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This paper describes a simple structural model of industrial energy demand based on
production-function-like concepts, with vintaging of the available capital stock. The model is
designed to help users understand the past and likely future effects of variations in factor prices
and rates of output growth on industrial energy demands by major industry group. The
approach handles capital-stock adjustment, electric/non-electric energy competition and business
cycle effects in a simple, but natural, way. A description of an interesting initial application of
the model to the primary metals industry is also included. This application improves our
understanding of the approach, and demonstrates its usefulness in industrial energy demand
analysis.

1. Introduction

The rate of growth in the demand for energy by U.S. industry has
fluctuated dramatically over the past fifteen years. Business conditions and
fuel prices have changed more precipitously over this period than over any
comparable period since the Second World War. In addition, many energy-
intensive industries — e.g., steel, aluminium, paper, chemicals, etc. - have been
subject to foreign competition to a greater degree than previously exper-
ienced [Office of Technology Assessment (1983)].

There are substantial differences of opinion about how changes in these
factors have influenced industrial energy demand in the past. Uncertainty
about the strength of past relationships combined with uncertainty about the
future course of fuel prices and economic conditions leads to a wide range of
projections of industrial energy demand over the next twenty years.
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These differences of opinion regarding future energy demand by U.S.
industry are of more than academic interest to the nation’s electric utilities.
Given the long lead times required to construct new generation capacity, the
cost of under- or over-estimating future electricity demand could be signifi-
cant. If capacity turns out to be insufficient at some date in the future, short
lead-time capacity — e.g., gas turbines — will have to be installed possibly
dictating high fuel costs for a number of years. If, on the other hand,
capacity is overbuilt, rate payers or owners will have to pay for the excess
capacity.

2. Methodology

A variety of methods has been employed to try to understand past trends
in industrial electricity demand and to project future ones. Numerous
econometric, process engineering, and input—output techniques have been
developed. These methods provide the foundations for research models like
those employed in studies by Jorgenson (1984), Berndt and Wood (1984),
and Hazilla and Kopp (1984), as well as for applied forecasting and analysis
models like the six models employed in the recent Energy Modelling Forum
(1987) study on industrial energy demand. Each of those models has been
refined and enhanced over a number of years and by now includes elements
of all three approaches to energy demand modeling. However, each has a
specific methodology at its foundation. PURHAPS [the Purchased Heat and
Power model developed by the Energy Information Administration; Werbos,
(1983)] relies dominantly on econometric concepts and data-estimation
techniques; ISTUM?2 [the Industrial Sector Technology Use Model-2 deve-
loped by Energy and Environmental Analysis, Inc; EEA (1982)] and AES/
ISTUM1 [a model maintained by Applied Energy Services, Inc., AES;
originally developed by EEA (1978)] rely on the process analysis method-
ology; ORIM [the Oak Ridge Industrial Model; Reister (1982)] combines the
econometric and process analysis approaches; finally, the Wharton Annual
Model [Wharton Econometric Forecasting Associates (1982)] and
INFORUM [a model developed at the University of Maryland; Almon
(1982)] rely on input—-output analysis, with econometric estimation of values
for parameters that reflect the adjustment of input-output coefficients to
changes in the prices of inputs, as well as the composition and level of final
demand.

We have built a hybrid model and have tried to keep it as simple as
possible in order to make use of the available data, and to produce easily
interpretable results. A more comprehensive hybrid model, currently under
development, is described in Battelle—-Columbus Division (1986). Notwith-
standing our desire for a simple framework for the analysis of industrial
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energy demand, we decided that several features had to be included in our
analysis framework.

2.1. Factors of production

Each industry combines capital, labor, materials, and energy inputs using
particular technologies designed to produce a specific slate of products. The
choice of technology used to produce a particular product depends on the
relative costs of the input factors. This makes it desirable to consider
explicitly the prices of all input factors in assessing the demand for energy by
U.S. industry.

2.2. Electric versus non-electric energy demand

Most industrial boilers are fired by fossil fuels, and most industrial motors
are driven by electricity. However, many products can be produced by two
alternative technologies — one that relies predominantly on electricity, the
other relying primarily on fossil fuels. The production of steel by open hearth
furnaces fired by fossil fuels, and by electric arc furnaces that can produce
raw steel from recycled scrap provides a clear example of this type of
substitution potential. Thus, it is desirable to consider the relative prices of
electric and non-electric energy in projecting future industrial electricity
demand.

2.3. Capital stock vintaging

Since energy use by industry is so intimately tied to equipment that
generally lasts for several decades, the characteristics of the existing energy-
using equipment are major determinants of the amount and type of energy
consumed in any given year. Each year new equipment is installed under the
economic conditions that prevail in that year — the vintage year of the
equipment. As conditions change, there may be some flexibility in the use of
factor inputs in each vintage of equipment, but not nearly as much as there
is in new equipment. In addition, some of the existing equipment may be
used at less than full capacity if conditions are drastically different than when
it was installed. These possibilities make it desirable to incorporate vintaging
of the existing capital stock in making industrial electricity demand
projections.

2.4. Methodology

The methodology employed here builds on these desiderata for industrial
energy demand analysis. It allowed us to simulate the energy consumption
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Fig. 1. Schematic diagram of model structure.

behavior of an industry or group of industries in a constructive and natural
way.

A flow diagram for the approach is shown in fig. 1. First, a constant
elasticity of substitution (CES) production function (F) — with capital (K),
labor (L), materials (M), electric (E), and non-clectric energy (N) inputs — is
postulated for the new vintage (i) of equipment. The initial factor input ratios
for the new vintage depend on the input prices that prevail when it is
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installed. The amount of new capital installed (K;) is specified exogenously.
Then, an ex-post production function (F;) with less substitution potential is
‘derived for the new vintage. We selected the CES functional form so as to be
able to analytically derive a family of short-run ex-post cost functions that
are consistent with the given ex-ante production function with the only
difference between members of the family being that they had been built at
different design prices. These ex-post production functions are used to derive
factor demand equations, and short-run marginal cost functions (G,).

Next the outputs from all existing vintages at a given marginal cost (MC)
are summed to create an industry supply curve. The demand for output from
the primary metals industry is represented with an accelerator type demand
specification because most of its output is used in the production of capital
goods. Thus, demand is more closely tied to the rate of growth of the
economy than its level in any one year. Equilibrium is achieved at the
marginal cost which equilibrates industry all with the demand for industry
output.

Once the market-clearing output price for the industry is determined, the
output quantity from each vintage and the corresponding factor inputs can
be determined from the short-run marginal cost and factor demand equa-
tions. Finally, capital of all vintages is depreciated in preparation for
production in the next period. The model’s equations are presented in
Appendix B.

3. Industrial data

The availability and quality of the existing data on industrial factor inputs
and product outputs constrain the formulation and limit the accuracy of any
industrial electricity demand projection methodology.

Data on labor, capital, and materials inputs and outputs by industry are
maintained by the Office of Business Analysis at the U.S. Department of
Commerce. That same office has recently consolidated and updated several
variants of the National Energy Accounts prepared by various groups over
the past ten years.

The completeness and accuracy of the National Energy Accounts have
been well documented by Marlay (1983). Many data problems stem from the
lack of availability of primary source data which is expensive to collect and
often proprietary in nature. Although not as well documented to our
knowledge, it is commonly believed that similar problems are associated with
the non-energy industrial sector data.

Notwithstanding the problems with the existing data, it is good enough to
do preliminary analyses. Useful insights can be gained from these preliminary
analyses, and in time better data may become available.
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Fig. 2. Primary metals output and material use: Model results versus historical data.

4. Historical comparisons: The primary metals industry

Data from the U.S. Department of Commerce was used to exercise the
model for the primary metals industry (Standard Industrial Code 33) for the
period from 1958 to 1982, The input data for this test case are listed in
Appendix A. The model parameter values assumed for this industry test case
are recorded in table 2.

The model’s projections of primary metals industry output and materials
inputs are compared with actual data in fig. 2. The model is calibrated so
that projected industry output and inputs match those actually observed in
1958. In general, the model under-predicts materials inputs during the early
part of the sample time period and over-predicts output during the latter
part. The labor input projections from the model are shown in fig. 3 and
track the actual values quite well.

Although the non-energy projections are important, it is the energy —
electric and non-electric — demand projections that provided the primary
impetus for the development of our model. The model’s projections of
electric and non-electric energy demands by the primary metals industry
from 1958 to 1982 are compared with the actual demands in fig. 4. The
differences in projected and actual factor input average annual percentage
growth rates are shown in table 1. In general, the model under-predicts
electricity demand, particularly in the post 1973-74 oil embargo era.
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Table 1

Comparison of model projections and historical growth rates for the primary
metals industry {percentage annual growth rates: 1958-1982),

Historical Model projections  Absolute error
Qutput 0..6% 0.6% 0
Labor —1.2% —2.7% 1.5%
Materials 1.6%, 2.1%; 0.5%,
Electricity 3.3% —1.2% 4.5%,
Non-¢lectric energy 1.6% 2.1% 0.5%

A somewhat unique technological trend in this particularly industry makes
matching history with a simple aggregate model like that proposed here a
difficult challenge. Conventional steel making technologies utilize fossil fuel
intensive processes like a blast furnace in conjunction with either an open
hearth or direct reduction process to produce virgin steel ingots. However, it
is also possible to use newer electric-arc furnaces to convert scrap steel
directly to ingots. The favorable economics of this technology coupled with
the availability of sufficient scrap has led to a dramatic increase in steel
production by this method over the past 10 to 15 years. This trend has
resulted in a marked shift from fossil fuel to electricity inputs in the primary
metals industry that may be difficult to discern from aggregate fuel use data.
In the current implementation of the model, technical change is assumed to
be Hicks-neutral and is represented by an exponential factor that affects all
relevant production function parameters equally. Inclusion in the model of
factor specific rates of technological change that favored electricity could
probably be used to produce a better fit between model projections and
actual electricity demands by the primary metals industry.

5. Projections for the primary metals industry

The model can also be used to project future energy demands by the
primary metals industry. The parameter values employed for the historical
comparisons shown at the top of the first column of table 2, and the baseline
factor price, and capital stock growth rates shown at the bottom of the first
column are used to produce a reference projection. The cutput and materials
projections for this case are shown in fig. 5 and show about a one percent
per year growth rate. As shown in fig. 6, non-electric energy demands are
projected to decline at about 0.25 percent per year from 1982 to 2017, while
electricity demands are projected to increase by 2.1 percent per annum.
Finally, labor requirements are projected to decline gradually as shown in
fig. 7. The sharp drop in inputs to — and output from — the primary metals
industry in 1982 and the return to trend growth by 1987 reflects the effects of
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Table 2

Parameter assumptions.

Range for sensitivity

Base case® analysis
Production function
Productivity growth factor {a} 1.0 05 - 1.5
Growth rate of productivity 0.15%, 0.0% - 2.0%
growth factor (g,)
Exp. of L.R. CES function (p)® 0.5 001 - 20
Exp. of S.R. CES function (p)° 5.0 30 - 110
Factor price growth rates
Capital 0.0% —30% - +30%
Labor +1.3% 0.0% - +20%
Electricity 0.0% —30% - +3.0%
Non-electric energy
1987-1992 +8.0% +40% - +12.0%
1992-2017 +4.0% +20% - +6.0%
Materials 0.0% —30% -~ +3.0%
Demand equation parameters
Demand income elasticity (v) 1.0 09 - 1.1
Demand price elasticity {)) —1.0 -05 - -15
Demand growth rate (g;) 1.0%, 0.5% — 1.5%
Primary metals stock 10%, 5% - 159
depreciation rate (4)
Capital stock parameters
Capital depreciation rate (d) 10%, 5% - 15%
Capital stock growth rate (g) +2.0% +1.0% - +3.0%

*The base case value for g, was derived from Jorgenson (1984); the base case
growth rates for capital, labor and materials prices, as well as for 4, d and g, are
historical averages over the past two decades. Other parameters were assigned
values consistent with theory and in logical relationship to one another.

B[t was assumed that the short-run elasticity of substitution equals i times the
tong-run elasticity of substitution. So as the long-run elasticity varies from 1ok
to 1, the short-run elasticity varies from Htodtol

the recession of 1981-82 which had a particularly devastating impact on this
industry.

5.1. Sensitivity analysis

Since parameter estimation is not exact, projecting future factor -
especially energy — prices is difficult, and the model did not track past
electricity demand well, it would be foolhardy to rely on a single projection
of energy demands. In fact, the sensitivity of the projections to plausible
variations in parameter and input variable assumptions often proves more
useful than baseline projections.
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A systematic sensitivity analysis of parameter values and input assump-
tions was conducted on the simple primary metals model. The second and
third columns of table 2 show the range assumed for each parameter and
input assumption. Although the variation considered for each sensitivity is
somewhat arbitrary, the ranges shown here seem plausible and reflect our
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degree of uncertainty about the underlying elements of the projection system.
The impact of the sensitivities on projected electric and non-electric energy
demands are shown in figs. 8(a) and 8(b), respectively. The variation in values
for each variable listed at the bottom of the figure are shown on the bars
above it. The bar indicates the variation in energy demand projection growth
rates corresponding to the variation in that parameter or input assumption.

The sensitivities are ordered so that the inputs with the strongest impacts
on the demand projections are shown on the left of the figures and those
with the weakest impacts are shown on the right. For example, projected
electricity demand is most sensitive to the assumed electricity price, and least
sensitive to the assumption about the annual change in the rate of
technological progress. Similarly, the non-electric energy demand projections
are most sensitive to the assumed income elasticity and also least sensitive to
the assumed yearly change in the rate of technological progress.

5.2. Model experiments

Once constructed, a model can be used to explore interesting controlled
variations in conditions that have not been experienced in the real world.
Such exercises can reinforce our confidence in the model, and yield insights
about the behavior of the system being analyzed. To understand the results
of the simulation experiments we have found the following decomposition to
be very useful.

The average intensity of electricity use at time period ¢, I, can be
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Fig. 8b. Sensitivity analysis for non-electric energy demand growth rate: 1982-2017.

expressed as the sum of the electricity use in each vintage, i, operating during
that period, E;, divided by the sum of the outputs produced by each vintage
during the period, Y.
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That is

 _Ei+E 4+,
e Y1+Y2++K’

which can be written as

E, YK )K: E, ,K,}K,

e — e t=— — — =+
C XYL NK YK )Y LK YK
or
I"‘E—l- Yl Kl ZK:'-{,_E Yz &ZK,
YN YYRK VK YL YYNK YK

which upon rearrangement yields

E, V/K, K, E, WK, K,
I=—x X +—=X X 4o
Y YYYK YK Y, LYK, YK,

vintage [ | vintage vintage
Average = lintensity| | relative capital | 4---
intensity level capital proportion

utilization

Thus, each vintage’s contribution to the average intensity of all vintages can
be thought of as the product of three terms: (1) the intensity of electricity use
in that vintage; (2) the capacity utilization (output per unit of capital stock)
of that vintage relative to the average utilization rate of all the available
capacity, and (3) the fraction of the total capacity available represented by
capacity of that vintage.

Fig. 9 shows the results of our first simulation experiment in which
electricity prices decrease at three percent per year from 1958 to 2017. Other
factor prices are held fixed at their 1958 levels and GNP grows at three
percent per year from 1958 to 2017.

Fig. 9(a) shows the intensity of electricity use in each vintage. More
electricity is used in each successive vintage as electricity prices decline. That
it is easier to adjust electricity use in newly installed vintages than in ones
already in place is evident from the much more dramatic increase in the new
vintage intensities compared to the increase in intensity of electricity use in
each individual vintage shown in the figure. Fig. 9(b) shows the vintage
relative capacity utilization — output divided by capital available — of each
vintage relative to the capacity utilization of all vintages in service. In the
example, since electricity prices change smoothly, the relative capacity
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Fig. 9. Results for example no. 1.

utilization of each vintage declines slowly over time as electricity prices move
steadily away from the level that prevailed when the equipment in it was first
installed and the vintage becomes less suited to its current environment.
Because electricity has a small factor share, the capacity utilization effect is
small; declining by only ten percent over a 60 year period. Finally, fig. 9(c)
shows the vintage capital proportions, the capital available from each vintage
as a proportion of the total capital equipment available. These proportions
decline over time as the capital in each vintage depreciates. Fig. 9(d) shows
the average intensity of electricity use — defined as the average electricity use
per unit of output from all vintages, as well as the contribution of each active
vintage to the average overall intensity.

In our second experiment, electricity prices are assumed to decline at three
percent per year through 1972, then increase at three percent per year from
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1973 to 2017. Non-electric factor input prices are again fixed at their 1958
levels, and GNP again is assumed to grow at three percent per year
throughout the entire 1958 to 2017 time horizon.

Results from this experiment are shown in fig. 10 (which is organized
according to the same format employed in fig. 9). In this experiment, fig.
10(a) shows that the vintage intensity level in new equipment rises until 1972
and then declines. Again, there is far more flexibility in the energy intensity
of new equipment than there is in existing equipment. The results for vintage
relative capacity utilization shown in fig. 10(b) is very similar to that shown
in fig. 9(b) for the first experiment. Fig. 10(d) shows that in this experiment,
the average electricity intensity rises through 1972 and then declines.

In a third experiment, electricity prices are again assumed to decline at
three percent per year through 1973, then increase at three percent per year
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from 1982 to 2017. Non-electric factor input prices, however, are assumed to
follow their actual trajectories through 1982 and a reasonable set of
projections from 1973 to 2017. GNP is again assumed to grow at three
percent per year throughout the entire 1958 to 2017 time horizon. These
assumptions prescribe a cleaner transition from a low energy price regime to
a high energy price regime than actually occurred in 1973-74.

Results from this experiment are shown in fig. 11. The pattern of vintage
electricity intensities for this example [shown in fig. 11(a)] rises and falls just
like in fig. 10, but the vintage intensity peaks in 1982 instead of 1972 on
account of increases in the prices of the other factors from 1972 to 1982.

Comparison of the capacity utilization results for this example [shown in
fig. 11{b)] with those shown in fig. 10(b) shows the importance of other
factor prices in determining electricity demand and the advantage of a
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vintaged multi-factor approach to industrial energy demand modeling.
Because of significant changes in the prices of other factors, output from
vintages installed under previous price regimes can be drastically reduced. In
fact, in this experiment we see that in 1982, output from all vintages installed
in and before 1967 are taken out of production entirely. Also in 1982, all
vintages installed from 1972 onwards are operated intensively as factor prices
change towards their design specifications. By 1987, however, other prices
have risen to the extent that it becomes desirable to produce some output
with the pre-1972 vintages. As factor prices continue to change, the capacity
utilization falls to zero for all vintages installed in 1982 and previously. Fig.
10(c} shows how the vintage capital proportions change over time. The
contribution of these complex relationships to electricity intensity are shown
in fig. 10{d) which displays the contribution of each vintage to the average
intensity of all vintages operating in each year.

6. Conclusions

These preliminary tests of our simple industrial energy demand projection
methodology have been instructive. Consideration of all factors of produc-
tion, the competition between electric and non-electric energy inputs, and
vintaging of the capital stock of energy using equipment all appear to have
been essential in our understanding past energy demand trends and in
projecting future ones. In particular, consideration of the factors of produc-
tion other than energy appear to result in a model for industrial electricity
demand that is superior to that reported on in Peck and Weyant (1985).

The correspondence between model projections and actual energy
demands by the primary metals industry from 1958 to 1982 was not perfect.
Part of the problem may be the reliability of the historical data on the inputs
to - and outputs from — this industry. As mentioned in section 4, there is
also, however, a somewhat unique technological trend in this particular
industry that makes matching history with a simple aggregate model like
that proposed here a difficult challenge. Conventional steel making technol-
ogies utilize fossil fuel intensive processes like a blast furnace in conjunction
with either an open hearth or direct reduction process to produce virgin steel
ingots. However, it is also possible to use newer electric-arc furnaces to
convert scrap steel directly to ingots. The favorable economics of this
technology coupled with the availability of sufficient scrap has led to a
dramatic increase in steel production by this method over the past 10 to 15
years. This trend has resulted in a marked shift from fossil fuel to electricity
inputs to the primary metals industry that may be difficult to discern from
aggregate fuel use data. Indeed, this technological trend may well explain the
tendency of our model to under-predict electricity demand, particularly
during the post-embargo era. Better results — particularly for electricity
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demand — can be expected if factor specific rates of technological change are
incorporated into the model. Whether the method developed here can be
applied to other industries, to the whole manufacturing sector, or at the
utility service region level is an open question. The requisite data and
parameter estimates must be obtained before the structure of the model can
be tested. Based on our experience with the model for the primary metals
industry, it is likely that significant insights about energy demands by other
industries could be gained through the use of this model as well.

Our experience here brings with it several prescriptions for electric utility
planners. First, great uncertainty surrounds any forecast of future electricity
demand. Even a perfect demand forecasting model relies crucially on factor
price and economic growth rate assumptions that are highly uncertain and
to which any electricity demand projection is likely to be quite sensitive. In
addition, no model is guaranteed to produce a perfect forecast, even if
reliable inputs could be obtained. The data reliability, aggregation, and
estimation problems involved in the construction of any model are likely to
increase rather than decrease the reliability of any electricity demand
forecast. Although uncertainty abounds in any electricity demand analysis,
our second conclusion is that a simple model can often help in identifying
and quantifying the major causes of that uncertainty. Insights gained from
exercising such a model can help planners strike the appropriate balance
between an analysis that assumes nothing is known and one that assumes
that everything is known with perfect certainty.
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Appendix A
Table A.1
Historical data.
Electric  Non-electric
energy  energy Materials Output Shipments
Capital Labor (trillion  (tnllion (millions  (millions (millions
Year (19728 x 10%)  (hundred) BTUs) BTUs) 1972%) 19728)  1972§)
1958 29,466 ‘8,491 332 2,713 16,118 37,067 36,836
1959 29,329 9,097 406 2,892 18,825 41,868 42,129
1960 29,902 9,205 429 3,099 19,320 42211 41,856
1961 29,870 8,557 427 2,940 19,243 42,109 41,588
1962 29,687 8,784 457 3,056 20,223 44 488 44.514
1963 29,868 8,881 492 3,163 20,989 47,132 46,960
1964 30,528 9,385 539 3,541 24,050 51,996 51,906
1965 31,626 9,882 583 3,720 27,043 57,084 57,040
1966 33,206 10,245 618 3,792 29,144 61,185 60,585
1967 35,044 10,008 672 3,595 26,792 56,388 55,901
1968 36,650 9,946 685 3,695 28,350 58,491 58,743
1969 37,717 10,243 769 3,964 30,816 61,147 60976
1970 38,472 9,772 740 3818 29,190 55264 54915
1971 38,488 8,973 723 3,545 27472 53,170 53,319
1972 38,370 9,228 778 3,723 30,657 58,042 58,430
1973 38279 9,954 929 4,036 35,524 68,228 68,865
1974 39,142 10,010 1,020 3,907 40,143 69,662 69,670
1975 39,744 8,557 858 3,306 33,343 33,956 53,067
1976 40,086 8,748 915 3,423 35716 58,068 57,769
1977 40,405 8,853 987 3,317 37278 59462 59,536
1978 40,514 9,208 1,032 3,515 38,859 63,280 63,116
1979 40,535 9,519 1,074 3,507 39,364 64,074 64,077
1980 40,449 8,543 1,007 2,866 33,059 56,346 56,765
1981 40,440 8,213 1,015 2,837 32,440 57,083
1982 39,598 6,384 728 1,867 23,637 42531
Appendix B

Assuming parameters o, Ag, L;, Ay, Ag, Ay and p and prices Py, P, Py,
P; and Py are known, the ex-ante production function is given by

Y=a(AxK P+ A, L °4+ AyM P+ AE 7+ AN~ 7)1,

where Y =output, K=capital, L=1labor, M =materials, E=electricity and
N =non-e¢lectric energy.

Note that o is assumed to change over time at the rate g,.

Given the parameter, r, the ex-post production function will be derived:

Y=BBxK "+B L'+ ByM "+BE "+ ByN""""

Using the known parameters and prices, and the fact that B+ By + By +
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Bg+By=1, By, B;, By, By and By may be determined by equating the
slopes of the ex-ante and ex-post isoquants and setting them equal to the
slopes of the isocost curves, giving

PL PL A (1 +r)(1+p) PM AK (1 +r)/(1+p)
B.=|1+ +
3 [ PK(PK AL) PK(PK AM)

+&(£§ Q)‘(i+r)/(1+ﬁ)+P (PNA ) (1+r)/(1+pj_1
P\ Px Ag Pe\Pyx Ay )

P PL AK —(1+n/(1+p)

m=ner(5 %) ’
K K L

P P, A (1 +7)}(1l+p)

b))
K K N

P./P. A —(1+r)j(1+p)

webiioe)
K K E

P P A ~{1+r)(1l+p)
B, =By “( M ) :

Pg\Px Ay

The remaining parameter, B, is determined by first solving for K° (the
capital required for unit output from the ex-ante production function) in
terms of Ag, Ay, Ay, Ag, Ay, o, p, and factor prices:

1 P A pi{l1+p) P A p/(1+p)
Ko=—| Ag+ A, | — — + A, XX
o Py A Py Ay

Py A \PO+0) Py A\l +orjle
+Ag[ EZE +Ay [N EX :
Py Ag Py Ay

The remaining input factors, L, N, E and M, are found for unit output by
the ex-post production function in terms of the parameters By, B,, By, By,
Bg and r, and the prices:

P B —141+r
[°=K° L :
(Px BL)

P B =1/{1+r)
NO —KO( ad ) ,

Py By
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P B ~1/{1+r)
EO=K0(_E l) ,
Py B

Mo K() PM BK -1/t +r)
a PK BM ’

Finally, f is determined:
B=(Bx(K®) ™"+ B(L®) ™"+ By(M®) ™"+ Bg(E®) "+ By(N%) ™)'".
A variable cost function for the ex-post production function is derived and
then differentiated to find the marginal cost function. Inverting the marginal

cost function results in a short-run supply curve with output, Y, as a function
of short-run marginal cost:

Y:ﬁK[l __(F/mﬁ)r,n‘(l +r)]1,fr’

By

where m=marginal cost and

5 5 Bi P rfkl+r)1)r
SR P
=2 j=2 it

An industry supply curve is formed by summing the supply curves for each
vintage of capital. The model is based on exogenous capital stock governed
by the functions. Capital Investment,

K(t)=K,e%, and
Capital Depreciation,
K(vintage i, year (t+n))= K(vintage i, year (t))e %"

An accelerator version demand function is used, based on total stock
demand (S) is given by

S=Dyp'I",

where p is the price, I is the demand growth factor and j and v are price and
income elasticities, respectively.

Demand is determined by the growth in stock, the derivative of this
equation:
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ds_ [.1dp, 1dI
Ipatia

= ——+v~+ﬂ]+asﬂ,

where A is the depreciation rate of the stock. Ignoring the price factor, dp/ds,
and calculating on a yearly basis gives

Demand(t +1) = Do[p’ J0 A+ p{I;’u(l— 1,1_1)]_
t
The market clearing price, p, is found by equating supply and demand.
The output from each vintage of capital is calculated from the supply curve,
using p as the marginal cost.
Finally, given the outputs, Y, capital, K, parameters and prices, the optimal
inputs are determined:

vy’ KT - 1/r
L B
- P, B *r,f(1+r) P, B.\-riti+n P, B\ r+n
B, +B.[fL M £ Op B. £L Dx
Lt M(P B) (PE BJ + ”(PN BL)
EmL(&EE)lj(i+r),
Pg By
Nchiﬁﬂ””ﬂ
N DL
MEL(ﬂ&)”“-‘H).
Py B,
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