
instead have an explicit decay rate φ(M, t) that is a function of time t and of the atmospheric CO2

stock Mt. As with the transient feedback factor ft, including the atmospheric CO2 stock as an
argument proxies for the emission path up to time t. The decay rate φ implied by a change in
DICE carbon stocks from Mt to Mt+10 (where t is in years) solves the following equation:

Mt+10 = Mpre + (1− φ)10(Mt −Mpre) + et
1− (1− φ)10

δ
, (14)

where et gives annual CO2 emissions over the decade and Mpre is the pre-industrial CO2 stock.
We calculate ft and φ as functions of time and the CO2 stock. We use four runs from DICE to

obtain temperature and carbon time series for calibrating these two functions: a business-as-usual
run, a run with optimal policy, a lower-carbon run using an abatement path like that produced in
our model with an uncertain climate sensitivity tipping point, and a still-lower-carbon run with an
abatement path like that in our model when the climate sensitivity tipping point occurs in 2005. We
infer the values of ft and φ at each 10-year timestep in these DICE runs, and we approximate each
function over our state space using Chebychev polynomials. Figure 7 plots the resulting functions
f̄t and φ̄ along the business-as-usual and optimal policy paths from DICE, and it also plots each
variable along our model’s baseline path, after further adjusting them as described below. The
inferred values of ft are at least broadly similar to the results of Baker and Roe (2009).

Inferring the functions for ft and φ enables us to replicate the CO2-temperature relationship
from DICE-2007 as well as the relation between CO2 levels with decadal timesteps. However, these
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(a) Transient feedback (b) CO2 decay

Figure 7: The transient feedback ft and CO2 decay rate φ along our model’s baseline optimized
path (after adjustments described in the text), along the optimized policy path in DICE-2007, and
along the business-as-usual path in DICE-2007.

inferred functions do not reproduce the optimal CO2 stock or social cost of carbon from DICE.
Because we are primarily interested in how these policy-relevant values change under different
specifications, we adjust these inferred functions to better match DICE-2007’s optimized output
(Figure 8). First, our use of an annual timestep instead of a decadal timestep tends to make
the inferred CO2 decay rate different from what we would need to replicate CO2 dynamics with
emissions varying each year. In particular, emissions in the second century often decline over a
decade while DICE’s stock transition equations treat annual emissions at the start of the decade
as lasting for all ten years. We therefore adjust the inferred CO2 decay rate φ̄(M, t) as follows:

φ(M, t) = 0.8φ̄(M, t) . (15)

Second, while the transient feedback in the physical calibration reproduces the relationship
between CO2 stocks and temperature over representative time paths, it alters the marginal re-
lationship between CO2 and temperature by failing to delay the effect of radiative forcing on
temperature. This would lead to a greater social cost of carbon and thus to greater abatement,
which overly reduces both the CO2 stock and temperature (Figure 8).17 To better capture the
social cost of carbon’s time path, our calibration adjusts the inferred transient feedback f̄t(M, t) as
follows:

ft(M, t) = f̄t(M, t) + max {−0.07, −0.0007 max(t− 100, 0)} , (16)

where t = 0 corresponds to 2005. This adjustment makes the transient feedback more negative after
the year 2105. As Figure 8 shows, our calibration largely reproduces the time paths for the social
cost of carbon, abatement, and the CO2 stock, but this comes at the cost of making temperature
0.35◦C too low near its its peak. Our calibration adjusts the inferred parameters to better represent

17We are currently shifting to a four-state model that will avoid this problem.
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the marginal effect of CO2 emissions in DICE, but in does so by reducing the effect of the total
CO2 stock on temperature and thereby increases available economic output relative to DICE.

7 Appendix 2: Model specification

This appendix provides the transition equations for state variables and exogenous variables (see
Nordhaus, 2008; Crost and Traeger, 2010). It also describes the four modeled tipping points in
terms of these equations and illustrates how post-threshold policy differs from policy in the absence
of tipping points.

The transition equations for the state variables of effective capital (kt) and atmospheric CO2

(Mt) are:

kt+1 =e−(gL,t+gA,t)

[
(1− δk)kt + (1−Ψtµ

a2
t )

Ygross
1 +D

− ct
]

(Capital)

Mt+1 =Mpre + (1− φ(M, t))(Mt −Mpre) + σt(1− µt)Ygross +Bt . (CO2)

In the transition equation for CO2, σt is the emission intensity of gross output and Bt gives exoge-
nous CO2 emissions from non-industrial sources such as land use change. Mpre is the pre-industrial
CO2 stock, and φ(M, t) is calculated as in Appendix 1. The first term in the capital transition equa-
tion has capital depreciating at constant rate δk, and the last two terms define capital investment as
any available output not allocated to the control variables of consumption ct and abatement. Here,
Ψt and a2 determine the cost of abating the chosen fraction µt of emissions. The term outside the
brackets adjusts for the growth of labor and technology to keep capital in effective terms. Gross
output Ygross is a function of the capital stock:

Ygross = kκt . (Gross output)

The parameter κ gives the capital elasticity in a Cobb-Douglas production function. Climate
damages D reduce gross output more strongly as temperature increases:

D = b2T
b3
t , (Damages)

where b3 = 2 in DICE-2007 and temperature change Tt relative to pre-industrial levels is as in
Appendix 1.

The transition equations for the exogenous variables are as in DICE-2007, but adjusted for the
annual timestep. We here list them and give the parameterization in Table 6. In each case, t = 0
corresponds to the year 2005. See Crost and Traeger (2010) for more details on variable definitions
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(a) Social cost of carbon (current value) (b) CO2 concentration

(c) Temperature relative to the pre-industrial level (d) Abatement

Figure 8: The optimized paths for our calibration and for DICE-2007. The “physical calibration”
shows optimized policy with the transient feedback and decay rate functions (f̄t(M, t) and φ̄(M, t))
inferred from DICE, and the “economic calibration” shows optimized policy with the adjusted
functions ft(M, t) and φ(M, t).
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and implementation.

At =A0 exp

[
gA,0
δA

(
1− e−tδA

)]
(Production technology)

gA,t =gA,0e
−tδA (Growth rate of production technology)

Lt =L0 + (L∞ − L0)
(

1− e−tδL
)

(Labor)

gL,t =δL

[
L∞

L∞ − L0
etδL − 1

]−1

(Growth rate of labor)

βt = exp (−ρ+ (1− η)gA,t + gL,t) (Effective discount factor)

σt =σ0 exp

[
gσ,0
δσ

(
1− e−tδσ

)]
(Uncontrolled emissions per output)

Ψt =
a0σt
a2

(
1− 1− etgΨ

a1

)
(Abatement cost factor)

Bt =B0e
tgB (Non-industrial CO2 emissions)

EFt =EF0 + 0.01(EF100 − EF0) min{t, 100} (Non-CO2 forcing)

The constraints prevent the decision-maker from using more than the output available after ac-
counting for damages and from abating more than 100% of emissions in a period:

ct + Ψtµ
a2
t ≤

Ygross
1 +D

(17)

µt ≤ 1 . (18)

When the constraint in equation (17) is slack, we have positive capital investment, and when the
constraint in equation (18) is slack, economic activity produces some CO2 emissions that are not
abated.

The challenge in solving the model lies not in finding the optimal actions for a given value
function but in determining the value functions that satisfy the relations in equations (1) and (3)
(see Kelly and Kolstad, 1999, 2001). We begin with a guess for the value function and a set
of Chebychev nodes in the three-dimensional state space. We then use the initial guess for the
continuation value to find each node’s optimal controls c∗t and µ∗t and optimal value. Knowing
the optimal value at each Chebychev node, we approximate the value function across the rest
of the state space using a set of Chebychev basis polynomials (Miranda and Fackler, 2002). We
repeat the process using this approximated value function as the new initial guess, with iteration
continuing until the coefficients of the value approximant’s basis functions change by less than
0.0001.18 When the temperature threshold is uncertain, the pre-threshold value function is smooth
over the relevant state space because the hazard rate changes smoothly with time and the CO2

level. However, when the threshold is known to be at T ∗, each node in the state space is associated
with either the pre-threshold or the post-threshold value function, and the combined value function

18To speed the solution procedure, we iterate over the value function calculation and approximation several times
before re-optimizing the control variables. This is a type of modified policy iteration (Puterman and Shin, 1978).
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Table 6: Parameterization of the transition equations. See Nordhaus (2008) and Crost and Traeger
(2010) for more information. Also shows how these parameters change in the post-threshold regimes.

Parameter Value Description

A0 0.02722 Initial production technology
gA,0 0.009 Initial annual growth rate of production technology
δA 0.001 Annual rate of decline in growth rate of production technology

L0 6514 Population in 2005 (millions)
L∞ 8600 Asymptotic population (millions)
δL 0.035 Annual rate of convergence of population to asymptotic value

σ0 0.131418 Initial emission intensity before emission reductions (GtC/output)
gσ,0 -0.00730 Initial annual growth rate of emission intensity
δσ 0.003 Annual change in growth rate of emission intensity

a0 1.17 Cost of backstop technology in 2005 ($1000/tC)
a1 2 Ratio of initial backstop cost to final backstop cost
a2 2.8 Abatement cost exponent
gΨ -0.005 Annual growth rate of backstop cost

B0 1.1 Initial non-industrial CO2 emissions (GtC/y)
gB -0.01 Annual growth rate of non-industrial emissions

EF0 -0.06 Initial exogenous forcing from non-CO2 greenhouse gases (W m−2)
EF100 0.30 Year 2105 exogenous forcing from non-CO2 greenhouse gases

(W m−2)

κ 0.3 Capital elasticity in Cobb-Douglas production function
δκ 0.1 Annual depreciation rate of capital
b2 0.0028388 Coefficient of temperature in the damage function
b3 2 Exponent on temperature in the damage function
s 3 Climate sensitivity (◦C)
Mpre 596.4 Pre-industrial atmospheric CO2 (GtC)

ρ 0.015 Annual rate of pure time preference

k0 137/(A0L0) Initial effective capital, with initial capital stock of 137 US$trillion
M0 808.9 Initial atmospheric CO2 (GtC)

Parameters for post-threshold regimes (i.e., for tipping points’ effects)
ŝ 2s Climate sensitivity increased

b̂3 b3 + 1 Damages more convex

φ̂(M, t) φ(M, t)/4 CO2 sinks weakened

ÊF t EFt + 1.5 Non-CO2 forcing increased
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(a) Social cost of carbon (current value) (b) Optimal CO2 concentration

(c) Optimal temperature change from pre-industrial
level

(d) Abatement

Figure 9: The evolution of the optimal social cost of carbon, CO2 concentration, temperature, and
abatement under expected temperature outcomes if each type of tipping point were crossed in 2005.
These plots show how optimal policy and the climate respond to each tipping point’s occurrence.

exhibits a discontinuity between regions in which optimal pre-threshold policy would and would
not avoid crossing T ∗. We undertake numerical approximation in this case by making the threshold
stochastic in order to smooth out the value function (compare Brozović and Schlenker, 2011). This
stochasticity comes from placing a low-variance normal distribution around T ∗, which means that
transitioning to a temperature above T ∗ is virtually—but not totally—certain to cross the threshold.
As the variance of this distribution approaches zero, we approach the case with a non-stochastic,
certain threshold.19

We now describe how each post-threshold regime affects damages D, for simplicity ignoring

19The certain threshold model is currently solved with standard deviations between 0.01◦C and 0.35◦C, depending
on the regime and threshold level under consideration. We are currently working on an improved solution method.
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transient feedbacks. First, the climate sensitivity regime uses ŝ = 2s = 6◦C, corresponding to
fatm ≈ 0.81 (see Appendix 1). This change doubles equilibrium temperature, which increases
equilibrium damages from b2T

2 to b2(2T )2, where T is calculated using a climate sensitivity of 3◦C.
Equilibrium damages therefore quadruple, though the presence of transient feedbacks reduces the
effect on time t damages. Second, increasing the convexity of damages means using b̂3 = b3 +1 = 3.
This multiplies damages by T , which is always less than 4 in expectation in our baseline runs. Third,
weakening CO2 sinks means using φ̂(M, t) = φ(M, t)/4, which increases the length of time for which
a unit of CO2 emissions affects the atmospheric CO2 stock. The change from φ to φ̂ only has a
significant effect on the CO2 stock once enough time has passed for the additional accumulation
to matter. Finally, increasing exogenous non-CO2 forcing means using ÊF t = EFt + 1.5. This
increases temperature by 1.2◦C in equilibrium, which means damages increase in equilibrium to
b2(T+1.2)2. When temperature is greater than 1.2◦C, the effect of this tipping point on equilibrium
damages is less than the quadrupling produced by the climate sensitivity tipping point, and when
temperature is greater than 2.3◦C, the effect of this tipping point on equilibrium damages is less
than that of the damage convexity tipping point.

Figure 9 shows how optimal policy, temperature, and CO2 concentrations would evolve if each
tipping point occurred exogenously in 2005. Each regime affects policy and the climate differently,
which in turn affects the degree to which the decision-maker tries to avoid that type of tipping
point. Optimal policy responds in accord with how each tipping point affects damages. Increasing
climate sensitivity or increasing damage convexity both raise the social cost of carbon and lower
the CO2 stock path. However, they have quite different effects on temperature because a given CO2

stock produces higher temperatures when climate sensitivity is increased while a given temperature
produces greater damages when the convexity of the damage function is increased. These results
indicate how, aside from tipping points, IAMs’ results are sensitive to assumptions about the
uncertain parameters determining climate sensitivity and the convexity of the damage function.
Decreasing the decay rate of CO2 does not significantly affect abatement or the social cost of carbon,
but the reduced stock decay does eventually produce higher CO2 concentrations, temperatures, and
damages. Emission decisions have impacts for a longer time than usual, but that change does not
greatly affect the present value of the damage they produce. Finally, while increasing non-CO2

forcing does increase temperature and damages, it does not affect the CO2 stock path or the social
cost of carbon as strongly as do the climate sensitivity or damage convexity tipping points. Entering
this regime reduces economic output, but this effect does not interact as strongly with emission
decisions.
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