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rules-of-thumb for setting the capital productivity requirement which
might be used by the price-minimizing or welfare-maximizing regulator.
The author then shows how wellhead price controls, whether on all
or only some supply sources, could lead to increases in institutional
costs. Although the study is primarily theoretical, it concludes with a
brief discussion of the empirical evidence for the principal testable

results.
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ABSTRACT

This study considers how rate-of-return regulation with wellhead
price controls might affect the operating efficiency of gas utilities.
It thus differs from much of the previous literature on rate-of-return
regulation, which has focused on how regulation might cause an improper
mixture of capital and other inputs--the Averch-Johnson effect.

The author argues that firm managers have some ability to pursue
objectives of their own, which differ from simple profit-maximization.
The managers may be thought of as maximizing a utility function of
profits and the institutional costs arising from their pursuit of these
other objectives, subject to a budget constraint. Regulatory policies
affect the shape of the budget constraint, and therefore the combination
of profit and institutional costs chosen by the firm. Unlike
Averch-Johnson models, firm behavior in this model changes smoothly as
the allowed rate of return is reduced below the cost of capital, a
result in accord with the observed behavior of gas utilities. However,
as the allowed rate of return is reduced, institutional costs tend to
increase,

The author also argues that regulators have a second little-noted
instrument of contrel: their power to deny approval for new capital
investments. If the regulators prohibit unproductive capital
investment, this could induce the utility to purchase gas beyond the
point where its marginal revenue product equals marginal cost, a result
also in accord with the observed behavior of gas utilities. If the firm

were assumed to be a strict profit-maximizer, there would be simple
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CHAPTER 1

INTRODUCTION

This study is an examination of how natural gas pipeline and
distribution company efficiency may be affected by three policy
instruments at the disposal of regulators under a system of rate-of-
return regulation with wellhead price controls. The three policy in-
struments to be considered are the regulator's powers to set the allowed
rate-of-return, to approve or deny new capital investments, and to set
the wellhead price. The study considers the likely effect of these
instruments on both the efficiency of the firm's capital investment
strategies, and the efficiency with which the firm conducts its opera-
tions. The objective is to give regulatory decisionmakers an improved
awareness of the consequences of their actions, so as to allow more en-
lightened regulatory policies. Although the study focuses on the
natural gas pipeline and distribution industries, many of the results
are generally applicable to any rate-of-return regulated firm.

This chapter introduces the background and motivation for the
study. The first section introduces some of the terminology that will
be used in discussing the gas industry and gives a brief overview of the
structure of the industry. The second section is a similar brief over-
view of rate-of-return regulation. The third section discusses wellhead
price controls, and points out the lack of studies addressing their
effects on gas pipeline and distribution company behavior. The fourth
section discusses two concerns economists have raised about rate-of-
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return regulation: uneconomic capital investments, as in the Averch-
Johnson model, and excessive operating costs. The lack of literature
rigorously addressing the latter concern is pointed ocut. The fifth
section discusses two properties of the Averch-Johnson model not in
accord with observed behavior of gas pipeline and distribution
companies, which deserve further examination. The sixth section
discusses three criticisms of the assumptions of the Averch-Johnson
model that have been raised in the literature, and that also deserve
further examination. The final section presents a brief overview of the

study.

1.1 Structure of the Natural Gas Industry

As background to the study, it is appropriate to begin with a brief
idealized description of the structure of the natural gas industry in
the United States, which may be thought of as three industries In

vertical sequence. Gas producers explore for, develop, and operate gas

fields; in many cases they are also oil producers. The producers

generally sell gas to gas pipeline companies, at prices referred to as

wellhead prices, under long-term contracts. Ceilings on these wellhead

prices for many categories of gas are set by the Natural Gas Policy Act
of 1978,1 and administered by the Federal Energy Regulatory
Commission (FERC).

The gas pipeline companies transport the gas to the consuming

areas, and there resell it to local distribution companies at prices

known as citygate prices. FERC also regulates the citygate prices of

' Natural Gas Policy Act of 1978, U.S. Code, supp. 5, title 15, secs.
3311-3432 (1982).




interstate pipelines, but under a different law--the Natural Gas Act of
19382. Like most public utilities, prices are regulated so as to allow
the pipeline company to recover its operating costs plus a "fair" return

on its investment, a system known to economists as rate-of-return

regulation.

The local distribution companies, in turn, resell the gas to final
consumers. Distribution companies, too, are generally subject to rate-
of-return regulation; however, the regulation is usually administered by
state agencies, such as a state public utility commission.

Although gas pipeline companies and local distribution companies
serve very different markets and have very different cost characteris-
tics, both are subject to rate-of-return regulation, and should respond
in much the same way to regulatory incentives. Hence, this study will
focus on the behavior of generic gas firms, which might be either pipe-

lines or local distribution companies.,

1.2 Rate-of-Return Regulation

To implement rate-of-return regulation, the regulatory commission

first establishes a book value of the firm's assets, known as the rate

2 Natural Gas Act, U.S. Code, title 15, sec. 717 {(197§).

A more thorough description of the structure of the natural gas
industry may be found in Arlon R. Tussing and Connie C. Barlow, An
Introduction to the Gas Industry with Special Reference to the Proposed
Alaska Highway Gas Pipeline, report prepared for the State of Alaska
Legislative Affairs Agency (Fairbanks: University of Alaska Institute
for Social and Economic Research, 1978). See also Richard J. Pierce,
Jr., Matural Gas Regulation Handbook (New York: Executive Enterprises
Publications, 1980) and Arlon R. Tussing and Connie C. Barlow, The
Natural Gas Industry: Evolution, Structure, and Economics {Cambridge,
MA: Ballinger Publishing Company, 1984).
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hase. It also establishes an allowed rate of return. The allowed rate

of return times the rate base is used by the regulators as a ceiling on
the firm's earnings. If earnings are below this level, a rate increase
may be justified; if earnings are above this level, a rate reduction may
be in order.

The regulatory ceiling on earnings is not, however, continuously
binding. Tariffs are usually set based on historical cost--typically,
the firm is required to set a tariff that would have yielded it the
allowed rate of return in some prior "test year", perhaps with some
adjustments for expected changes in costs. This delay between the time
a firm's revenues or costs change and the time tariffs are modified to
reflect these changes means the firm may actually earn more or less than
the allowed rate of return., The delay is known to economists as

regulatory lag. Furthermore, since there are costs involved in modify-

ing tariffs, neither the company nor the regulators will usually seek to
alter the tariffs unless the firm's earnings fall outside some range of

dcceptability about the allowed rate of return.[+

1.3 Wellhead Price Controls

Regulation of wellhead natural gas prices has been a controversial
issue; however, the FERC and its predecessor, the Federal Power
Commission, have been regulating wellhead prices paid by interstate

pipelines in one form or another since the Supreme Court's Phillips

A good source of background on rate-of-return regulation is Alfred
E. Kahn, The Economics of Regulation; Principles and Institutions, 2
vols. (New York: John Wiley and Sons, 1970).




Decisiond of 1954, A policy on wellhead price controls was fixed hy
statute for the first time with the passage of the Natural Gas Policy
Act of 1978 {or N.G.P.A.}, an artful compromise between proponents and
opponents of price controls.® The N.G.P.A. sets a variety of dif-
ferent ceiling prices for gas supplies, based upon such factors as the
age of the well, well depth, onshore versus offshore location, distance
of well from other wells, type of producing formation, rate of produc-
tion, and provisions of the existing gas sales contract (interstate
versus intrastate, price, contract date, whether it is a "rollover
contract"). Wellhead prices for certain types of "high cost" gas

were derequlated immediately by the N.G.P.A,, with most gas supplies
developed since passage of the act ('new" gas), as well as supplies
dedicated to intrastate commerce prior to the act, to be deregulated in
1985. "01d" gas, dedicated to interstate commerce prior to the act,
will remain price-controlled indefinitely.’/ This pelicy of

requlating the price of some gas supplies but not others has come to be

known as partial wellhead price controls.

5 Phillips Petroleum Company vs. Wisconsin, 347 U.S. 672 (1954).

6 For an analysis of the history and politics of wellhead price
controls, see Pietro S. MNivola, "Energy Policy and the Congress: The
Politics of the Natural Gas Policy Act of 1978," Public Policy 28
(Fall, 1980): 491-543 and M. Elizabeth Sanders, The Regulation of
Natural Gas: Policy and Politics 1938-1978 (Philadelphia: Temple
University Press, 1981).

7 For a summary of the provisions of the N.G.P.A., see Pierce, pp.
36-76.



It would he a mistake to try to attribute too much rationality to
the ceiling prices established hy the N.G.P.A. There does appear,
however, to be a pattern of higher prices for gas supplies which are
more costly to produce, or over which the producer has more discretion
about whether to produce. In other words, the N.G.P.A. establishes what
an economist would call a discriminatory pricing policy by setting
higher prices for gas with higher supply elasticities,

Wellhead price controls, combined with rate-of-return regulation,

lead gas firms to practice average-cost pricing, buying various catego-

ries of gas at different prices and reselling the resulting mix at more
or less a single price, equal to the average cost of the gas purchased,
plus a markup to cover the firm's own costs. It is not unusual to find
pipelines selling gas for less than the cost of the most expensive gas
they purchase.S

There is an extensive literature dealing with the subject of
wellhead price controls; however, most of it is concerned with the
effects of wellhead price controls on gas producers or consumers, rather

than pipeline or distribution companies.? Several studies have

8 See Section 6.1 below

7 A good bibliegraphy of academic studies through the mid-1970's is
contained in Paul W. MacAvoy and Robert S, Pindyck, The Fconomics of the
Natural Gas Shortage (1960-1980) (Amsterdam: North-HoIland Publishing,
1975), pp. 251-256. Two recent studies with opposite conclusions are
Glen C. Loury, "An Analysis of the Efficiency and Inflationary Impact of
the Decontrol of Natural Gas Prices (Washington, DC: Natural Gas Supply
Association, April, 1981), and Energy Action Educational Foundation, The
Decontrol of Natural Gas Prices: A Price Americans Can't Afford ‘”_“
(Washington, DC: Energy Action Educational Foundation, February, 1981).




empirically examined gas pipeline purchasing behavior in an attempt to
determine if the wellhead gas market is competitive enough to function

efficiently without wellhead price controls, 10

1.4 Rate-of-Return Regulation and Efficiency

Rate-of -return requlation has raised twoe concerns among econo-
mists. The first has been raised informally by a number of
economists, 11 yet has received little attention in the literature.
It is that the cost-plus nature of rate-of-return regulation may not
give the firm a strong enough incentive to minimize expenses, resulting
in unnecessarily high operating costs. Despite the economists' mis-
givings, traditional models of firm behavior suggests that requlated

firms would, under normal conditions, minimize operating costs,12

10The most thorough of these studies is Paul W. MacAvoy, Price
Formation in Natural Gas Fields: A study in Competition, Monopsony and
Regulation (New Haven: Yale University Press, 1962). Other studies are
Edward J. MNeuner, The Natural Gas Industry: Monopoly and Competition in
Field Markets (Norman: University of Oklahoma Press, 1960} and Leslie
Cookenboo, Jr., Competition in the Field Market for Natural Gas, The
Rice Institute Pamphlet, 44 (January, 1958). A more recent study is
U.5. Federal Trade Commission, Economic Structure and Behavior in the
Natural Gas Production Industry, by Joseph P. Mulholland, staff report
to the Bureau of Economics (Washington, DC: Government Printing Office,
February, 1979).

1TSee, for example, Kahn, v.2, p.48; William J. Baumol and Alvin K.
Klevorick, "Input Choices and Rate of Return Regulation: An Overview of
the Discussion", Bell Journal of Economics and Management Science 1
(Autumn, 1970): 188-189; Stephen Breyer, Regulation and Its Reform
(Cambridge: Harvard University Press, 1982), p. &7; or F.M. Scherer,
Industrial Market Structure and Economic Performance, Second editien
{Chicago: Rand McNally, 1980}, p. 483.

125ee Elizabeth E. Hailey, Economic Theory of Regulatory Constraint
(Lexington, MA: D.C. Heath and Company, Lexington Books, 1973), p. 42.




The second concern is that the firm may attempt to increase its
profits by making uneconomic capital investments so as to enlarge its
rate base. The classic model of this problem is that of Averch and
Johnson.13  The problem may be visualized graphically if one plots
the firms's potential profit as a function of capital investment, as in
Figure 1. MNote that here 1 am talking about profits as an economist
would define them, that is, earnings in excess of the opportunity cost
of capital, not as an accountant would define them,

An unregulated firm would maximize its profits by setting capital

N Profit

N

P ecs e mm e -

7
Capital Investment

Figure 1
Potential Profit vs. Capital Investment

13Harvey Averch and Leland Johnson, "Behavior of the Firm Under
Regulatory Constraint”, American Economic Review 52 (December, 1962):
1052-1062. A similar result was suggested independently by Stanislaw
H. Wellisz, "Regulation of Natural Gas Pipeline Companies: An Economic
Analysis", Journal of Political Economy 71 (February, 1963): 30-43,




equal to A in the diagram. However, under rate-of-return reqgulation
with an allowed rate of return greater than the opportunity cost of
capital, there is a ceiling on the firm's profits proportional to its
capital investment. This is the straight line C shown in Figure 2. If
regulation is effective in restricting the firm's profits, the firm's
profits at point A will be above the ceiling, thus forcing it to expand
its capital investment. This expansion has two effects. First, since
the firm is expanding capitai investment beyond the profit-maximizing
point, potential profits are reduced. Second, by enlarging its rate
base, the ceiling on profits is increased. At some point, which I have
labeled B in Figure 2, potential profits will equal the profit ceiling,

and the firm will be at its new profit-maximizing profit, subject to the

b

N Profit

N
r 4
Capital Investment

Ud . . v

Figure 2
The Averch-Johnson Model



rate-of-return constraint.14

Now all of this is, to some extent, well and good. An objective of
regulation is, presumably, to make the firm produce more than the
profit-maximizing output, so as to lower prices to consumers; an expan-
sion of capital investment will usually accomplish this objective. The
problem here is that while capital investment is being expanded beyond
the point where its marginal revenue product equals its marginal cost
{the profit-maximizing point), the use of other inputs is not.15

This results in a mixture of inputs which is overly capital intensive,

and, as a result, excessively costly.

1.5 Two Anomalous Results of the Averch-Johnson Model

The Averch-Johnson model can be criticized both for the unrealism
of its assumptions, and for two properties of the model which do not
accord with the observed behavior of gas firms or other rate-of-return
regulated firms. As the latter two anomalies provide a unifying theme
for this study, 1 shall discuss them first.

The first anomaly is that the Averch-Johnson model predicts that as
the firm's allowed rate of return is lowered toward the opportunity cost
of capital, the firm will expand its capital investment. However, when

the firm's allowed rate of return actually reaches the cost of capital,

14A more thorough discussion of the Averch-Johnson Model and the

ensuing literature may be found in Bailey. The graphical treatment of
the Averch-Johnson model presented here is adapted from that book, which
is, in turn, adapted from the work of E.E. Zajac, "A Ceometrical
Treatment of Averch-Johnson's Behavior of the Firm Model", American
Economic Review 60 (March, 1970): 117-125.

15For a discussion of this result see Roger Sherman, "The Rate of

Return Regulated Firm is Schizophrenic", Applied Economics 4 (March,
1972): 23-31.
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the results become indeterminant--the firm can invest anywhere within a
wide range, since no matter what it does it makes zero economic profit.
If the allowed rate of return is set below the cost of capital, the firm
should simply close up and go out of business, since no matter what it
does it will lose money.T6
To see this graphically, consider Figure 3, where again the hump-

shaped curve represents the firm's potential profit as a function of

capital investment. As the allowed rate of return is lowered, the

/\Profit

Cf

Cll

N
Bl BT ] Bl T l,
Capital Investment

o
p:, ]
[S7 I .

Figure 3
Effect of a Reduction in the Allowed Rate of Return
constraint curve C shifts downward to C' and on to C"; the optimum level
of capital investment of the firm shifts upward from B to B' and on to
B". When the allowed rate of return equals the cost of capital, the

constraint curve lies on the capital investment axis., Since the firm's

16This anomaly is discussed and derived mathematically in Baumol and
Klevorick, pp. 162-190.

1



profits are now everywhere constrained to zero, the firm is free to set
its capital investment anywhere between 0 and B'", The implication for
the regulator seeking to act in the hest interests of consumers is to
set the allowed rate of return above the cost of capital, but as close
to 1t as possibhle.

This anomaly is of more than academic interest, since regulators
generally seek to give the firm a "fair" allowed rate of return, which
is usually interpreted as an allowed rate of return equal to the
investor's opportunity cost of capital. In fact, in recent years, regu-
lators have not raised allowed rates of return as quickly as market
interest rates have risen, with the result that in many cases allowed
rates of return have been below the opportunity cost of capital. In
1981, for example, the investor-owned gas utility industry had operating
income equal to only 11.6% of net plant17; this compares to an aver-
age 14.8% rate on six-month commercial paper during the year.18
Despite this, gas firms are not going out of business, nor is there, to
the best of my knowledge, any discontinuity in their behavior when
allowed rates of return drop below the opportunity cost of capital,

Furthermore, there is a certain absurdity in the implications of
this model, How close can a regulator set the allowed rate of return to

the opportunity cost of capital before the firm regards the allowed rate

17American Gas Association, Gas Facts, 1981 (Arlington, VA: American
Gas Association, 1982), p. 178.

1 . . . s s
8U.S. Bureau of Economic Analysis, "Current Business Statistics",

Survey of Current Business 63 (January, 1983): S-14,

12



of return as, for all practical purposes, equal to the opportunity cost
of capital, and everything goes haywire? Is it 1%7 .01%? .0001%7? The
opportunity cost of capital is, of course, not a very precisely defined
number anyway. Clearly, there is something lacking in this theory, but
what?

This chapter has already alluded to the second anomaly. 1In the
Averch-Johnson model, the firm continues to purchase all non-capital
inputs only up to the point where their marginal revenue product equals
their marginal cost. Therefore, the firm should never purchase gas at
a price higher than its resale price. Yet, as already noted, one

frequently observes pipeline companies doing just that.

1.6 The Assumptions of the Averch-Johnson Model

One can also criticize the unrealism of the assumptions upon which
the Averch-Johnson model is based. Three criticisms are probably the
most important.19 First, as already noted, the rate-of-return cons-
traint on profits is not, in practice, continuously binding; rather it
is the tariffs which are binding. Once the tariff has been fixed, the
firm has an incentive to minimize costs, so as to improve its profits.
This cost minimizing incentive runs counter to the Averch-Johnson incen-
tive to make uneconomic capital investments. Second, regulators are not
as naive and/or passive as the Averch-Johnson model assumes. They can,

and sometimes do, disallow the firm from passing on to consumers the

19See Paul L. Joskow and Roger C. Noll, "Regulation in Theory and
Practice: an Overview'", in Studies in Public Regulation, ed. Gary Fromm
(Cambridge: M.I.T. Press, 1981), p. 10-14.
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cost of imprudent expenditures, or may simply forbid the firm from
making certain types of expenditures altogether. Hence, it should be
possible to regulate away at least the worst of the Averch-Johnson tend-
ency toward overinvestment., Third, the Averch-Johnson model is often
interpreted as assuming that the size of the firm's capital stock can be
adjusted at will in response to changes in the allowed rate of return.
Actual public utility capital has too long a life and too low a salvage
value to be used in this fashion. In fact, risk-aversion may drive
firms to reduce their investment, so as to decrease their exposure in
the potentially hostile environment of the future.

All three of these criticisms of the assumptions of the Averch-
Johnson model are valid. However, I do not believe they necessarily
detract from the usefulness of the model, or models based on similar
assumptions, as vehicles for gaining insight into the possible conse-
quences of regulatory policies. The first criticism, dealing with the
non-continuously binding nature of the rate-of-return constraint, points
up the fact that the firm faces a tradeoff between the short-run losses
an uneconomic investment entails, and the long-run benefits to be gained
after the next rate adjustment. One could modify the Averch-Johnson
model to reflect this tradeoff explicitly, as Bailey and Coleman have
already done.?0 They show that as the regulatory lag is lengthened, the
firm tends to move toward cost-minimization. In effect, the Averch-

Johnson model can be viewed as a limiting case, where the regulatory lag

20F1izabeth E. Bailey and Roger D, Coleman, "The Effect of lagged
Regulation in an Averch-Johnson Model™, Bell Journal of Economics and
Management Science 2 (Spring, 1971): 278-292.
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approaches zero. Actual firms will be somewhere on the continuum
between the kind of behavior predicted by an Averch-Johnson type assump-
tion of no regulatery lag, and the {not very interesting) cost-mini-
mizing behavior predicted by a model with very long lags. As long as
one keeps this caveat in mind, it should be possible to learn a good
deal from a model which does not explicitly take lags into account.

The second criticism, dealing with the assumption that regulators
do not have control over firm expenditures, does not detract from the
value of a model such as Averch and Johnson's for exploring how firms
might behave if regulators lack the ability or vigilance to control the
firm's expenditures. Nevertheless, the regulator's ability to approve
or deny new capital investments is an important policy instrument, which
has not been examined in the literature. I shall return to this issue
and modify the assumption in Chapter 3.

The third criticism, dealing with the assumption of easy adjustment
of the firm's capital stock, is really a criticism of one interpretation
of the medel. The Averch-Johnson model is a static model. One may
invoke the assumption of an easily adjustable capital stock in applying
the model to a dynamic situation. However, I believe a better approach
is to assume that utility capital does have long life and low salvage
value. One must then recoagnize that the allowed rate of return and cost
of capital which the firm will use in its decisionmaking are not neces-
sarily the current values of these variables, but anticipated values
over the life of the investment. Since these anticipations usually

change slowly, the Averch-Johnson model would not usually lead one to
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expect the firm to make rapid shifts in capital investment. I shall
discuss the application of the model to dynamic situations further in

Section 2.4.

1.7 Overview of the Study

Chapter 2 introduces a model based on the assumption that firm man-
agers have objectives other than profit-maximization, which take on cru-
cial importance when the firm's profit opportunities are severely cur-
tailed under rate-of-return regulation. The new model behaves in a
smooth fashion as the allowed rate of return is reduced below the cost
of capital. More importantly, however, the model can be used to predict
how the firm's operating costs might respond to changes in the allowed
rate of return. Chapter 3 introduces another model in which regulators
have the power to require that new capital investments be productive.

It is shown how a capital productivity requirement could induce util-
ities to purchase gas with a marginal cost higher than its marginal
revenue product. Rules of thumb for how price-minimizing or
welfare-maximizing regulators might use thls power are discussed.

Chapter 4 introduces a model with both management objectives other
than profit and a capital productivity requirement, The potential
impact of the capital productivity requirement on the firm's operating
costs 1s discussed. Chapter 5 uses this model to explore how a gas
utility's operating costs might be affected by wellhead price controls.
Chapter 6 discusses the available empirical evidence for the model's
predictions. Chapter 7 summarizes the results of the study, and gives

suggestions for further research.
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CHAPTER 2

GAS FIRM BEHAVIOR WHEN PROFIT-MAXIMLZATION

IS NOT THE ONLY OBJECTIVE

It is the author's contention that to investigate the effects of
rate-of-return regulation on operating costs, one must look beyond the
traditional profit-maximizing model of the firm. The new model should
take into account the other objectives of the individuals who make up
the firm and the environment of imperfect information in which the firm
operates. This chapter proposes a model of firm behavior under rate-of-
return regulation based on the assumption that, instead of maximizing
profits alone, firm managers maximize utility. This utility is a func-
tion of both profit and the institutional costs resulting from any other
objectives the managers may be pursuing.

This new model can be used to explain why a firm might not minimize
its operating costs, as a profit-maximizing firm generally would. It
can also be used to explain firm behavior when rate-of-return regulation
forces the firm to have zero or even negative profits. A major theme of
the chapter is that a lowering of the allowed rate of return toward the
cost of capital would cause the utility-maximizing manager to gradually
shift away from profit-maximization toward the maximization of institu-

tional costs.
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The first section of this chapter discusses assumptions about the
nature of the firm and the nature of institutional costs which could
underlie this model, and presents a brief overview of the relevant
literature. The second section discusses how the managers would go
about maximizing utility; it thus presents the hasic model. It is shown
how firm behavior is predictable under this model at values of the
allowed rate of return equal to or below the cost of capital, thus
explaining the first anomaly discussed in the preceding chapter. The
third section uses the model to explore how the managers might respond
to a lowering of the allowed rate of return. It is shown how this is
likely to lead to increasing institutional costs in the firm's opera-
tions. The fourth section discusses the need to carefully define what
one means by the allowed rate of return and cost of capital in applying
this model to the real world, where both may fluctuate over time. The
fifth section discusses the principal practical result of the model:
that in setting the allowed rate of return regulators may face a

tradeoff between profits and institutional costs.

2.1 Objectives Other Than Profit-Maximization

This section examines why it is appropriate to model firm managers
as maximizers of utility, where utility is a function of profit and the
institutional costs resulting from any other objectives the managers may
be pursuing. The first subsection examines the nature of these institu-
tional costs. It is argued that they could take the form of expenses

which benefit management directly, or of excessive factor payments, or
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of suboptimal use of inputs. The second subsection examines the under-
lying assumptions about the nature of the firm which could result in
such a model. It is proposed that the firm be viewed as a set of
contracts among individuals, formulated and enforced in an environment

where Information is costly.

2.17.17 Institutional Costs

In traditional neoclassical theory, firms are black hoxes which
automatically select inputs and outputs so as to maximize profit. Many
economists have questioned this assumption, generally after observing
that firms are composed of human beings with diverse objectives and
limited capabilities. The earlier critical literature generally aimed
at proposing models to be used as alternatives to the neoclassical model
of the firm. Three of these models are especially interesting because
they suggest other categories of costs which might arise, beyond those
which would be incurred by a traditional neoclassical firm.

The three models to be examined in this subsection are the "expense
preference" theories of Williamson, the "organizational slack" theories
of Cyert and March, and the "X-inefficiency" theories of Leibenstein.
The expenses which are the focus of these models are, respectively,
those which benefit management directly, excessive factor payments, or
expenses due to suboptimal use of inputs. Although each of the three
authors has used somewhat pejorative language, connoting "waste", to
describe these expenses, I believe they are more properly viewed as a

cost of doing business arising from the fact that economic activity must
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be conducted by human beings organized under certain economic institu-
tions. Hence, I will describe such expenses as "institutional costs."
Institutional costs may be contrasted with "physical costs," which would
occur even in the idealized neoclassical model. Just as one can often
reduce physical costs by improving physical technology, one can often
reduce institutional costs by improving institutional technology.

My purpose here is not, however, to construct a new theory of
institutional costs. It is, rather, to use the concept in addressing
the effects of one important type of institutional technology: rate-of-
return regulation. The three models to be discussed in this subsection
are presented as illustrations of the concept of institutional costs.

The first model is the "expense preference" model of Oliver
Williamson. He argues that firm managements maximize a utility function
which is increasing in profit and certain categories of expenses of
direct benefit to management. The latter might include management
salaries, excessive staff, or "perks", such as plush offices, generous
travel and entertainment allowances, and company-sponscred recreation
programs. As a result, the firm would incur costs for these expense
categories in excess of that which could be justified on the basis of
profit-maximization alone.1

The second model 1s the "organizational slack” model of Cyert and

March. They argue that all organizations are coalitions of individuals

1Oiiver E. Williamson, The Economics of Discreticnary Behavior;
Managerial Objectives in a Theory of the Firm (Englewood Cliffs, NJ:
Prentice-Hall, 1964).
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with various objectives. The firm's goals are set by a bargaining
process, with side payments being made to individuals whose objectives
cannot otherwise be satisfied. Since this market for side payments is
not well defined, there may be a tendency for these payments to grow to
Ievels in excess of the amounts required to keep individuals in the
coalition, leading to a problem they refer to as '"organizational slack."
During hard times, a more vigorous search for excessive payments is made
by the bargaining participants, and organizational slack is reduceci.2
The emphasis in organizational slack theory is thus on excessive factor
payments.

A third model is the X-inefficiency model of Harvey Leibenstein.
His approach 1s rather a elaborate one, which starts with the premise
that only individuals, not firms, can have objectives or utility. Indi-
viduals within an organization exhibit a constant tendency to shift
their efforts, so as to contribute to their own utilities, rather than
to profit-maximization ("effort entropy"). The result, in a single out-
put firm, is that actual output is less than the maximum possible with
the given inputs, a phenomena Leibenstein calls "X-inefficiency." He
argues that all firms exhibit some degree of X-inefficiency, which can
be held in check only through the vigorous efforts of the management.
An environment where the pressure on management to perform is low, such
as a monopoly or a firm operating on a cost-plus contract, leads to high

X-inefficiency. A tight competitive environment leads to low

2Richard M. Cyert and James G. March, A Behavioral Theory of the Firm
{Englewood Cliffs, NJ: Prentice-Hall, 1963}.
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X—inefficiency.3 In any case, the emphasis in X-inefficiency theory is
on suboptimal use of inputs.

In the author's opinion, the difference between "organizational
slack” and "X-inefficiency"” theories is not a sharp one. Both theories
explicitly reject the notion of utility maximization. Cyert and March
see firm behavior as "adaptively rational." This means that there is
search for new modes of behavior ("standard operating procedures'") only
when performance does not meet expectations. Leibenstein proposes a
somewhat similar concept of "inert areas." This describes a set of
behavior patterns ("effort positions'") any one of which an individual
would find acceptable, and not seek to change, unless confronted by new
opportunities or constraints.

Although these two models provide interesting descriptions of firm
behavior and of the sources of institutional costs, they do not provide
a very useful construct for obtaining testable hypothesis or for doing
analysis of concrete problem’.'ﬁF This is primarily due to their rejec-

tion of maximizing behavior without offering a useable alternative.

Leibenstein has written a number of papers and several books about his
theories. These are reviewed in Harvey Leibenstein, "A Branch of Eco-
nomics Is Missing: Micro-Micro Theory", Journal of Economic Literature,
18 (June, 1979): 477-502. The original paper is "Allocative Lfficiency
vs. X-Efficiency", American Economic Review, 56 (June, 1966): 392-415.
The most thorough exposition of X-efficiency theory is contained in his
hook, Beyond Economic Man; A New Foundation for Microeconomics
(Cambridge: Harvard University Press, 1976).

qFor an exposition of this critique of X-Efficiency theory see George
J. Stigler, "The Xistence of X-Efficiency”, American Economic Review, 66
(March, 1976): 213-216. Leibenstein responds in "X-inefficiency Xists--

Reply to an Xorcist", American Economic Review, 68 (March, 1978):
203-211.

22



Williamson's expense preference model does not have these problems. Tt,
however, deals with only one aspect of institutional costs, and does not
really explain how managers get the discretionary power to pursue objec-
tives other than profit which he ascribes to them. In the next sub-
section, I therefore examine some other approaches to the analysis of

institutional costs.

2.1.2 The Nature of the Firm

In recent years, a new stream of literature has developed reexamin-
ing the theory of the firm. Rather than providing an alternative to the
necclassical approach, this literature tends to integrate a new model of
the firm into the neoclassical framework by modifying a few assump-
tions. In this approach, firms are viewed as a set of contractual
relationships among individuals, with what I call institutional costs
becoming a focus of attention. Consistent with this approach, I will
argue that, for our purposes, a gas firm can be viewed as a contract
between utility-maximizing managers and a regulator who can impose
certain constraints. Management utility will be a function of profit
and institutional costs.

Although no new comprehensive theory of the firm has yet developed,
two clear trends in this new literature may be noted. The first has
been to end the dichotomy between consumer theory and the theory of the
firm by extending the utility-maximization hypothesis to the individuals
who make up the firm. The second has been to recognize that there are

very important informational constraints on the ability to negotiate and
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enforce contracts. The Imperfect contracting between the individuals
who make up the firm explains the existence of institutional costs.5

This literature has been developing by viewing the firm both from
a "macro" and "micro" perspective. The macro literature has tried to
explain firm organization as a system of minimizing institutional
costs. A key paper was that of Alchian and Demsetz, who saw firms as
emerging so as to reduce the amount of shirking which takes place in
joint or team production. The members of the team can make themselves
better off by contracting with a manager who can monitor, and appropri-
ately reward, each membher's contributions.6 Williamson has extended
this type of analysis to other types of opportunistic behavior by indi-
viduals in order to give explanations for the emergence of a variety of
economic institutions. He also considers the problems posed by the
individuals' limited knowledge and computational capabilities ("bounded
rationality”).7

In contrast to this macro view is what has become known as the
"agency literature'", which focuses on the construction of contracts
between a principal and an agent, given limitations on information.

Ideally, the principal would want to reward the agent for actions taken

5This literature is reviewed in Louis De Alessi, "Property Rights,
Transaction Costs, and X-Efficiency: An Essay in Economic Theory",
American Economic Review, 73 (March, 1983): 64-81.

6Armen A. Alchian and Harold Demsetz, "Production, Information Costs,

and Economic Organization", American Economic Review, 62 {(December,
1972): 777-795.

701iver E. Williamson, Markets and Hierarchies; Analysis and Anti-Trust
Implications, (New York: Free Press, 1975).
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in his interests. However, the world may often be such that the prin-
cipal cannot costlessly determine whether the agent has taken actions in
his interest. So the principal must base his reward on some type of
imperfect information, such as the outcome of the actions, which may
reflect other types of risks as well. The agency literature can be
viewed as exploring the tradeoffs faced by the principal in determining
how much of this risk to impose on the agent. As the amount of risk
which the agent bears increases, the agent has an increasing incentive
to take actions in the principal's interest, but will also generally
demand compensation with an increasingly large expected value. Gener-
ally speaking, it will not be optimal to construct a contract where the
agent bears the entire risk, and therefore acts as the principal would
have acted.8 Applying this type of model to relationships between
owners and managers, or supervisors and subordinates, one could readily
see how institutional costs might arise.

there have been several papers which have combined the macro and
micro appreaches., Most of this work has been normative in nature-

attempting to derive optimal institutional structures for handling

8Examples of this literature are: Michael Spence and Richard Zeckhauser,
"Insurance, Information, and Individual Action", American Fconomic
Review, 61 (May, 1971): 380-387; Stephen A. Ross, "The ELconomic Theory
of Agency: The Principal's Problem”, American Economic Review, 63 (May
1973): 134-139; Steven Shavell, "Risk Sharing and Incentives in the
Principal Agent Relantionship", Bell Journal of Economics, 10 (spring,
1979): 55-73; and Bengt Holmstrom, "Moral Hazard and Observability",
Bell Journal of Economics, 10 (Spring, 1979): 74-91.
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specific types of problems.9 There are two descriptive papers worth
noting here, however. The first is a paper by Fama, which points out
that if the managerial labor market is efficient and rational, as capi-
tal markets are generally assumed to be, managers would have to ulti-
mately bear the costs or benefits of their actions in future compensa-
tion, thus eliminating the incentive problem.10 This author would
argue, however, that managers acquire a large amount of firm-specific
knowledge, inhibiting competition for managers between firms. Further-
more, top managers frequently have effective control over the f"irm,H
inhibiting competition for managers within the firm. Hence, the
managerial labor market is less than efficient and rational. Neverthe-

less, Fama's paper points up the importance of these assumptions about

the managerial labor market in explaining firm behavior.

9Examples of this literature are: Joseph E. Stiglitz, "Incentives and
Risk Sharing in Sharecropping”, Review of Economic Studies, 41 (April,
1974): 219-255; Joseph E. Stiglitz, "Incentives, Risk, and Information:
Notes Towards a Theory of Hierarchy", Bell Journal of Economics, &
(Autumn, 1975): 552-579; James A. Mirrlees, "lThe Optimal Structure of
Incentives and Authority Within an Organization”, Bell Journal of
Economics, 7 (Spring, 1976): 105-131; Stanley Baiman and Joel S. Demski,
"Economically Optimal Performance Evaluation and Control Systems", 18
supplement (1980) pp. 184-220; and John Christensen, "Communication in
Agencles", Bell Journal of Economics, 12 (Autumn, 1981): 661-674.

10Eugene F. Fama, "Agency Problems and the Theory of the Firm", Journal
of Political Economy, 88 (April, 1980): 288-307.

HThree classic studies emphasizing the control of top managers over
large corporations are Adolf A. Berle and Gardiner Means, The Modern
Corporation and Private Property (New York: MacMillan, 1932); Robert
Aaron Gordon, Business leadership in the Large Corporation (Washington,
DC: The Brookings Institution, 1945); and Myles L. Mace, Directors: Myth

and Reality (Boston: Harvard University Graduate School of Business
Administration, 1971).
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A second important descriptive paper is that of Jensen and
Meckling. They argue that a particular contractual structure may be
modeled by assuming a utility-maximizing manager faced with a budget
constraint. The manager's utility function is an increasing function of
both the present value of the firm and the present value of the "non-
pecuinary benefits consumed" by the manager. Their discussion reveals
the latter to be almost synonymous with what I call institutional cost.
By showing how the budget constraint is altered, Jensen and Meckling
then use their model to explore how the firm might be affected by such
things as outside equity financing, monitoring and bonding of the man-
agement, and the issuance of clebt:.?2

My study focuses on the contract between the managers and the regu-
lator. A paper by Baron and Myerson has shown how the agency approach
can be applied to specify an optimal regulatory contract.13 My study,
however, will be limited to an examination of rate-of-return requla-
tion. As such, a descriptive approach, like that of Jensen and
Meckling, appears to be more appropriate. Like them, I shall model the
gas firm by assuming utility-maximizing managers faced with a budget
constraint. Utility will be an increasing function of the firm's profit
and institutional costs. The utility function and the budget constraint

already reflect all of the firm's other contracts, including that

"2Michael C. Jensen and William H. Meckling, "Theory of the Firm:
Managerial Behavior, Agency Costs and Ownership Structure", Journal of
Financial Economics, 3 (October, 1976}: 305-360.

13David P. Baron and Roger B. Myerson, "Regulating A Monopolist With
Unknown Costs'", Econometrica, 50 (July, 1982): 911-930.
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between the managers and the owners. Hence, the utility function and
budget constraint incorporate a certain structure of incentive payments
to managers and monitoring of their actions by outsiders. I shall
assume this structure to be independent of actions taken by the
regulator.

Utility is an increasing function of profit either because manage-
ment compensation is some function of profits, or because managers
believe higher profits result in increased job security, since profits
are what the owners monitor. Utility is an increasing function of
institutional costs for one of two reasons. First, these costs may
represent expenditures which contribute directly to management utility.
Second, they may be costs which would require effort to reduce through
bargaining or searching for lower factor costs and better utilization of
inputs. The utility of institutional costs may be reduced by the
owners' monitoring efforts, which may sometimes permit them to penalize
the managers for at least some types of institutional costs.

The regulators, for their part, are assumed to be incapable of
directly controlling institutional costs. The assumption is justified,
since under a rate-of-return regulation system, regulators really are in
a weak position. About all the regqulators can do when they happen to
notice an inappropriate cost is to disallow the firm from passing that
particular cost through to consumers. Even this requires concrete legal

evidence, and lengthly administrative processes, which will not usually
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be practical except in flagrant cases.1q Without the owners' ability

to hire and fire managers, or make incentive payments to them, regula-
tors have little means to even attempt to control institutional costs

directly.

2.2 Firm Behavior Under Rate-of-Return Regulation

Firm managers whose utility is an increasing function of profit and
institutional costs will go about maximizing that utility just as would
the consumer in neoclassical theory. Specifically, the managers will
choose to operate at the point of tangency between the highest attain-
able isoutility curve and the budget constraint they face. The regula-
tors can influence this solution by taking actions which alter the shape
or location of the budget constraint. By analyzing how a reqgulatory
action affects the managers' budget constraint, one can use this
utility-maximization framework to predict the firm's response to a
regulatory action. The first subsection below discusses the manager's
budget constraint, and how it would be affected by a rate-of-return
limitation on profits. The second subsection discusses the managers'
utility function and the utility-maximizing solution. In both subsec-
tions, these results are explained verbally and graphically. The
section concludes with a mathematical formulation subsection, which
explains the model in a mathematically formal fashion. As no new

results are presented in this mathematical formulation subsection, or

MSee Martin T. Farris and Roy J. Sampson, Public Utilities; Regulation,
Management, and Ownership (Boston: Houghton-Mifflin, 1973), pp. 94-99
and Kahn, v.2, p. &7.
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any of the other mathematical formulation sections throughout this
study, readers who are interested only in a general overview may skip
these subsections.

It is important to understand that the institutional costs to he
discussed In this study are assumed to be part of the firm's operating
costs. In practice, institutional costs will also arise in the firm's
capital expenditures. However, an investigation of the latter form of

institutional costs must be left for future research.

2.2.17 The Budget Constraint

The managers of every firm must allocate their resources so as to
achieve one of many feasible combinations of profit and institutional
costs. If the firm managers are maximizing a utility function of profit
and institutional costs, they will always choose to operate at a point
which maximizes profit for any given level of institutional costs, and
vice-versa. The set of such feasible points constitutes the budget
constraint which the managers face, which may be plotted on a graph with
profit on one axis and institutional costs on the other.

I shall assume that the firms's physical costs (that is, non-insti-
tutional costs) are independent of the level of institutional costs
chosen by the managers.15 Then, in an untaxed unregulated environment,

if the managers desired to increase profit by a dollar from a point on

15One could make alternative assumptions about the interaction of
physical costs and institutional costs. Three different approaches are
discussed in R. Rees, "A Reconsideration of the Expense Preference
Theory of the Firm", Economica, 41 (August, 1974): 295-307. My approach
corresponds to Rees' case (i).
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the budget constraint, they would have to reduce institutional costs by
a dollar. Hence, the budget constraint will be straight line with slope

of minus one, as shown in Figure 4. Actually, such a situation hardly

A Institutional Costs

b

Profit

Figure 4
Budget Constraint of Unregulated Firm
ever arises in the real world. Most institutional costs are tax-deduc-
tible; with a roughly 50% corporate income tax, the slope of the budget
constraint (institutional costs vs. after-tax profit) becomes closer to
minus two.

It is the effect of rate-of-return regulation on the budget con-
straint that is of primary concern in this study, however. Without
rate-of-return regulation, the managers would chocse the same level of
capital investment no matter where on the budget constraint they choose
to operate. The firm can maximize profit, at any given level of insti-
tutional costs, just as would an ordinary profit-maximizing firm, by

setting the value of the marginal product of capital equal to its
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marginal cost. Under rate-of-return regulation, however, the firm
becomes subject to a profit ceiling based on the amount of capital
investment it has, and these observations no longer apply.

Let ©* be what the regulatory ceiling on profit would be if the
managers chose the amount of capital investment they would choose in an
unregulated environment. As long as the managers choose a combination
of profit and institutional costs such that profit is less than =¥,
rate-of-return regulation has no effect. Hence, the budget constraint
is unaffected by rate-of-return regulation at values of profit less
than m*,

If, however, the managers wish profits greater than w* when the
allowed rate of return Is greater than the cost of capital, they must
invest more than the amount of capital they would choose if the firm
were unregulated. This will be costly, reducing the potential institu-
tional costs at any given level of profit below what they would be if
the firm were unregulated. Hence, the budget constraint will be lower
and steeper than in an unregulated environment at values of profit
greater than n*. The new budget constraint will be as shown in

Figure 5,
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Figure 5
Budget Constraint of a Rate-of-Return Regulated Firm
With an Allowed Rate of Return Greater Than the Cost of Capital
If the allowed rate of return is reduced, 7 will be reduced.
Furthermore, the budget constraint will become lower and steeper, since
the managers must acquire increasingly large amounts of capital to
achieve a given profit ceiling. A resulting family of budget con-

straints is shown in Figure 6.
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Effect of a Reduction in the Allowed Rate of Return
on the Budget Constraint
When the allowed rate of return exactly equals the cost of capital,
m will equal zero and the budget constraint will be vertical at the
institutional costs axis as shown in Figure 7. There is then no way the
firm can have a positive profit. MNote that, assuming the allowed rate

of return is greater than or equal to the cost of capital, the budget

Institutional Costs

\
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Figure 7
Budget Constraint of a Rate-of-Return Regulated
Firm with an Allowed Rate of Return Equal to the Cost of Capital
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constraint always intersects the institutional costs axis at a value
equal to the maximum amount of profit the firm could have earned in an
untaxed, unregulated environment. This is because of the one-to-one
tradeoff between profit and institutional costs in an untaxed
unregulated environment.

I can similarly plot the budget constraint when the allowed rate of
return is less than the cost of capital. In this case, 7%, will be
negative, but the managers can reduce their losses by investing less
than the amount of capital they would choose for an unrequlated firm.
The new locus always passes through the origin, since, while positive
profits are impossible, the managers can reduce their losses to zero by
reducing capital investment to zero and going out of business. A budget
constraint for an allowed rate of return less than the cost of capital

might appear as in Figure 8.
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Figure 8
Budget Constraint of a Rate-of-Return Regulated Firm
With an Allowed Rate of Return Less Than the Cost of Capital
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A profit-maximizing firm with an allowed rate of return less than
the cost of capital must, of course, go out of business. However, the
utility-maximizing managers assumed in this study may prefer to keep the
firm in business even when this is not in the best interests of the
firm's stockholders. If the regulators set the allowed rate of return
high enough that the firm could cover its operating costs and fixed

charges, such a firm would not go bankrupt.

2.2.2 Utility Maximization

Given a budget constraint, one can determine the combination of
profit and institutional costs which the managers will choose by
plotting isoutility curves (points of equal utility) as shown in Figure
9. Utility increases with increasing amounts of profit or institutional

costs, hence the curves represent increasing values of utility as one

\\<:\Institutional Costs

Figure 9
Iscutility Curves




moves up and to the right. The managers will seek to operate on the
highest possible isoutility curve consistent with the budget constraint
which they face. This will be where an isoutility curve is just tangent
to the budget constraint. Figure 10 shows one such solution. In this
figure, the managers will choose to operate at a point to the right of

n¥, where the rate-of-return constraint is binding. This is usual case

Ny

NInstitutional Costs

\
VIsoutility Curve
\

Budget \
Constraint

|
i
1
!
!

0 * Profit

Figure 10
Utility-Maximizing Solution
with the Rate-of-Return Constraint Binding

for rate-of-return regulated firms; however, there is no necessary

reason it has to be this way. Fiqure 11 shows how a different utility
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Figure 11
Utility-Maximizing Solution with
Rate-of ~-Return Constraint Nonbinding
function might result in the managers choosing a value of profit less
than w*, where the rate-of-return constraint is not binding.

These two figures were drawn assuming an allowed rate of return
greater than the cost of capital. One could easily draw similar figures
for an allowed rate of return less than the cost of capital, or for an
allowed rate equal to the cost of capital with the managers choosing to
operate at a point to the left of the institutional costs axis. The one
situation where the tangency condition would not apply is if the allowed
rate of return equals the cost of capital and the managers choose to
operate at the zero-profit point. In this case, the kink in the budget
constraint at the point where profit equals zero will touch the isoutil-

ity curve as shown in Figure 12.
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Figure 12
Utility-Maximizing Solution With an Allowed Rate of Return Equal
to the Cost of Capital and the Rate-of-Return Constraint Binding

2.2.M. Mathematical Formulation

This subsection presents a mathematical formulation of the model

discussed above. I will show how the budget constraint is derived, and

show that it has the shape described above, as well as the claimed

responses to changes in the allowed rate of return. I will also show

how the utility-maximizing solution for the managers is at the point of

tangency of the budget constraint in =m - x space and an isoutility

curve. The case of an unregulated firm will be considered first, then

the firm subject to a rate-of-return constraint.

The notation to be used in this subsection is as follows:

T = real economic profit;
X = institutional costs;
k = quantity of capital invested;
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q = quantity of gas sold;

z(k,g) = minimum operating cost required to sell quantity of gas g
with capital investment k;

p{g) = consumer price of gas {p'{g) < 0);

f{g) = wellhead price of gas (f'(g) > 0});

c = constant representing value of any rents accruing to firm
from partial wellhead price controls (see below);

5 = allowed rate of return;

r = cost of capital;

U(w,x) = the manager's utility function (concave}.

I assume that g is always larger than the quantity of gas available to
the firm from price-controlled sources, allowing me to represent the
rents accruing to the firm from partial wellhead price controls as a
constant c¢. The firm's total gas purchase costs are therefore

flglg - c.

My notation scheme differs from the standard textbook approach to
modeling firm behavior in two minor respects. First, z( ) serves the
role of "labor" in the standard textbook approach. My notation recog-
nizes that there are many non-capital inputs to a firm, which I have
lumped into a single input. I measure these other inputs by their mone-
tary value rather than their physical quantity; this allows me to
simplify the model by not having to specify the price of these inputs.
Second, I make z( ) a function of capital investment k and output g,
with output an independent variable. The traditional approach would be

to have output dependent upon capital investment and z according to a
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production function, with z being an independent variable. My approach
generally produces simpler, more intuitive results.

I also define the firm's net revenue function to be
R(k,g) = (p(g) - f(g))g + ¢ - z(k,g) - rk. (2.2.M/1)

This function represents the total resources which the managers have to
divide between profits and institutional costs. I assume throughout

this study that R(k,g) is a strictly concave function. This means that
the function has the distinctive upside-down bowl shape, as depicted in
Figure 13 below. The following theorem may help to convince the reader

of the plausibility of this assumption.

TNet Revenues

Volume

Capital Investment

Figure 13
The Net Revenue Function

Theorem 2.2.M.A: If

1) the gas firm's underlying production function for gas transpor-
tation g = h{z,k) is strictly concave with h1(z,k) > 0 and

ha(z,k) > 03 and
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2) if the difference between marginal revenue from the sale of
gas, and the marginal cost of gas to the firm moves in negative

direction as gas sales increase, that is if

&b (a)g + p(e) - F'(9)g - Flg) ] < O,

then the firm's net revenue function, as defined by (2.2.M/1), is

strictly concave.

Proof: To demonstrate the strict concavity of R(k,g) it is sufficient
to show that R, (k,g) < 0 and R, (k,q)Ry,(k,q) - (R (k,@))° > 0. I
will begin by obtaining expressions for 211(k,g), 212(k,g), and zzz(k,g)
in terms of the partials of the production function g = h(z,k). I shall
then use these expressions to obtain the desired properties of the par-
tials of R{k,g).

One can obtain expressions for 21(k,g) and zz(k,g) in terms of the
partials of the production function as follows. First, totally dif-

ferentiating g = h(z,k) yields
dg = hq(z,k)dz + hz(z,k)dk.

One can write this expression in terms of k and g alone by substituting

z = z{k,qg):

dg = h,(z(k,g),k)dz + h,(z(k,q),k)dk.

2

This implies
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-h,(z(k,q),k)
dz 2
= =%z 2.2.M/2
z,(k,g) » h1(z(k’g)’k) ( /2)

and
oz 1
z,(k,q) = — = . (2.2.M/3)
27 3g  h,(z(k,g),k)
These relationships may be used to determine the second partials of
z{k,g):

~[h21{z(k,g),k)zq(k,g) + hzz(z(ksg)yk)]

h1(2(k,9),k)

Zy4(ky9) =

hz(z(k,g),k) [h11(z(k,g),k]zj(k,g) + h12{z(k,g),k)]

[hy(2(ks0) k) T ’

-hyqlzk,9) k)2, (ks0) - hyy(2(k,9),k)

[hT(z(k,g),k]Z ’

il

2,,(K;9)

-hy4(z(k,9) k)2, (k,g)

[h1(z(k,g),k)]z

zzz(k,g)

Substituting for ZT(k’g) and zz(k,g) using (2.2.M/2) and (2.2.M/3), and

dropping the arguments for ease of notation:

2 2
“ho.hoS + 2h, hoh, - Rooh
112 12 = Moo
2, 4(K,g) = 12 ; (2.2.M/4)
11 NE
1
h, h, - h,h
1172 7 M
zy5(ksg) = 3 ; (2.2.M/5)
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Z,5(ksq) = —3 . (2.2.M/6)

Since the numerators of (2.2.M/4) and (2.2.M/6)} are positive by the
strict {quasi-} concavity of h{z,k), while the denominator is assumed
positive, both qu(k,g) and 222(k’g) are positive.

To show that R11(k,g) < 0, one merely notes that, by taking the

partial of (2.2.M/1),

Ryq(ksq) = =7, (K,q), (2.2.M/7)

which is negative since 211(k,g) is positive. One can similarly take

the partials of (2.2.M/1) to obtain

R12(k,g) = -212(k,g) (2.2.4/8)
and

Rys(k,g) = 5%—[9'(9>g +plg) - figlg - f(g) ] - z,,(k,q).

(2.2.M/9)
Using the above expressions allows one to write

Ry1 (k@R (kyg) = (Ryq(ky0))

= -211(k,9)g~§ [p'(g)g + plg) - f'(g)g - f(g)]

v 24006,9)2,5(k,0) - (2,,(k,9))°. (2.2.M/10)

The first term in the above expression is positive since I have shown

that 211(k,g) > 0 and assumed that
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gé{p'(g)g + plg) - F'(glg - f(g)]< 0.

The other two terms may be written using (2.2.M/4) - (2.2.M/6)} as

Z1T(ksg)222(k:g) - (212(k99))2

2 2
. {“h11h2 v Zhyphghy - hoohy™ hyy
= - 3 3
1 1
hyqhy - Ryphy 2
- ( 3 )
hy
2
A EIT:
- "
M

This expression is positive by the strict concavity of h(z,k}. So
(2.2.M/10} is positive. I have thus shown that, under the given assump-
tions, R(k,g) is a strictly concave function.

¢.E.D.

2.2.M.1 The Unrequlated Firm

In this mathematical subsection, I will refer to the budget
constraint which I have graphed and discussed earlier as "the budget
constraint in = - x space”, to distinguish it from the firm's overall
budget constraint, which is a function of k and g as well as =. The
budget constraint in m - x space is defined to be the largest value of x

which the firm could achieve at each value of .
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For an unregulated firm, the budget constraint in = - x space may

be obtained by maximizing
x = (plg) - flg)) + ¢ - z(k,g) -tk - =

over g and k, where both must be non-negative. The first-order
conditions for this maximization requires that the derivatives of this

function with respect to g and k equal zero:

o= p'(9) + plg) - P19 - Flo) - 7,(k,0) = 05 (2.2.M.1/1)
g% = -z,(k,g) - 1 = 0. (2.2.M.1/2)

Lemma 2.2.A: FEquations (2.2.M.1/1) and (2.2.M.1/2) yield unigue optimum

values for g and k which are independent of =.

Proof: MNote that the objective function may be written as

x = R(k,g) - =. Since R(k,g) is strictly concave, the objective
function itself is a strictly concave function of k and g as well.
Hence, the first order conditions yield unique optimum values. Since
neither condition is a function of =1, the solution must be independent

of .

@.E.D.

By this Lemma, one may write the budget constraint in = - x space for

the unregulated firm as

x = (plg*®) - f(g*)}g* + ¢ - z(k*,g*) - rk* - 7, (2.2.M.1/3)
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where g* and k* are the unique values of g and k satisfying (2.2.M.1/1)
and (2.2.M.1/2). The following theorem about the shape of the budget

constraint in = - x space follows easily.

Theorem 2.2.M.1.A: The slope of the budget constraint in = - x space is

minus one.

Proof: Since g*¥ and k¥ are independent of =, the derivative of

(2.2.M.1/3) with respect to 7 yields

Q.E.D.

A goal of this subsection is to show that the solution chosen by
the managers lies at the point of tangency between the budget constraint
in n - x space and an isoutility curve. To demonstrate this, I start by
deriving the first-order conditions for the solution to the managers'

problem. The managers seek to maximize utility
U(r,x),
subject to the budget constraint
(p(g) - f(g)lg + ¢ - z(k,g) - vk - = - x > 0.

Maximization is over =, x, g, and k; where x, g, and k, but not =, must

be non-negative. The Lagrangian will be

L = U(m,x) + A (plg) - f(g))ag + ¢ - z(k,g) - rk -~ = - x].

47



The first-order conditions16

dL

OR

oL

BX

3L
8g

Bl
dk

U1(E,X) - A= 0

Uz(ﬁ,x) - A< 0;

aL
a—xX—-O,

Mp'(g)+p(g)-f'(g)g-flg)-z,(k,g)] < 0;

aL
"66(3—0:

require that:

g > 0;

h[-z1(k,g) -r]<0;

szo;

{(plg) - flg))g + ¢ - z(k,g)

-rk -~ x> 0;

(2.2.M.1/4)

(2.2.M.1/5)

(2.2.M.1/6)

(2.2.M.1/7}

(2.2.M.1/8)

Throughout this study, the first-order conditions are presented in the
format used by William J. Baumol in his Economic Theory and Operations

Analysis, 4th ed. (Englewood Cliffs, NJ:
8. The format is technically correct and easy to remember.

Prentice-Hall, 1977), Chap.

However, it

can leave the reader with the misleading impression that the Lagrange
multipliers (the A's} are mathematically analogous to the other var-
iables. In fact, the condition that aL/dAx > 0 is simply a way of
restating the constraint, while the condition that [8L/8A]A = 0 restates
the requirement that either the constraint be an equality or the
Lagrange multiplier equal zero {or both).
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I shall assume that g, k, and x are all greater than zero at the
solution, and that n and x have positive marginal utilities, that is,
U1(n,x) > 0 and Uz(n,x) > 0. These assumptions are sufficient to insure
that conditions (2.2.M.1/5) - 2.2.M.1/8) are equalities with A > 0. I

now prove the desired theorem.

Theorem 2.2.M.1.B: The solution chosen by the managers lies at the

point of tangency between the budget constraint in 7 - x space and an

isoutility curve in m - x space.

Proof: Note that equations (2.2.M.1/6) and (2.2.M.1/7) are equivalent
to (2.2.M.1/1) and (2.2.M,1/2). By lLemma 2.2.A, this means that they
must yield unique values of ¢ and k, which are the same as those on the
budget constraint in m - x space. Substituting these values into
(2.2.M.1/8) yields an equation equivalent to (2.2.M.1/3), implying that
the solution chosen by the managers must lie on the budget constraint in
T - X space.

To show tangency, it remains to demonstrate that the slope of the
isoutility curve equals the slope of the budget constraint in = - x
space at the solution. An isoutility curve is defined by U{m,x) =

constant. Total differentiation yields a slope

dx U1(n,x)
de =~ Uz(n,x)'

But solving (2.2.M.1/4) and (2.2.M.1/5) yields
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U1(n,x)

- Uz(n,x) = -1

indicating that the slope of the isoutility curve is minus one. By
Theorem 2.2.M.1.A, the slope of the budget constraint in = - x space is
minus cne, so the two slopes are the same.

Q.E.D.

2.2.M.2. The Regulated Firm

The budget constraint in n - x space for the regulated firm is de-
fined the same way as it is for the unregulated firm, only the maximi-
zation is performed subject to the rate-of-return constraint. The

budget constraint in m - x space may be obtained by maximizing
x = (plg) - f{g)) + ¢ - z(k,g) - rk - =

subject to the rate-of-return constraint
(s-r}k - = > 0.

Maximization is over g and k, where both must be non-negative. The

Lagrangian will be
L= (plg) - f(g)) + ¢ - z(k,g) - rk - m+ A[(s-r)k - =J.

The first-order conditions require that:
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7o = P'(g)g + plg) - f'(g)g - flg) - z,(k,g) < 03 (2.2.M.2/17)

0g
L
g—QQ:O; g > 03

aL

3K = -z4(ksg) - 1 + A(s-r) < 03 (2.2.M.2/2)
&k = 0; k > 05

al _ "

33 = (s-r)k - = > 05 (2.2.M.2/3)
g_l}:}\-:oy )\’2‘0

I shall assume that g and k are greater than zero at the solution, which
implies that (2.2.M.2/1) and (2.2.M.2/2) must be equalities.
For ease of notation, define the budget constraint in = - x space

to be

x = B(x,s).

It will be useful throughout the remainder of this chapter to know some
of the partials of B(m,s) given that the rate-of-return constraint is an
equality with A greater than zero. The following series of lemmas give

these partials.

Lemma 2.2.B: If the rate-of-return constraint is an equality, and

s £ r, then

51



a _ 1 (2.2.M.2/4)

This is, of course, positive if s > r and negative if s < r,

Proof: If the rate-of-return constraint (2.2.M.2/3) is an equality,
total differentiation yields the desired result immediately.

Q.E.D.

Lemma 2.2.C: If the rate of return constraint is an equality, and

s £ r, then

&

‘5:0.
dn

Proof: Taking the derivative of (2.2.M.2/4) with respect to k yields

the desired result immediately.

Q.E.D.

Lemma 2.2.D: If the rate-of-return constraint is an equality, and

s £ r, then

dk -k

ds ~ s-r’
This is, of course, negative if s > r and positive if s < r.

Proof: If the rate-of-return constraint (2.2.M.2/3) is an equality,
total differentiation yields the desired result immediately.

Q.t.D.
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Lemma 2.2.E: If the rate-of-return constraint is an equality, and

s £ r, then

This is, of course, always negative.

Proof: Proof taking the derivative of (2.2.M.2/4) with respect to s
vields the desired result immediately.

Q.E.D.

Lemma 2.2.F: If the rate-of-return constraint is an equality, then
d
E_TE(_Z'I(k’g)) <@

if s > r and

d
Tal-zq(k,9)) > 0

if s < r at points on the budget constraint in = - x space.

Proof: Taking the derivative,

dr_ _ dg \dk
gre2qka9) ) = (czgq00) - 29500000 )y

Since dk/dm > 0 if s > r and dk/dn < 0 if s < r by Lemma 2.2.B, a

demonstration that
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d
~z41(k,g) - Z1Z(k,g)—d% <0

will be sufficient to prove the theorem.

By differentiating (2.2.M.2/1},

dC} _ ZTZ(k’g)

dk

%g[P'(g)g + plg) - F'(a)g - flg)] - z55(k,q)
Hence,
dg _
“211(1'(59) - Zqz(kyg)& =

(2,,06,0) )

gg{p‘(g)g + p(g) - f'(g)g - T(g)] - Z55(K,g)

-Z1T(ksg) -

Substituting again, using (2.2.M.7) - (2.2.M/9), yields

2
dg [‘R12(k;g)}
-z14(k,9) - 212(k,g)aE-: Ryq(kyg) - Rzz(k’g) . {2.2.M.2/5)

But, by the strict concavity of R(k,qg),

2

Ryq(,0)R,5(k,) = {Ry5(k,q) )" > 0.

Dividing through by Rzz(k,g), which is negative by the strict concavity

of R{k,g), yields

Ryq(ksg) - R Rrg) < 0.
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So, by (2.2.M.2/5),

dg
- z54(k,q) - z2,5(kyg)ge <0

as claimed.

Q.E.D.

Lemma 2.2.G: If the rate-of-return constraint is an equality with A > 0,

and if s £ r, then
B1(n,s) < - 1,
Proof: By definition,
B(m,s) = (plg) - f(g))g + ¢ - z(k,q) - rk - =,

s0,

By(n,5) = [p'(9)g + pla) - F'(g)g - F(g) - z,(k,g) o9

c:t|ﬁ
E1EY
i
—

- [ZT(k,g) +r

However, by (2.2.M.2/1), the first expression in brackets must always

equal zero, so

[uB e
S[A

By(m,s) = [-21(k,g) - - 1. (2.2.M.2/6)
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By (2.2.M.2/2}, —21(k,g) -r <0if s> r and ~21(k,g) -r > 0ifs<r.
By Lemma 2.2.B, dk/dn > 0 if s > r and dk/dn < 0 if s < r. Hence, the
first term in (2.2.M.2/6) is negative and B1(n,s) < -1 as claimed.

0.E.D.

Lemma 2.2.H: If the rate-of-return constraint is an equality with

A > 0, and if s £ r, then
Bz(n,s) > 0.
Proof: By definition,

B(m,s) = (plg) - flg))g + ¢ - z(k,g) - rk - =,

50

B,(ms) = [p'(g)g + plg) - f'(g)g - flg) - Zz(k’g)]%

- [7,0k,0) + 21

However, by (2.2.M.2/1), the first expression in brackets must always

equal zero, so

By(ms) = [-z,(k,0) - r] 5. (2.2.M.2/7)

By (2.2.M.2/2), -z,(k,g) - ¢ <0 if 5> r and -z,(k,g) - r > 0 if
s <r. By Lemma 2.2.D, dk/ds < 0 if s > r and dk/ds > 0 if s < r.

Hence, Bz(n,s) > 0 as claimed.
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Lemma 2.2.1: If the rate of return constraint is an equality with

A > 0and s £ r, then

B,,(=m,s} < 0.

11(
Proof: Taking the derivative of (2.2.M.2/6) with respect to = yields

%k

dn

[}

811(7"-55) = %[-Z.](k,g) - r](%) + ['21(k’g) - FJ

[aS]

By Lemma 2.2.C, dzk/dn2 = 0, so this expression simplifies to

By, (m,8) = Sl-z,(k,g) - £ ](3E). (2.2.M.2/8)
Since r is exogenous, Lemma 2.2.F implies that

gg[—z1(k,g) -rl<o
if s > r and

Slz,(k,0) -] >0

if s < r. Lemma 2.2.8 implies that dk/dn > 0 if s > r and dk/dn < 0 if
s < r. Hence B1T(n,s) < 0 as claimed.

Q-E-D-
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Lemma 2.2.J: If the rate-of-return constraint is an equality with A > 0,

then
B1Z(n,s) >0
if s > r.

Proof: Taking the derivative of (2.2.M.2/7) with respect to s yields

2
d dk d7k
812(‘%,5) ZHE[—Z.i(k,g) - I‘]{E) + [—7_1(!(,9) - I‘]—dms.
(2.2.M.2/9)

Since r is exogenous, Lemma 2.2.F implies that

-%E[-z1(k,g) -r|<0

if s > r. By lLemma 2.2.D, dk/ds < 0 if s > r. Hence, the first term of
(2.2.M.2/9) is positive if s > r. By (2.2.M.2/2), ~z1(k,g) -r < 0if

s > r; by Lemma 2.2.E, dzk/dnds <0 if s £ r. Hence, the second term

of (2.2.M.2/9) is positive if s > r as well. So qu(n,s) >0 if s > r,
as claimed.

Q.E.D.

Define 7* to be the largest profit the firm could make under the
rate-of-return constraint given the capital investment on the budget
constraint in % - x space in the absence of a rate-of-return con-

straint. The following lemma provides an explicit expression for w*.

Lemma 2.2.K: =% = (s-pr)k*,
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Proof: In Lemma 2.2.A, I showed that if there were no rate-of-return
constraint there would be unique values for g and kK on the budget
constraint in m - x space, which I called g* and k*. Given capital
investment k*, the largest profit the firm could earn under the

rate-of-return constraint may be determined from (2.2.M.2/3}):

w* = (s-r)k*. (2.2.M.2/10)

Qg.E.D.

I am now in a position to explore the shape of the budget con-
straint in m - x space, and how it responds to changes in s. T shall
first consider the budget constraint in = - x space over the range

ﬂ'ﬁ T*,

Theorem 2.2.M.2.A: For values of = < 7%, the budget constraint in = - x

space of the rate-of-return regulated firm is the same as that for the

unregulated firm.

Proof: In Lemma 2.2.A, I showed that if there were no rate-of-return
constraint, there would be unique values for g and k on the budget
constraint in m - x space, which I called g* and k*. If = <{ w*, then g*
and k* are also feasible solutions for the firm under the rate-of-return

constraint. To see this, note that if n < m* then

(s-r}k* - = > (s-r)k* - u*,
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Since the right side of this inequality is equal to zero by
(2.2.M.2/10), g* and k* satisfy the rate-of-return constraint
(2.2.M.2/3). It follows that g* and k* must be the unique optimum
values of g and k for the rate-of-return regulated firm with =  =w* as
well.

One may then write the budget constraint in = - x space of the

rate-of-return regulated firm with xn < n* as:
x = (plg*) - F{g*) }g* + ¢ - z(k*,g*%) - rk* - =

But this is the same as the budget constraint in = - x space of the un-
regulated firm (2.2.M.1/3). So the two are the same.

0.E.D.

The following Lemma will allow me to apply Lemmas 2.2.G - 2.2.J to

the analysis of the budget constraint over the range = > =*.

Lemma 2.2.L: If = > ¥ then at any solution to (2.2.M.2/1) -
(2.2.M.2/3) the rate-of-return constraint (2.2.M.2/3) must be an equal-

ity and A must be greater than zero.

Proof: Assume there were a solution to (2.2.M.2/1) - (2.2.M.2/3) with
n > %, and A = 0. Then (2.2.M.2/1) and (2.2.M.2/2) become equivalent
to (2.2.M.1/1) and (2.2.M.1/2) respectively. By Lemma 2.2.A, the latter
equations yield g = g* and k = k¥ as unique soclutions. Now if k = k*,

(2.2.M.2/3) requires that (s-r)k* - n > 0. But if = > =* then

{s-r)k* - 1 < (s-r)k* - m*,
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Since the right side of this inequality is equal to zero by
(2.2.M.2/10), I have a contradiction, showing that A > 0 if = > w*. If
A > 0, then (2.2.M.2/3) must be an equality, since (dL/8A)A = O.

Q.E.D.

The following theorems describe the shape of the budget constraint

in = - x space over the range = > ¥, and its response to changes in s.

Theorem 2.2.M.2.B: If s = r, then the budget constraint in w - x space

is undefined for values of w > u*.

Proof: If s = r, then by (2.2.M.2/10), =% = 0. But if s = r,
(2.2.M.2/3) requires = < 0. So the budget constraint in = - x space is
undefined for values of = > w*.

Q.£.D,

Theorem 2.2.M.2.C: If 7 > =*, the slope of the budget constraint in w -

x space is less than minus one.

Proof: If = > 7w* on the budget constraint in = - x space, then, by
Lemma 2.2.L, the rate-of-return constraint is an equality with A > O,

and, by Theorem 2.2.M.2.B, s £ r. So by Lemma 2.2.G,

d
Ein = By(m,s) < -1,

indicating that the slope of the budget constraint in = - x space is

less than minus one.

Q.E.D.

61



Theorem 2.2.M.2.0: If = > n*, the slope of the budget constraint in

T - X space becomes increasingly negative as n increases.

Proof: If = > wn* on the budget constraint in = - x space, then by
Lemma 2.2.L, the rate-of-return constraint is an equality with A > 0,
and, by Theorem 2.2.M.2.B, s # r. By Theorem 2.2.M.2.C, if = > w* the
slope of the budget constraint in 7 - x space is negative. Since Lemma
2.2.1 requires that
2
dX _ B, (ms) < 0,
2 1

dn

this slope must become increasingly negative as = increases.

Q.E.D.

Theorem 2.2.M.2.E: If 7 > =*, then an increase in s causes the budget

constraint in n - x space to shift upward.

Proof: If = > w* on the budget constraint in = - x space, then by Lemma
2.2.L, the rate-of-return constraint is an equality with A > 0, and, by

Theorem 2.2.M.2.B, s £ r. So by Lemma 2.2.H,

d
HiS(- = BZ(TE,S) > O,

indicating that an increase in s causes the budget constraint in = - x

space to shift upward.

Q.E.D.
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Theorem 2.2.M.2.F: If «n > n* and s > r, then an increase in s causes

the budget constraint in = - x space to become less negatively sloped.

Proof: If w > w* on the budget constraint in w - x space, then by Lemma
2.2.L, the rate of return constraint is an equality with » > 0. By
Theorem 2.2.M.,2.C, if n > w*, the slope of the budget constraint in

© - x space is negative. Since Lemma 2.2.J requires that if s > r

-— =B ‘ﬂ:,S)>O,

12(

this slope must become less negative as s increases.

g.E.D.

Theorem 2.2.M.2.G: An increase in s causes the value of #* to increase.

Proof: Totally differentiating (2.2.M.2/10} yields

de*_ |,
e k* > 0,
indicating that an increase in s causes the value of  to increase,

Q.E.D.

For the rate-of-return requlated firm, I also wish to show that the
solution chosen by the managers lies at the point of tangency between
the budget constraint in m - x space and an isoutility curve. To demon-
strate this, I must again derive the first-order cenditions for the
solution to the managers' problem.

The managers seek to maximize utility
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U(TC,X) ’

subject to the budget constraint

(p(g) - f(g))g + ¢ - z(k,g) - rk - = - x > 0,
and the rate of return constraint

{(s-r)k - > 0.

Maximization is over m, x, g, and k, where x, g, and k, but not =, must

be non-negative.

The Lagrangian will be

L = U(m,x) + kT[(p(g) - f(g))g + ¢ - z(k,g) -tk - % - x]

The first
al
O

oL

ax

dL

+ KZ[(s-r)k - n].

order conditions require that:

U1(ﬁ,x) - A
Uz(n,x) - A
aL .
"'a-;X—O,

MIp'(g)g+p(9)~F' (g)g-f(g)-z,(k,g)] < 0;

oL
og

g = 0;

1

1

_}\2

< 05

0;

x > O;

g2 0;

Ml-z,(k,g) - r] + Aols-r] < 0;
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(2.2.M.2/11)

(2.2.M.2/12)

(2.2.M.2/13)

(2.2.M.2/14)



O (pla)-F(@))g + & - 2(k,) - Tk - m - x > 05 (2.2.M.2/15)
1

oL _

o, 17 O M2 0
aL
— = (s-r)k - = > 03 (2.2.M.2/18)
o%, <

oL

“‘axz?‘z = 0; A 2 0

I shall, again, assume that g, k, and x are all greater than zero at the
solution, and that = and x have positive marginal utilities, that is
U1(ﬁ,x) > 0 and Uz(ﬂ,x) > 0. These assumptions are sufficient to insure

that conditions (2.2.M.2/12) - (2.2.M.2/15) are equalities with A, > O.

1

I now prove the desired theorem.

Theorem 2.2.M.2.H: If s £ r, the solution chosen by the managers of

the rate-of-return regulated firm lies at the point of tangency between
the budget constraint in m - x space and an isoutility curve in n - x
space. If s =r, the solution either lies on the budget constraint in

T - x space at m = 0 or lies at the point of tangency.

Proof: 1 first show that the solution chosen by the managers must lie
on the budget constraint in = - x space. Suppose the contrary. Since
the budget constraint in m - x space is defined to be the largest value
of x which the managers could achieve at each value of 1, this would

imply that the chosen value of x was less than the managers could have
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achieved at the chosen value of =. Since 1 assume x to have positive
marginal utility, the managers could improve on this solution by moving
to larger value of x. But this is a contradiction, since the initial
solution is optimal.

To show tangency, it remains to demonstrate that the slope of the
isoutility curve equals the slope of the budget constraint in = - x
space at the solution. An isoutility curve is defined by U(n,x) =

constant., Total differentiation yields a slope

dTIZ - Uz(ﬂyx) '

Hence, one may obtain an explicit expression for the slope of the
isoutility curve at the solution by solving (2.2.M.2/11) - (2.2.M.2/16)
for —U1(n,x)/U2(ﬁ,x).

The budget constraint is defined to be
X = (p(g) - f(g)]g +c - zik,g) - rk - m

Hence, the slope of the budget constraint in =n - x space will be

-9% = [P'(Q)Q+P(9)—f'(g)g-f(g)_zz(k,g)]%% . [21(k’g)+r]%§ 1

Note, however, that (2.2.M.2/1) requires that the first term in brackets
equal zero at points on the budget constraint in ©m - x space. So the
slope simplifies to

dx

& -1, (2.2.M.2/17)

ﬁTi
3|~

[21(k,g) +r
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here dk/dn is determined by conditions (2.2.M.2/1) - (2.2.M.2/3).
I shall consider two cases, depending upon the value of hz at the

solution.

i) Assume that the solution to {(2.2.M.2/11) - (2.2.M.2/16) is such that
hz = 0. Then (2.2.M.2/11) and (2.2.M.2/12) may be solved to eliminate

h1, yvielding

UT(ﬁ,X)

- = 1.
Uz(n,x)

This indicates that the slope of an isoutility curve must equal minus
one at this solution. Now if KZ =0 in (2.2.M.2/11) - (2.2.M.2/16},
then A = 0 at this same solution in (2.2.M.2/1) - {(2.2.M.2/3). But if

A = 0, then (2.2.M.2/2) requires that
—[21(k,g) +r] = 0.
So (2.2.M.2/17) simplifies to

dx

-l

indicating that the slope of the budget constraint in m - x space is

minus one. So the two slopes are the same if hz = 0.

ii) Assume the solution to (2.2.M.2/11) - (2.2.M.2/16) is such that
KZ > 0. If s £ r, one may solve (2.2.M.2/11), (2.2.M.2/12), and

(2.2.M.2/14) to eliminate h1 and KZ’ yielding
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- U1(n,x) - {21(k,g) + r]

= -1
Uz(n,X) s - 1

as the slope of the isoutility curve at the solution.

Now if Kz > 0 in (2.2.M.2/11) - (2.2.M.2/16), then A > 0 at this

same solution in (2.2.M.2/1) - (2.2.M.2/3). But if A > 0, then the
rate-of -return constraint (2.2.M.2/3) must be an equality, so, by Lemma
2.2.B, if s £ r, dk/dn = 1/s-r. Substituting in (2.2.M.2/17) yields

dx - [21(k,g) + r]

dm ~ S - r -1

as the slope of the budget constraint in = - x space at the solution.
Hence, if s £ r, the two slopes are the same if KE >0, If s =r,
(2.2.M.2/16) requires m = 0.

So I have shown that in both cases, if s £ r, (2.2.M.2/11) -
(2.2.M.2/16) require that the slope of an isoutility curve equal the
slope of the budget constraint in m - x space. Hence, if s £ r, the
solution chosen by the managers must lie at a point of tangency between
the budget constraint in m - x space and an isoutility curve. Simi-
larly, even if s = r in case i, the solution is at a point of tangency.

However, if s = r in case ii, then = = 0.

0.E.D.

2.3. Effect of Changing the Allowed Rate of Return

I am now ready to use this model to explore a principal question

about rate-of-return regulation: what happens as the firm's allowed rate
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of return is reduced? In this section, I show graphically how, when the
allowed rate of return exceeds the cost of capital, a reduction in the
allowed rate of return tends to cause a reduction in profits and an
increase in instituticnal costs. I then examine the effect of small
reductions in the allowed rate-of-return, which may be broken down into
a substitution effect and an income effect. A mathematical subsection
follows, which repeats the analysis in a more formal fashion.

There are two published papers which have explored the effects of a
reduction in the allowed rate of return on the profits and institutional
costs of a firm with utility-maximizing managers. The two papers reach
different conclusions regarding the impacts of a reduction in the
allowed rate of return on institutional costs. Unfortunately, both
papers are very sketchy, providing neither intuitive insight into the
logic behind their results, nor considering the case of allowed rates of
return at or below the cost of capital.

Crew and Kleindorfer17 modeled a firm under rate-of-return regu-
lation whose management utility is an increasing function of profits and
staff. The firm was assumed to have a Cobb-Douglas production function
of labor and capital, an exponential consumer price function of output
and advertising, a linear management utility function of profits and
staff, and a minimum level of staff dependent on output and advertising

(which was, in fact, always binding). It should be noted that staff and

17Michael A. Crew and Paul R. Kleindorfer, "Managerial Discretion and

Public Utility Regulation", Southern Economic Journal, 45 (January,
1979): 696-709.
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labor are two completely distinct inputs. They showed, using numerical
simulations with two different assumed demand elasticities, that profits
declined as the allowed rate of return was reduced, while output, adver-
tising, and staff increased.

Crew and Kleindorfer's work has been somewhat generalized by Arzac
and Edwards.18 They assumed a rate-of-return regulated firm whose man-
agement utility is an increasing function of both profit and unpro-
ductive management perks. The firm was assumed to have a general pro-
duction function of capital and labor. Using comparative statics tech-
niques, they found that as the allowed rate of return was lowered by a
small amount, profits declined, however, the direction of the change in
perks could not, in general, be predicted.

A similar dichotomy of results appears in my model, depending upon
whether one is considering the overall tendencies of a reduction in the
allowed rate of return, or the effects of a small reduction in the
allowed rate of return. The overall tendencies may be demonstrated by
assuming the rate-of-return constraint is always binding, and plotting a

set of tangency points as in Figure 14. It can be seen that as the

1BEnrique R. Arzac and Franklin R. Edwards, "Efficiency in Regulated and
Unregulated Firms; An Iconoclastic View of the Averch-Johnson Thesis" in
Problems in Public Utility Requlation, ed. Michael A. Crew {Lexingten,
MA: D.C. Heath and Company, Lexington Books, 1979) pp. 41-5%4,
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/M Institutional Costs

N
0 ’
Profit

Figure 14
Effect of a Reduction in the Allowed Rate of Return
on the Utility-Maximizing Solution
allowed rate of return is reduced profits tend to decline, and institu-
tional costs tend to increase, as long as the allowed rate of return
exceeds the cost of capital. At the point where the allowed rate of
return equals the cost of capital, institutional costs equal the maximum
profits the firm could have earned in an untaxed unregulated environ-
ment, while profits equal zero.
To understand the impact of an small reduction in the allowed rate
of return on profits and institutional costs, one must consider sepa-
rately the two effects that a reduction in the allowed rate of return

has on each of these variables. There is, first, a substitution effect,

due to the changing slope of the budget constraint altering the profit/

institutional costs tradeoff. Second, there is an income effect, due to
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the leftward shifting of the budget constraint lowering

achievable level of utility.

the managers

Figure 15 illustrates the two effects. Budget constraint A is

initially tangent to isoutility curve U1 at point e. If the allowed

rate of return is lowered, the slope of the budget constraint becomes

steeper and shifts to the left. If only the slope of the budget con-

straint were changed, without changing the isoutility curve to which it

was tangent, one would get a new budget constraint A', and a new point

>~

N Tnstitutional Costs

AN

Y

Figure 15
Substitution and Income Effects of a Reduction in
Rate of Return Given an Allowed Rate of Return
than the Cost of Capital.
of tangency e'. The difference between e and e' is the

effect. Now shifting the isoutility curve to the left,

in slope, to its actual new position further shifts the
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tangency with the isoutility curve to its new equilibrium e". The
difference hetween e' and e" is the income effect.

It can be seen from Figure 15 that the substitution effect causes
institutional costs to increase and profit to decrease, while the income
effect causes both institutional costs and profit to decrease. The two
effects work in the same direction for profit, implying that profit must
decline as the rate of return i1s reduced. However, they work in oppo-
site directions for institutional costs, implying that it cannot be said
what will happen to institutional costs after a small change in the
allowed rate of return.

Figure 15 is drawn assuming the allowed rate of return is greater
than the cost of capital. If the allowed rate of return is less than
the cost of capital, the direction of the substitution effect cannot be
determined, since one does not know whether the slope of the budget con-
straint becomes more or less steep as the allowed rate of return is
reduced. This substitution effect is shown by the difference between e
and e' in Figure 16. In the Figure, the substitution effect causes

institutional costs to decrease and profit to increase as the allowed
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Profit
Figure 16
Substitution and Income Effects of a Reduction in the Allowed
Rate of Return Given an Allowed Rate of Return
Less than The Cost of Capital

rate of return is reduced, but I could have drawn it so the substitution
effect was the other way around. The income effect, shown by the dif-
ference between e' and e", continues to cause both profit and institu-
tional costs to decrease as the allowed rate of return is reduced.

Table 1 summarizes these results for a small reduction in the
allowed rate of return. The income effects are based on the assumption
that the utility functions are such that profit and institutional costs

are "normal goods," the amount of which would increase if the firm's

budget constraint were to shift rightward.
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TABLE 1

EFFECTS OF REDUCTION IN THE ALLOWED RATE OF RETURN

Relationship of
Allowed Rate of
Return to Cost Substitution Income Total
Variable of Capital Effect Effect Effect

greater than - - -

Profit
less than ? - ?
greater than + - ?
Institutional
Costs less than ? - ?

How can the indeterminant effect of a small reduction in the
allowed rate of return on institutional costs be reconciled with the
overall tendency for institutional costs to increase as the allowed rate
of return is reduced toward the cost of capital? To understand the
latter tendency, one should look at the behavior of the firm when the
allowed rate of return equals the cost of capital, with the rate-of-
return constraint assumed binding. Since the firm is prohibited from
earning a positive profit in this situation, the managers would become
institutional cost maximizers. They will choose to set prices and buy

inputs as would an unregulated monopolist, with the benefits being taken
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as institutional costs instead of profit. This corresponds to point A
in Figure 14, where the budget constraint has become vertical at the
institutional costs axis. Hence, for allowed rates of return greater
than or equal to the cost of capital, institutional costs would be
maximized at an allowed rate of return equal to the cost of capital.

The path of institutional costs as the allowed rate of return is
lowered may, however, vary greatly with the shape of the managers'
isoutility curve. For example, if the isoutility curves are nearly
vertical, indicating a strong management preference for profits over
institutional costs, institutional costs will remain low until the
allowed rate of return almost reaches the cost of capital, at which
point they quickly move to the institutional costs-maximizing solution,
as shown in Figure 17. In the limit, if the manager's isoutility curves
were vertical, indicating strict profit maximization, their behavior
would be like the Averch-Johnson model described in Chapter 1.
Institutional costs would be zero until the allowed rate of return
equalled the cost of capital, at which point the results become indeter-
minant. It is certainly conceivable that for some utility functions,
institutional costs could drop with a reduction in the allowed rate of

return over some range, despite the generally increasing tendency.
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Institutional Costs

Figure 17
Effect of a Reduction in the Allowed Rate of Return
Given Strong Manager Preference for Profits

An interesting special case of this model arises if one assumes a
utility function of the form m + U(x), where = is profit and U(x) is
some increasing function of institutional costs x. 1In this case, the
substitution effect of a reduction in the allowed rate of return can be
shown to outweigh the income effect, meaning that institutional costs
increase even for small reductions in the allowed rate of return. Crew
and Kleindorfer used a utility function of this form, explaining their

results.
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2.3.M Mathematical Formulation

The main thrust of this subsection i1s to formally demonstrate the
comparative statics results shown in Table 1. I will also consider the
special case of a utility function of the form U(u,x) = % + U(x).
Throughout this subsection, I shall use the same model, assumptions, and
notation as were used in Section 2.2.M. I delay consideration of the
case of s = r until section 2.5.M.

The managers' problem may be restated in terms of + and x alone as

maximize utility

U(=,x),

subject to the budget constraint

B{m,s) - x < 0.

The lagrangian for this problem will be:

L = U(m,x) + A[B(ur,s) - x] .

The first-order conditions require that:

dL
T = UT(n,x) + KB1(n,s) = 0; (2.3.M/1)
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dL

& = U, (mx) - h < 0 (2.3.M/2)
%% x = 03 x > 03

& - B(ms) - x < 0; (2.3.M/3)
%‘}-: A = 03 A > 0.

If one assumes Uz(n,x) > 0 at the solution, that is the managers are not
satiated in institutional costs, then A must be greater than zero. If
one also assumes x > 0 at the solution, then all three conditions above
become equalities.

The second-order conditions require that the determinant

Upp v My Usn By
D = Uy, U, -
B, -1 0

be greater than zero. Note that 1 have dropped the parameters of the
partials of U{ ) and B( ) for compactness of notation.

To find the effect of a small change in s, ds, conditions {(2.3.M/1)
- {2.3.M/3) may be totally differentiated. This yields a system of
simultaneous equations in dm, dx, dh and ds. Dropping the parameters of

U( ) and B( ), the system may be expressed in matrix notation as
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U114-KBTI qu B] dz "MHZ
U21 U22 -1 dx = 0 ds
B1 -1 0 dA —BZ
= - = - = (2.3.M/8)

Since I am interested in the behavior of the firm subject to a binding
rate-of-return constraint, I shall assume that the rate-of-return
constraint (2.2.M.2/3) must be an equality, and that the A in conditions
(2.2.M.2/1) - (2.2.M.2/3) must be greater than zero at the solution
chosen by the managers. These assumptions allow me to apply Lemmas
2.2.B - 2.2.3. I am now in a position to demonstrate the comparative

statics results.

Theorem 2.3.M.A: The substitution effect of an increase in the allowed

rate of return on profit (d?t/ds)S is positive if s > r.

Proof: To derive the substitution effect, one wants to add some
compensation, call it y, to the budget constraint (2.3.M/3) so as to
hold the solution to the same isoutility curve when s changes. If this

were done, (2.3.M/4) could be rewritten as

—e - _ -
l-uﬂ + AB, Uy» B, dn M.,
U21 U22 -1 dx = 0 ds.
dy
By - O fLdr ] | By - a5 (2.3.m/5)
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If one knew dy/ds, this system could be solved for the substitution
effect (dn/ds)s. But it is possible to solve for dy/ds. For by the
third equation of this system

d
Bydn - dx = (-B, - GX)ds.

Now by (2.3.M/1) and (2.3.M/2)

U
B :—-—-i,

2

s0, substituting back,
- Ldn - dx = (-B, - W)gs. (2.3.M/6)

If the solution is to be held to the same isoutility curve U(m,x) =

constant, total differentiation may be used to show that

ax _
dn ~ U2 ’

dx

which implies that the left side of (2.3.M/6) is equal to zero. Thus,

it must be that

dy B

s 2

if the solution is to be held to a given isoutility curve.

Substituting into (2.3.M/5) yields the system
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U, + 2B, U B, [ dn -AB

i 12 1 12
U21 U22 -1 dx = 0 ds,
B,1 -1 0 dh 0
(2.3.M/7)

which may be solved for the substitution effect (dn/ds)g. Applying

Cramer's rule19,

-4, Urz 8
0 U, -1
oy 0 -1 0
s D ’
or
(gg}s - E?%E. (2.3.M/8)

Since I assume A = Uz(n,x) > 0, while, by Lemma 2.2.37, 812 >0 if s >r,
I have shown that (dn/ds)s >0 if s >r.

Q.E.D.

Theorem 2.3.M.B: The substitution effect of an increase in the allowed

rate of return on institutional cost (dx/ds)S is negative if s > r.

19See James M. Henderson and Richard E. Quandt, Macroeconomic Theory; A
Mathematical Approach, 2nd. ed. (New York: McGraw-Hill, 19771}, pp.
386-388.

82



Proof: One can solve system (2.3.M/7) for the substitution effect

(dx/ds)s. Applying Cramer's rule,

Uy + A8 My By
U 0 -1
o) B, 0 0 |
D
or
ngls = KBT§B1' (2.3.1/9)

But, I can substitute from {2.3.M/8)} to write

dx dn
(9 - (92 8.
s
By Lemma 2.2.G, B, <0, so (dx/ds)5 always has the opposite sign of
(dn/ds)s. Since by Theorem 2.3.M.A, {dn/ds)S >0 if s > r, I have
shown that (dx/ds)S <0 if s >r.

Q.E.D,

Define profit to be a "normal good" if its level would increase
with a relaxation of the budget constraint. One could relax the budget
constraint by adding a positive y to the left side of (2.3.M/3). Hence,
if a small increase in y produces an increase in profit =, that is if

dn/dy > 0, then profit is a normal good.
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Thecorem 2.3.M.C: If profit is a normal good, then the income effect

(dn/ds)y of an increase in the allowed rate of return on profit is

positive.

Proof: Since profit is a normal good, dn/dy > 0. To find an expression

for dn/dy, I totally differentiate (2.3.M/1) - {2.3.M/3) to obtain

U11 + kB11 U12 81 dmn 0
U21 Us, -1 dx = 0 dy.
81 -1 0 di -1
(2.3.M/10)
Applying Cramer's rule,
0 Y12 B
0 U22 -1
dn _ -1 -1 0
dy ~ b ’
or:
dn _ M@., (2.3.M/11)

dy D

To find the income effect (dn/ds)y, one first finds the total

effect dn/ds, and subtracts the substitution effect (dn/ds)s. The
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total effect drn/ds may be found by applying Cramer's rule to system

(2.3.M/4)
By, Uiz B
0 U,y -1
ar -8, -1 0
ds D
) By, + B, [u12 + BTUBE]
- 5 .

Subtracting the substitution effect (2.3.M/8) yields the income effect

CLIN B, [Ugp + ByUp, ]
ds’ =

D ¥

or, substituting (2.3.M/11),
dm dn
(gg)y = (H;)BZ-

Since B2 > 0 by Lemma 2.2.H and d=/dy > 0 if profit is a normal good
(dn/ds)y must be positive.

Q.E.D.

As in the case of profit, define institutional costs to be a
"normal good" if their level would increase with a relaxation of the

budget constraint,.

Theorem 2.3.M.D: If institutional costs are a normal good, then the

income effect (dx/ds)y of an increase in the allowed rate of return on

institutional costs is positive.
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Proof: Since institutional costs are a normal good, the dx/dy obtained

by solving (2.3.M/10) is positive. Applying Cramer's rule,

U11 + KB11 0 B1

U, 0 -1

o B, - 0

el ?
. dy D
or
_(U,, + AB..) - U,.B
%% -] 911 271 (2.3.M/12)

To find the income effect (dx/ds)y, one finds the total effect
dx/ds, and subtracts the substitution effect (dn/ds)s. The total

effect dx/ds may be found by applying Cramer's rule to system (2.3.M/4),

U11 + KBT1 —KB12 B1
Usy 0 -1
ax B, B4 0
ds D ?
or
ax BB+ 82[—(U11 + MByy) - u?251]
5= 5 . (2.3.M/13)

Subtracting the substitution effect (2.3.M/9) vields the income effect
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Since 82 > 0 by Lemma 2.2.H and dx/dy > 0 if institutional costs are a

normal good, (dx/ds)y must be positive.

Q.E.D.

Thus, I have demonstrated the results shown in Table 1. One special

utility function will provide stronger results, as stated in the follow-

ing theorem.

Theorem 2.3.M.E: If the manager's utility function is of the form

U(m,x) = m + U(x}, then the overall effect of an increase in the allowed

rate of return on institutional costs is negative if s > r.

Proof: If the utility function has the form U{m,x) = w + U(x), then

U11 = U12 = 0, and the overall effect dx/ds given in (2.3.M/13)

simplifies to

dx BBy - BBy, ]

ds = D .

Substituting for 81, BZ’ 511, and 812 using (2.2.M.2/6) - (2.2.M.2/9)

yields
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2
k dk
MLz 06000 - rI(Ge) + [24000) - rEg)

AG-lz,(,9) - ()

2
dk dk
B + K[—Zfl(k,g) - r](ms]{[—z,l(k,g) -r i ]}
- D
Wow, substituting again, using (2.2.M.2/6), yields
d dk d°k
ax  ramztkee) - ellGg) ¢ Mz - e I(Ggs)B,

ds ~ D
Since r is exogenous,

d

a‘%[-z.t(kyg) - If'] <0

if s > r by Lemma 2.2.F; dk/ds < 0 if s > r by Lemma 2.2.D; and

= Uz(n,x) > 0 by assumption; the left term in the numerator
is negative. Since -21(k,g) -r <0 if s >r by (2.2.M.2/2),
dzk/dnds < 0 by Lemma 2.2.E, and B, <0 by Lemma 2.2.G, the right term
in the numerator is negative as well. Hence, the overall effect dx/ds

is negative.

Q.E.D.
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2.% Dynamic Considerations

The model presented in the previous sections, like most models of
rate-of-return regulation, abstracts from reality by assuming a static
world, with a single cost of capital and a single allowed rate of
return, which never vary. Actual capital comes in a variety of forms,
with the cost of each fluctuating constantly. Regulators respond to
changes in the cost of capital by periodically adjusting the firm's
allowed rate of return. Investment decisions are usually made incremen-
tally, given the anticipated environment the firm will face over the
life of the investment.

A Tully dynamic model of regulated firm behavior would be extraor-
dinarily complex, and will not be attempted here. There are, however,
three points to be made in this section; an understanding of these
points will help the reader to relate my model and its results to the
dynamic reality. 1In the first subsection, I point out that the allowed
rates of return and costs of capital used by managers and investors in
their decisionmaking are really prospective values over the life of a
proposed investment. In the second subsection, I arque that firm
operation with an allowed rate of return below the cost of capital is
not inconsistent with the operation of capital markets. In the third
subsection, I point out the important distinction between marginal and
average rates of return, which is easily missed in applied discussions

of rate-of-return regulation.
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2.4.17 Prospective vs, Current Values

As long as the firm is at least partly equity financed, both the
cost of capita120 and allowed rate of return on the firm's investment
will fluctuate over time. Therefore, in their decision-making on new
investments, firm managers need to consider the prospective values of
both variables over the life of the investment. The current allowed
rate of return and the current cost of capital should be but one data
point that managers take into account in forming their expectations
about the future. The managers will undoubtedly want to consider the
regulatory commission's performance over its entire history. They will
probably also try to assess the kind of pressures the regulators may be
operating under in the foreseeable future. Since so many factors go
into the formation of these long-term expectations, they will probably
change slowly over time.

Investors, too, will base their decisions on prospective, rather
than current, allowed rates of return and costs of capital. Managers
and investors need not hold the same expectations, however, the two will
probably tend to track each other closely, since each will have access
to much the same information.

There are many ways one could alter the models in this study to
make them more "realistic" in their handling of expectations. One could

think of managers or investors as having probability distributions on

20For a discussion of the concept of the cost of capital and how it can

be empirically estimated, see Stewart C. Myers, "The Application of
Finance Theory to Public Utility Rate Cases", Bell Journal of Economics
and Management Science, 3 (Spring, 1972): 58-97.
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the allowed rate of return and cost of capital in each period, or one
could have explicit models of the formation of expectations. However, I
believe one can relate the models to the real world without losing too
many insights by simply thinking of the allowed rates of return and

costs of capital in the model as single prospective values.

2.4.2. Financing New Investments

In Section 2.2., I showed how a (prospective) allowed rate of
return below the (prospective) cost of capital would lead managers to
maintain a lower level of investment than would the unregulated firm,
but, in many cases, to still maintain a positive level of investment.
One may be tempted to argue that this is inconsistent with the workings
of capital markets, which will not provide funds for investments with a
negative net present value. 1In this subsection, I will indicate how
such investments are indeed possible, given the dynamic nature of the
investment process.

It is true that a new firm with an allowed rate of return below the
cost of capital would be unable to raise funds in the capital market.
Suppose, however, that investors initially anticipated an allowed rate
of return above the cost of capital, thereby permitting the firm to
raise funds to start-up. If, at some later date, the regulators defy
the investors expectations, and lower the firm's allowed rate of return
or, equivalently, fail to increase it when the cost of capital in-
creases, there would be no reason the firm could not continue opera-

tions, even with a prospective allowed rate of return below the prospec-
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tive cost of capital. Given the low salvage value of much gas firm
capital, continued operations would generally also be in the best
interests of the firm's stockholders.

More interesting than simply the firm's continued operation at an
allowed rate of return below the cost of capital is the continued
ability of the managers to raise new capital, should they choose to do
50, simply by selling additional equity. Since this new equity must be
priced such that the net present value of the anticipated returns is
zero at the cost of capital, the present value of any anticipated real
economic profit or loss generated by the new investment must accrue to
the value of the old equity. What will happen is that when the capital
markets first anticipate the new investment, the market value of the
firm will increase or decrease by the anticipated present value of the
resulting economic profit or loss. This will maintain the firm's stock
price such that the net present value of the anticipated returns is
zero. The new stock may then be sold at this price as well.

The managers could, therefore, raise new capital when the firm has
an allowed rate of return below the cost of capital. It is certainly
not in the interests of the firm's stockholders for them to do so, since
increased investment means increased real economic losses, resulting in
a decline in the firm's market value. But this whole model is based on
the argument that the managers have some power te take actions not in
the owners' interests. So there is nothing here which is inconsistent,

either internally or with the theory of capital markets.
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2.4.3 Average vs. Marginal Values

Like most other prices, allowed rates of return and costs of
capital can have marginal values different from their average values.

As elsewhere in economics, the proper comparison is usually between
marginal values. For example, to determine how much a given investment
increases the firm's profit ceiling, one would compare the marginal
allowed rate of return on the investment to the marginal cost of
capital.

One example of how a difference between average and marginal
allowed rates of return could develop is if the regulators threaten to
punish the firm with a lower (average) allowed rate of return if it
fails to make some investment, or reward it with a higher allowed rate
of return if it does. In this case, the marginal allowed rate of return
on that particular investment would certainly exceed the firm's average
aliowed rate of return.

The most common discrepancies between average and marginal values
are, however, due to the existence of debt capital. Debt has the unique
property that its cost to the firm is fixed at the time the securities
are issued. Hence, at any given time, the firm's average cost of
capital including the cost of outstanding debt, will probably differ
from the marginal cost of new capital. Furthermore, the issuance of new
capital changes the firm's average cost of capital. Since regulators

generally set the firm's average allowed rate of return based on the
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firm's average cost of capital,21 there is a linkage between the
issuance of new capital and the firm's allowed rate of return. This
implies that the average allowed rate of return also differs from the
marginal allowed rate of return.

One must, therefore, be wary of the kind of argument I made in
Section 1.5, where I quoted figures to show that gas utility rates of
return in 1981 were below the cost of capital. The gas utility
rate-of-return figure quoted is an average, while the cost-of-capital
figure is a marginal. Since some gas utilities probably could have
persuaded, or did persuade, regulators to grant them higher allowed
rates of return to cover the high cost of any newly issued capital,
marginal allowed rates of return would have been higher than the average
I quoted. Marginal allowed rates of return, like most other marginals
used in economics, are not always easily estimated in practice, but can
be estimated given certain assumptions about how the regulators will
adjust the (average) allowed rate of return in response to a new
investment.

The extension of my models to the case where marginal allowed rates
of return and cost of capital could differ from average appears to be
straightforward. One could simply reformulate the model with average
allowed rate of return and cost of capital as functions of capital

investment, rather than constants. This would, however, cause a great

21for a discussion of this point, see Gordon R. Corey, "The

Averch-Johnson Proposition; A Critical Analysis", Bell Journal of
Economics and Management Science, 2 (Spring, 1971): 358-373,
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increase in analytical complexity without a corresponding increase in
significant insights. For most purposes, one can relate the models to
the real world by simply thinking of the allowed rates of return and

costs of capital in the model as marginal values.

2.5 Practical Implications

This chapter has proposed a new model of firm behavior under rate-
of-return regulation based on the assumption that firm managers maximize
a utility function of profits and institutional costs, instead of
profits alone. The model was then used to examine the impacts of one
policy instrument available to requlators under rate-of-return requla-
tion with wellhead price controls: the setting of the allowed rate of
return. The model has two key advantages over a strict profit-maximiz-
ing model, such as that of Averch and Johnson. First, its results
accord better with the observed behavior of regulated firms, since the
model predicts their behavior will change smoothly as the allowed rate
of return is lowered to, or below, the cost of capital. Second, the
model provides an approach for examining how rate-of-return regulation
affects the firm's incentives to minimize operating costs.

The main practical implication of this chapter is that setting an
appropriate rate of return is likely to involve a tradeoff--as profits
are reduced, institutional costs tend to increase. Intuitively, if a
firm's opportunities for profit are restricted, while opportunities for

meeting other objectives are not, managers will place greater emphasis
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on meeting the other objectiveszz. A lowering of the allowed rate of
return toward the cost of capital restricts the firm's profit opportu-
nities, resulting in a gradual shift away from profit-maximization
toward the maximization of other objectives. The managers' pursuit of
these other objectives will be costly, taking the form of increased
institutional costs.

Consumer prices as a function of the allowed rate of return will
reflect this tradeoff, probably reaching a minimum somewhere between the
rate of return the firm would earn as an unregulated monopelist and the
cost of capital. To see this, recall that I have argued that at an
allowed rate of return equal to the cost of capital, the firm purchases
inputs and produces output just as would an unregulated monopolist.
This is because, with no opportunity to earn a profit, the managers
become institutional cost maximizers, behaving just like unrequlated
monopolists, but taking the benefits as institutional costs instead of
profits. At allowed rates of return above the cost of capital, but
below what the firm would earn as an unregulated monopolist, the man-
agers will choose to have more capital investment than would an unregu-
lated monopolist, so as to increase their profit ceiling. At allowed
rates of return below the cost of capital, the managers will choose to

have less capital investment than would an unregulated monopolist, so as

22This intuitive argument is elaborated in Armen A. Alchian and Reuben
A. Kessel, "Competition, Monopoly and the Pursuit of Money", in Aspects
of lLabor Economics, A Conference of the Universities-National Bureau
Committee for Economic Research (Princeton: Princeton University Press,
1962), pp. 157-183.
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to cut their losses, but will still choose a positive level of invest-
ment if the disutility of the firm's losses to the managers is out-
weighed by other sources of utility the firm can provide.

If one makes the very reascnable assumption for gas utilities that
marginal operating costs are a declining function of capital investment,
this would imply that the managers will choose to sell more gas, and
hence have lower prices, than an unrequlated monopolist when the allowed
rate of return is greater than the cost of capital, but below what the
firm would earn if it were an unregulated monopolist. Similarly they
will sell less gas, and hence have higher prices, than an unregulated
monopolist when the allowed rate of return is below the cost of
capital. One could therefore visualize the relationship between the
allowed rate of return and consumer price as being something like that

shown in Figure 18, where r is the cost of capital, s* iIs the rate of

Consumer Price

N
M

N,

r r d
s* Allowed Rate
of Return

Figure 18
Allowed Rate-of-Return vs. Consumer Price
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return the firm would earn as an unregulated monopolist, and P the
unregulated monopoly price.

The results of this model are somewhat extreme if applied directly
to the real world. In particular, the conclusion that the firm with an
allowed rate of return equal to the cost of capital would price like an
unregulated monopolist should not taken literally. In the real world,
the tendencies toward high institutional costs would be mitigated, but
not eliminated, by the short-run incentives to cost-minimize resulting
from regulatory lag. The model does, however, provide a rigorous basis
for one widely held regulatory rule-of-thumb--that requlators should set
the allowed rate of return above the cost of capital to encourage the
firm to operate efficiently.23

The model discussed in this chapter is still not in accord with the
observed behavior of gas firms in that it still predicts that each non-
capital input will be purchased only up to the point where its marginal
cost equals its marginal revenue product. It cannot therefore explain
why gas firms are commonly observed purchasing gas at prices which
exceed resale value less marginal transmission costs. To explain this
phenomenon, one must introduce the second instrument available to requ-
lators--the power to approve or deny new capital investments. This is

the subject of the next chapter.

23For a discussion of this rule-of-thumb, see Averch and Johnson, pp.
1061-1062.
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2.5.M Mathematical Formulation

In this subsection, I will show why the relationship between
allowed rate of return and price is as shown in Figure 18, T first show
that if s = r, the firm has the same output and price as an unregulated

monopolist. The cases of s > r and s < r will then be considered.

Theorem 2.5.M.A: 1If s = r, the managers will always choose g = g* and

k = k*, where g* and k* is the solution which would be chosen by the un-
regulated monopolist. Since price is a function of g, the price charged
by this firm p(g¥*) is the same as that charged by the unregulated mono-

polist.

Proof: If s = r, then (2.2.M.2/1) and (2.2.M.2/2) become identical to
(2.2.M.1/1) and (2.2.M.1/2), which determine g and k for the unregulated
firm. By Lemma 2.2.A, the latter equations yield unique optimum values,
which I have called g* and k*.

Q.E.D.,

It remains to consider the case of r < s < s*, where s* is the
return earned by the unregulated monopolist, and the case of s < r. The
results for these cases require the additional assumption that
212(k,g) < 0, meaning, that marginal operating costs are a declining

function of k. The following theorem helps to justify this assumption.

Theorem 2.5.M.B: If the underlying production function g = h(z,k) is

homothetic with h1(z,k) > 0 and hz(z,k) > 0, then zqz(k,g) < 0
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Proof: By total differentiation of g = h(z,k), the slope of an isopro-

duct curve will be

'95. _ _hz(z’k)
ak h1(z,k) )

Since dz/dk is at the ratio of the first partials of a homothetic
function, it will be homogeneous of degree zero.zl+ Since one could,

alternatively, write 3z/dk in terms of z and k as

%% = 2, (k,h(z,k)),

21(k,h(z,k)] is homogeneous of degree zero.

Then by Euler's theorem,25

[24,(k;h(z,k)) + z1,5(k;h(z,k) Jh,(z,k)

+ [z55(kyh(z,k) Jhy(z,k) ]z = 0O,

or

zy1(k;h(z,k) )k + 25k h(z,k) ) [hy(z,k)z + h,(z,k)k] = 0.

I assume the marginal productivities of z and k, hq(z,k) and hz(z,k) to
be positive. By (2.2.M/7), 211{k,h(z,k)) = ~R11[k,h(z,k)], which is
positive by the strict concavity of R(k,g). So sz(k,h(z,k)) must be
negative.

Q.E.D.

ZQFor a proof of this result, see Baumol, p. 285, footnote 10.

25See ibid, p. 283.

100



The following lemma will be useful in proving later results.

Lemma 2.5.A: If z1z(k,g) < 0, then g and k always move in the same
direction in response to a change in s.

Proof: The relationship between g and k must satisfy

p'(glg + plg) - f'(g)g - f(g) - z,(k,g) =0

by (2.2.M.2/1), since I assume g > O at the solution. Differentiating

yields

dg _ z),(k,9)

dk ~

d .
dglp' (8)g + p(@) - F'(g)g - (@) ] - z,,(k;q)
Substituting, using (2.2.M/9) yields

d_g _ Zqz(kjg)
dk = Ry, {K,g) °

Since Z15(kyg) < O by assumption, while Rzz(k,g) < 0 by the strict con-
cavity of R(k,g), it follows that dg/dk > 0. This implies that g and k
must always move in the same direction in response to a change in s.

Q.E.D,
The following theorem is the desired substantive result.

Theorem 2.5.M.C: If ZTZ(k’g) >0, s>r, and © > ® at the solution,

then g > g* and the consumer price, p(gq), is less than the price the

firm would charge as an unregulated monopolist p{g*). Similarly, if
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s <r and = > w* at the solution, then g < g* and p(g) is greater than

n{g*).

Proof: The rate-of-return constraint (2.2.M.2/3) requires that

n < (s-r)k.

By (2.2.M.2/10)

n* = {s-r)k*.

Using these two expressions and the assumption that = > ¥,

(s-r)k > m > 7% = (s-r)k¥,

or

{(s-r}k > (s-r)k*.

This implies k > k* if s > r and k < k* if s < r.

By Theorem 2.5.M.A, if s = r then g = g* and k = k*. Since Lemma
2.5.A requires g and k to move in the same direction in response to a
change in s, it must be that g > g* if s > r and g < g*¥ if s < r. Since

p'(g) < 0, the results concerning price follow immediately.

Q.E.D.

Note that 1 have not shown that price as a function of allowed rate of

return necessarily has the concave shape shown in Figure 17.
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CHAPTER 3

CAPITAL INVESTMENT RESTRICTIONS UNDER PROFIT-MAXIMIZATION

This chapter introduces a second instrument generally used by gas
firm regulators: restrictions on capital investment. The introduction
will be made in the context of strict profit-maximizing managers for two
reasons. The first is pedagogical: the effects of capital investment
restriction on utility-maximizing managers is much the same as it is on
profit-maximizing managers, but can be understood more easily in the
context of profit-maximization. The second is that the profit-maximiz-
ing model helps to explain the appeal of capital investment restrictions
to regulators, who may tend to think in terms of the traditional profit-
maximizing theories. The case for using this instrument emerges
stronger in the profit-maximizing case than in the utility-maximizing
case. rurthermore, there are simple rules-of-thumb for using capital
investment restrictions to accomplish regulatory objectives in the
profit-maximizing case; these rules of thumb do not apply in the
utility-maximizing case.

The first section discusses the nature and purposes of capital-
investment restrictions. It will also be shown how capital-investment
restrictions can explain why gas firms might sell gas with a marginal
cost exceeding its marginal revenue product. The second section derives

simple rules-of-thumb for capital-investment restriction that would be
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applied by price-minimizing or welfare-maximizing requlators. The third
section derives similar rules-of-thumb for the special case of invest-
ments in new supply projects, where the benefits from the perspective of
society may differ from the benefits from the perspective of the firm.
The fourth section derives rules-of-thumb for the special case of
investments In new consumer hookups, where an even more difficult issue
of evaluating benefits arises. The final section offers a few reflec-
tions on the practical implications of the chapter. It will be recalled
that firm behavior cannot be explained under a profit-maximizing model
if the allowed rate of return is at or below the cost of capital, hence
an allowed rate of return above the cost of capital will be assumed

throughout this chapter.

3.1 Effect of Capital Investment Restrictions

Gas firms must not only obtain regulatory approval of their
tariffs, but must also generally obtain approval of new capital invest-
ments. The regulators can, and do, deny approval for new projects not
deemed to be in the public interest. This section begins with a brief
examination of capital investment regulation at FERC. It then examines
graphically how capital investment restrictions can alter the gas firm's
choice of inputs, explaining the second anomaly of the Averch-Johnson
model discussed in Chapter 1. This is the observed willingness of gas
firms to sell gas with a marginal cost exceeding its marginal revenue
product. A mathematical subsection follows which demonstrates this

result more formally.
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In Chapter 1, it was explained how, under the Averch-Johnson model,
the firm might tend to use an overly capital-intensive mix of inputs.
Regulatory policymakers have not been oblivicus to this potential incen-
tive for inefficiency inherent in rate-of-return regulation. They have
generally responded by requiring gas firms to obtain prior approval of
new facilities, with approval being granted only if the project is
judged to be economically justified.

In the case of a FERC requlated pipeline, prior authorization by
FERC, in the form of a Certificate of Public Convenience and Necessity,
is generally required before the pipeline may undertake construction or
expansion of a facility.1 FERC has administratively defined the word
"facility" to exclude replacement of deteriorated or obsolete existing
facilities with substantially similar replacements; the addition of
certain auxiliary installations to existing systems, such as valves;
drips; yard and station piping; cathodic protection eauipment; residual
refining equipment; water pumping, treatment and cooling equipment;
electrical and communication equipment and buildings; and taps on exist-
ing pipelines to enable the pipeline to take delivery of gas from a
producer. HNew gas compressors are not excluded.2

For those projects requiring FERC approval, the applicants are
required to submit a variety of data, including a complete engineering

plan for the project; market data, including a detailed breakdown of

TThis requirement is contained in the Natural Gas Act. See U.S. Code,
title 15, sec. 717 (¢} (1976).

ZCode of Federal Regulations, title 18, part 2.55 (1983).
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historical and projected demands, names and descriptions of major cus-
tomers, markel surveys, information on past curtailments, and copies of
sales and transportation agreements; detailed estimates of the capital
costs of the facilities; financing plans; and projected impacts of the
project on pipeline revenues and expenses.3 The clear thrust here is
to give the Commission enough data to make an economic evaluation of the
project. Abbreviated applications are permitted for certain specif-
ically defined smaller projects "provided it contains all information
and supporting data necessary to explaln fully the proposed project, its
economic justification, its effect upon applicants present and future
operations and upon the public-proposed to be served...”4 For major
new projects the Commission staff will generally do an economic evalua-
tion of the project, as well as feasibility studies of alternatives.5
The fact that regulators regulate not only tariffs, but capital
investment as well, has received little attention in the economic liter-
ature on rate-of-return regulation. Joskow and Noll, in their critique
of the Averch-Johnson model, argue that regulators do have some power to

control costs assocliated with serious production inefficiencies.

3Code of Federal Regulations, title 18, part 157.14 (1983).

4Code of Federal Regqulations, title 18, part 157.7(a) (1983).

5Interview with Kenneth A. Williams, Director of Pipeline and Producer

Regulation, U.S. Federal Energy Regqulatory Commission, September 9,
1982.

6Joskow and Noll, p. 12.
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Breyer has made a similar argument.7 However, to the hest of the
author's knowledge, there have been no published attempts to incorporate
a regulatory restriction on capital investment into a model of firm
behavior under rate-of-return regulation.

I will now show how, by introducing a restriction on capital in-
vestment, regulators can not only limit unproductive capital investment,
but can also induce the firm to sell gas with a marginal cost exceeding
its marginal revenue product. I assume the regulatory restriction on
capital investment takes the form of a required marginal internal rate
of return on all capital which the firm invests. This means the
managers must demonstrate that each dollar of capital they invest yields
a stream of benefits or cost reductions with an equivalent present
value, where these benefits or cost reductions are discounted at the
required marginal internal rate of return. I shall henceforth refer to
this required marginal internal rate of return on capital as the
"capital productivity requirement.”

In the static environment I am considering, a capital productivity
requirement for a cost-saving investment is equivalent fto requiring the
managers to demonstrate that each dollar invested yields cost savings at
a rate equal to the capital productivity requirement. For example, if
the capital productivity requirement is set at 15% per vyear, the
managers would have to demonstrate that each dollar they invest saves

them at least 15 cents per year in operating expenses.

7Stephen Breyer, Regulation and Its Reform (Cambridge: Harvard
University Press, 1982), pp. 49-50.
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The capital productivity requirement obviously limits unproductive
capital investment. The reason why it induces the firm to buy more gas
than could be justified under a marginal cost equals marginal revenue
product rule can alsoc be made clear intuitively. The managers still
wish to increase the firm's capital investment, despite the capital
productivity requirement, so as to increase the firm's profit ceiling.
Additional gas purchases permit the firm to justify additional capital
investment at any given required capital productivity. Hence, there is
an extra benefit to the managers from purchasing additional gas, which
would not be present without the capital productivity requirement.

A graphical presentation should make this argument clearer. Figure
19 is a three-dimensional representation of a rate-of-return regulated

firm without a capital productivity requirement. The central hump shows

Gas Volume

Figure 19
The Profit-Maximizing Firm Under a Rate-of Return Constraint

108



the firm's potential profit for each combination of capital investment
and gas volume in an unregulated environment. Without regulation, the
managers would choose to operate at the highest point on the hump, point
M. Under a rate-of-return constraint, the firm must operate below the
constraint plane, so the managers choose the highest profit point on the
constraint plane, point E.

At point E, the firm satisfies the marginal cost of gas equals
marginal revenue product rule which maximizes profit at any given level
of capital investment. This can be seen clearly in Figure 20, which is
a slice through point E in Figure 19 parallel to the profit and gas
sales axis. Figure 20 thus represents the plane of all points having
the same capital investment as point E. It can be seen that gas sales
at point E are set to maximize the firm's profit at this level of

capital investment.

A Profit

b

rd
Gas Volume

Figure 20
Profit-Maximizing Gas Sales without a Capital Productivity Requirement
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The effects of adding a capital productivity requirement will be
easier to understand if Figure 19 is first redrawn as seen from above,
as in Figure 21. The latter is a contour diagram of all feasible points
in Figure 19. The dotted curves in the figure represent isoprofit
contours--points of equal profit, The solid curve is the intersection
of the potential profit hump and the constraint plane; points inside the
solid curve are infeasible by the rate-of-return constraint.

A capital productivity requirement, in effect, sets a ceiling on
capital investment for any given volume of gas. This ceiling may be
plotted on the same axis used in Figure 21. Presumably, this ceiling

passes through the origin and rises with increasing gas volume. Hence,

A Gaé Volume

e

i
Capital Investment

Figure 21
The Profit-Maximizing Firm Under Rate-of-Return Constraint--Top View
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the ceiling would look as shown in Figure 22. Superimposing the
capital productivity requirement in Figure 22 on the model without a
capital productivity requirement shown in Figure 21 results in Figure
23. Since the firm must operate on or above the capital productivity
requirement, the old optimum, point E, is now infeasible. The new
optimum will be point F, which involves less capital investment, and

hence lower profit, but larger gas sales.

h, Gas Volume

N

>~
rd

0 Capital Investment

Figure 22
The Capital Productivity Requirement
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\Gas Volume

Y
Capital’investment

Figure 23
The Profit-Maximizing Firm Under Rate-of-Return Constraint
and a Capital Productivity Requirement

To see that under a capital productivity requirement the firm is
purchasing gas beyond the point where its marginal cost equals its
marginal revenue product, one may draw a diagram similar to Figure 20,
but this time slicing through point F, as shown in Figure 24. This
figure thus represents the plane of all points having the same capital
investment as point F. It can be seen that gas sales at point F are set
higher than the profit-maximizing point for this level of capital in-
vestment, where the marginal cost of gas would have been equal to its

marginal revenue product.
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Figure 24

Profit-Maximizing Gas Sales with a Capital Productivity Requirement

3.1.M. Mathematical Formulation

In this section, I will demonstrate mathematically how a capital
productivity requirement might lead the firm's managers to choose to
purchase gas with a marginal cost greater than its marginal revenue
product. I shall use the notation and assumptions that were introduced
in Chapter 2. However, I introduce the variable B for the required
capital productivity. Given the capital productivity requirement, the

managers' problem is to maximize profit

(p(g) - f(g))g + ¢ - z(k,g) - rk - x,
subject to the rate-of-return constraint

{pla} - f(g))g + ¢ ~ z(k,g) - sk - x <0,
and the capital productivity requirement

- 21(k!g) 2 B
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Maximization is over g, k, and x, where all three must be non-negative.
Although institutional costs always turn out to be zero under the strict
profit-maximization considered in this chapter, the variable x is
included here because its presence makes it easier to prove the desired

results.8 The Lagrangian will be

L= (1-)y) [(p(g)~Flg))gsc-z(k,g)-x ]—(r-?\qs)k-?\z(z1(k,g)+5).

The first-order conditions require that:

L

gﬁ': (1-2)[p(g)-p'(g)g-F(g) - (9)g-2,(k,9) I-Ayz 5 (ksg) < O
Bl - O > 0 (3.1.M/1)
ag 9 7 ’ ’ o

oL

3 = ~(1 - azglk,g) - (r - Ays) - Ayzg,(k,g) <05 (3.1.M/2)

&k = 0; k > 0
Lo <o (3.1.M/3)
%% x = 0 x £ 03

%% = -[(p(a) - Fl@))g + ¢ - zlk,g) - x] + sk > 0;  (3.1.M/8)

1
aL
6X§K1 - 0; A > 0;
L
%Kzz -z,(k;q) - 8 > 0; (3.1.M/5)
oL
50 = 0 Ay > 0

8Bailey, p. 25, uses this same technique.
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I assume g > 0 and k > 0 at the solution, hence (3.1.M/1) and (3.1.M/2)

will be equalities.

temma 3.1.A: It is always true that K1 <1 and x = 0.

Proof: A, < 1 by (3.1.4/3). But if A

1
since ZTZ(k’g) < 0 by assumption. However, k1 = 1 and A = 0

; = 1 then A = 0 by (3.1.M/1),

contradicts (3.1.M/2), since s > r by assumption. So A, < 1, which

1
implies by (3.1.M/3) that x = O.

Q.E.D.

I am now in a position to prove the desired result.

Theorem 3.1.M.A: If KZ # 0, then the marginal cost of gas exceeds its

marginal revenue product.

Proof: (3.1.M/1) may be rewritten as

K2212(k,g)

T -

p(g) + p'(glg - z,(k,g) - f(g) - f'(g)g =
1

The term on the left is the marginal revenue product of gas
plg) + p'(q) - zz(k,g) minus its marginal cost f(g)} + f'(g)g. The term
on the right is always negative, since hz > 0 and sz(k,g) < 0 by

assumption (see Section 2.5.M), while A, < 1 by Lemma 3.1.A. So I have

1
shown that the marginal cost of gas exceeds its marginal revenue

product.

@g.£.D,
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3.2 Rules-of-Thumb for Restrictions on Capital Investment

It turns out that there are some simple rules-of-thumb which requ-
lators might use to accomplish their objectives, given profit-maximizing
behavior by firm managers. They involve setting an appropriate capital
productivity requirement. The first subsection below considers the
requlator seeking to minimize consumer prices. The second subsection

considers the regulator seeking to maximize social welfare.

3.2.1 Price Minimization

In this subsection, I will show graphically why a requlator seeking
to minimize consumer prices would set the capital productivity
requirement equal to the allowed rate of return. Intuitively, the
requlator seeks to assure that consumers get a marginal return from the
firm's capital investment equal to the marginal return the consumers are
required to pay on that capital investment. A mathematical subsection
follows, which repeats the argument more formally.

The regulator can vary the inputs the managers choose in Figure 23
by changing the capital productivity requirement. An increase in the
capital productivity requirement increases the amount of gas required to
justify any given level of capital investment, and hence swings the
required capital productivity curve upward and to the left. Note that
if the firm is to earn its allowed rate of return it must operate at a
point on the sc¢lid curve, where the rate of return constraint intersects

the profit hump.
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The regulator seeking to minimize consumer prices should therefore

set the capital productivity constraint to pass through point G, the

point on the solid curve with the largest gas volume. To see that
capital productivity must equal the allowed rate of return at point G,
Figure 23 may be sliced horizontally through point G to produce Figure

25. The potential profit hump in this figure touches the rate-of-return

constraint at only one point--point G--and hence the two must be tangent

A
Profit

rate of return
constraint

otential profit hump

b
Fd
Capital Investment

Figure 25
Equality at Capital Productivity and Allowed Rate-of-Return
at the Point of Maximum Gas Volume

at point G. But if the potential profit hump and the rate-of-return
constraint are tangent at point G, they have the same slope there. The
slope of the rate-of-return constraint is the allowed rate of return,
while the slope of the potential profit hump is the capital productiv-
ity. So a price-minimizing regulator would require a capital productiv-

ity equal to the allowed rate of return.
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3.2.1.M Mathematical Formulation

In this subsection, I show mathematically why a price-minimizing
regulator would seek to assure that the firm has a capital productivity
equal to the allowed rate of return. 1 shall assume that the regulators
are free to impose any kind of constraint they choose on the firm
subject only to permitting the firm to earn its allowed rate of return.

The regulator's problem is to minimize consumer price p(g), subject

to permitting the firm to earn its allowed rate of return,
(p(g) - f(g))g + ¢ - z{k,g) - sk > 0.

Maximization is over g and k, where both must be non-negative.

The Lagrangian will be

L =g+ Al(p(e) - f(@))g + ¢ - z(k,g) - sk].

The first-order conditions require that:

55 =1+ Alp(@)p! (9)9-F(a)-F (9)g-2,(kyg) ] < 05 (3.2.1.0/1)
% g =0 g > 0;

g—:; = M-z (k,q) - 5] < 0; (3.2.1.M/2)
k=0 k > 0;

- (p(@) - F(g))g + ¢ - z(k,g) - sk > 05 (3.2.1.M/3)
g_li A = 03 x> 0.
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I assume g > 0 and k > 0 at the solution, hence (3.2.1.M/1) and

(3.2.1.M/2) will be equalities with X # 0.

Theorem 3.2.1.A: The price-minimizing regulator should seek to assure

that the firm has a capital productivity —zT(k,g) equal to s.

Proof: Since M # 0, (3.2.1.M/2) requires —21(k,g) = s.

Q.E.D.

If the regulators impose upon the firm a requirement that capital
productivity be at least equal to s, the price-minimizing solution will
be among the firm's feasible solutions, since it satisfies both the
rate-of-return constraint and the capital productivity requirement. I
cannot rule out the possibility that some type of additional constraint
may be necessary to induce the firm to operate at this price-minimizing
salution. However, since there are already two constraints to determine
only two variables, I would not normally expect additional constraints
to be necessary.

An analogous argument applies to each of the remaining sections of
this chapter. I cannot prove that simply constraining the firm to the
stated rules-of-thumb is sufficient to induce the firm to operate at the
solution desired by the regulators. However, in each case, the number
of constraints equals the number of variables. The regulator should

check that the desired solution is being selected by the firm.
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3.2.2 Welfare Maximization

In this subsection, I consider the problem faced by the regulator
with the broader objective of trying to maximize the welfare of society
as a whole. I will show that the regulator should require a capital
productivity less than the allowed rate of return, but greater than the
cost of capital if the firm's average cost exceeds its marginal social
cost; a capital productivity equal to the allowed rate of return if the
firm's average cost equals its marginal social cost; and a capital pro-
ductivity below the cost of capital if the firm's average cost is less
than its marginal social cost.

Graphically, the welfare-maximizing regulator should choose a
capital productivity requirement which gives a solution somewhere on arc
G-t in Figure 23. Any other solution obtainable by adjusting the capi-
tal productivity requirement which permits the firm to obtain its
allowed rate of return, specifically those along the extension of arc
G- to the left of G, will have less profit for the firm, but an equal
amount of gas sales compared to some point on G-E. Hence, one can
always improve the firm's profits by moving from a solution to the left
of G to a solution to the right of G, without making anyone else worse
off. This would imply the regulator should set the capital productivity
requirement at a level less than or equal to the allowed rate of return,
but greater than or equal to what the managers would choose for them-
selves if there were no requirement; the capital productivity the
managers would choose for themselves must be lower than the cost of
capital, since the rate-of-return constraint leads the managers to

expand investment beyond the point where capital productivity equals the
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cost of capital. Unfortunately, this is about as far as one can go with
a graphical analysis of welfare-maximization.

The standard rule for maximizing the total welfare of society
requires that the prices of all inputs equal the social value of their
marginal products, while the prices of all outputs equal their marginal
social costs. A "first-best" welfare-maximizing solution therefore
requires a capital productivity equal to the cost of capital. This
solution also requires the firm to charge a consumer price for gas equal
to its marginal social cost. However, under rate-of-return requlation,
the firm must charge a gas price equal to its delivered average cost,
including the allowed rate of return on capital. It would be a coinci-
dence for this delivered average cost of gas to equal its marginal
social cost when capital productivity equals the cost of capital.

If capital productivity is set equal to the cost of capital when
the firm's average cost is below marginal social cost, the firm must
charge consumers less than marginal social cost to avoid earning exces-
sive profits. Under these circumstances, there is no way the standard
welfare-maximizing rules can be followed. However, a "second-best"
welfare-maximizing solution can be obtained by setting the capital
productivity requirement a bit lower than the cost of capital. This
would result in increased capital investment, lowering the firm's
marginal social cost and raising the firm's average cost. In a similar
manner, if the firm's average cost exceeds marginal social cost, the
regulator should set the capital productivity requirement a bit greater

than the cost of capital, but always below the allowed rate of return.
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Note that from the perspective of society, gas at the wellhead should be
valued at its price, not its marginal cost to the gas firm. Hence, the
marginal social cost of delivered gas will equal the wellhead price of
gas plus the firm's marginal operating costs.

One may be tempted to assume that gas firms would always have
marginal social cost below average cost, since gas firms are generally
regarded as being characterized by increasing returns to scale. Such
may not be the case, however, for a gas firm under partial wellhead
price controls. Under these circumstances, the firm will have available
a limited amount of cheap price-controlled gas, but must purchase
remaining supplies at a higher market wellhead price. Hence, the well-
head price of gas will exceed the average wellhead cost of gas, offset-

ting any economies of scale in gas transmission.

3.2.2.M Mathematical Formulation

In this subsection, I will demonstrate mathematically that if the
firm's marginal social cost exceeds its average social cost, the
welfare-maximizing requlator would seek to insure that the firm has a
capital productivity below the cost of capital; if the firm's marginal
social cost equals its average cost, the welfare-maximizing regulator
would seek to insure that the firm has a capital productivity equal to
the cost of capital; if the firm's marginal social cost is below its
average cost, the welfare-maximizing regulator would seek to insure that
the firm has a capital productivity above the cost of capital, but below

the allowed rate of return. I again assume the regulators are free to
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impose any kind of constraint they choose on the firm, subject only to
permitting the firm to earn its allowed rate of return.

I shall also assume that the regulators optimize each firm indepen-
dently, ignoring the impacts that regulation of one firm may have on the
wellhead gas market faced by other firms. Technically, the regulator
should be optimizing for all firms simultaneously,9 to do so,
however, would be prohibitively complicated. The author's intuition is
that the impacts of one firm's departure from pareto-optimality on the
others is probably small enough to be of little practical consequence.
However, this is an empirical issue.

The problem faced by the welfare-maximizing regulator is to maxi-

mize the sum of consumer, producer, and gas firm surplus,

g
[(plg) - f(g))dg - z(k,q) - rk - x,
0

subject to the firm earning its allowed rate of return,
plglg - flglg + ¢ - z(k,g) - sk - x = 0.

This constraint could be binding from above or below, depending upon the
circumstances. Maximization is over g, k, and x, where all three must
be non-negative. The variable x is, again, included in the model as a

mathematical convenience. The Lagrangian will be:

9For a critique of "piecemeal welfare economics" see R.G. Lipsey and
Kelvin Lancaster, "The General Theory of the Second Best," Review of
Economic Studies, 24 (1956-1957), pp. 11-32.
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9

L = [ (plg) - f(g))dg - z(k,g) - rk - x
0

+ Alplg)lg - flglg + ¢ - z(k,g) - sk - x].
The first order conditions require that:

fe = (1 Mpla) - F(a) = zy(k,9) ] + Mo (9)g - F'(a)g] < O;

—6—g— g = 0; g > 0; (3.2.2.M/1)
aL ,
SF= -0+ Mz (k,0) - (r + As) < 05 (3.2.2.M/2)
BL '
&k = 0; k > 0;
Lo <0 (3.2.2.M/3)
%% x = 0 x > 0;
aL ,
3% = p(glg - flglg + ¢ - z(k,g} - sk - x = 03 (3.2.2.M/4)

I assume g > 0 and k > 0 at the solution, hence (3.2.2.M/1) and

(3.2.2.4/2) will be equalities.

Lemma 3.2.A: It is always true that A > -1 and x = 0.

Proof: A > -1 by (3.2.2.M/3). But A = -1 contradicts (3.2.2.M/2), since
s > r by assumption. So A > -1, which implies by (3.2.2.M/3) that

x = 0.
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Lemma 3.2.8:

{1 + h)[f(g) + (—c + z{k,q) + sk)/g - f(g) - zz(k,g)]

+ ;\[p'(g)g - f'(g)g] = Q. {(3.2.2.M/5)

Proof: Solving (3.2.2.M/4) for p(g) and substituting into (3.2.2.M/1)

yields (3.2.2.M/5).

LE.D.

I am now in a position to state the substantive theorems of this

subsection.

Theorem 3.2.2.M.A: If the firm's marginal social costs f{g) + zz(k,g)
equal average costs f(g) + (-c + z(k,g) + sk)/g, then the welfare-
maximizing regulator would seek to insure that capital productivity

-21(k,g) is equal to r.

Proof: If f(g) + z,(k,q) = f(g) + (-c + z(k,g) + sk)/g, then the first
term in brackets in (3.2.2.M/5) equals zero. Since p'(g) < 0 and

f'{g) > 0 by assumption, the second term in brackets must be negative,
so A = 0. But if A = 0, (3.2.2.M/2) requires ~z1(k,g) =r.

Q.E.D.
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Theorem 3.2.2.M.B: If the firm's marginal social costs f(g) + zz(k,g)

exceed average costs f(g) + (z(k,g) + sk)/g, then the welfare-maximizing
regulator would seek to insure that capital productivity -21(k,g) is

less than r.

Proof: If f(g) + zz(k,g) > f{g) + (-c + z(k,g) + sk)/g, then the first
term in brackets in (3.2.2.M/5) is negative. Since p'(g) < 0 and

f'(g) > 0 by assumption, the second term in brackets must be negative as
well, so -1 < A < 0. Now by (3.2.2.M/2),

T 4+ AS

-21(ks9) = =

If - 1< »< 0, then

=k
+ [+
>| >
-a|H
+]+
>
I
-
.

So -21(k,g) < r.

Q.E.D.

Theorem 3.2.2.M.C: If the firm's marginal social costs f(g) + zz(k,g)

are less than average costs f(g) + (-c + z(k,g) + sk)/g, then the
welfare-maximizing regulator would seek to insure that capital produc-

tivity —21(k,g) is greater than r, but less than s.

Proof: If F(g) + z,(k,g) < f(g) + (-c+ z{k,g) + sk}/g, then the first
term in brackets in (3.2.2.M/5) is positive. Since p'(g) < 0 and

f'{(g) > 0 by assumption, the second term in brackets must be negative,
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so A>0Oor A< -1, But A> - 1 by Lemma 3.2.A, so A > 0. Now by

(3.2.2.M/2},

_ I + AS
-2q(69) = 5

If A > 0, then

|

+ |+
it
v
—jH
+ 1+
I

So s > —21(k,g) > r.

Q.E.D.

3.3. Regulatory Policies on New Supply Projects

Investments in new supply projects yield savings in the form of a
reduction in gas purchase costs. In attempting to apply the rules-of-
thumb proposed in the last section to the analysis of new supply
projects, the regulator faces the additional problem of how to value
this reducticn in gas purchase costs. 1Is the savings to be viewed from
the perspective of the firm or the perspective of society? Gas from
alternative sources should be valued from the firm's perspective at
marginal purchase cost to the firm, but from society's perspective at
its market price.

This section will extend the analysis of the preceding section to
treat the special problems presented by new supply projects. Examples
of such projects might include gathering lines into a new gas field,

facilities for importing liquefied natural gas, or a synthetic gas

127



plant. Modified rules-of-thumb are derived, which regulators might
apply given profit-maximizing behavior by gas firms.

In the first subsection, I consider the case of the regulator
seeking to minimize price to consumers. Since any savings in the regu-
lated firm's costs are passed through to consumers, the regulator should
value the cost savings from a new supply project from the perspective of
the firm. The resulting required capital productivity should equal the
allowed rate of return, as in the previous section. In the second sub-
section, I consider the case of the regulator seeking to maximize social
welfare. In this case, the regulator should value the cost savings from
the project as they affect welfare from the perspective of society, but
as they affect the firm's rate-of-return constraint from the perspective
of the firm. The capital productivity rule-of-thumb derived in the pre-
ceding section fails, and must be replaced with a new type of rule-of-

thumb.

3.3.1 Price Minimization

The capital productivity rule derived in the previous section for
the price-minimizing regulator is easily extended to investments in new
supply projects. It should, however, be added that the savings from the
new supply project should be valued from the perspective of the firm,
rather than the perspective of society as a whole. This is because any

savings to the firm will be passed through to consumers.
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One can determine if a supply project meets a given capital
productivity requirement by asking whether each dollar invested yields a
savings in gas purchase costs with an equivalent present value, where
these savings are discounted at the required capital productivity. In
the static environment I am considering, this is eguivalent to requiring
that each dollar invested yield savings in gas purchase costs at a rate
equal to the required capital productivity. This savings in gas pur-
chase costs should be measured by comparison to the cheapest alternative
source of supply available to the firm without additional investment.
Since the perspective of the firm is being taken, the savings should be
calculated based upon the marginal purchase costs to the firm, rather
than the prices, of gas from the two sources. The capital productivity
requirement should again equal the allowed rate of return.

In the case of gas supply projects there is, however, a simpler
equivalent way of stating this rule-of-thumh. This is to fix a ceiling
on the marginal cost of gas to the firm from sources requiring addition-
al investment, where marginal cost includes capital cost evaluated at
the allowed rate of return. This marginal cost ceiling would be set
equal to the marginal cost of gas available to the firm without addi-

tional capital investment.

3.3.1.M Mathematical Fermulation

In this subsection, I shall demonstrate that the price-minimizing
regulator would seek to assure equal marginal costs of gas from all

non-price controlled sources, where marginal cost includes capital cost
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evaluated at the allowed rate of return. Gas from effectively price-
controlled sources would be purchased up to the limit available to the
firm, at which point its marginal cost would be less than the marginal
cost of gas from non-price controlled sources. These conditions will be
shown equivalent to assuring a capital productivity on sources requiring
capital investment equal to, or greater than, the cost of capital.

T shall assume there are n potential sources of supply

i=1,44ey 1, available. Let

9; = gas purchased from source ij;
fi(gi) = wellhead price of gas purchased from source ij;
kZi(gi) = capital investment required to purchase quantity 9s of
gas from source 1i;
k1 = investment in other plant;
z(k1,zg.) = operating cost;
!
p(Zg;) = consumer price;
i
5 = allowed rate of return.

Consumer price minimization is equivalent to output maximization,

hence the regulator's problem is to maximize

subject to permitting the firm to earn its allowed rate of return,
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and, possibly, to wellhead price ceilings fi(gi)-i Fi’ which are

equivalent to constraints on supply,

gi_i Gi'

I assume sources i = m,...,n, are subject to the wellhead price
ceiling. Maximization is over g9; for i =1,..., n, and k, where all
these variables must be non-negative. The Lagrangian will be
L = 2g;+0 [P(29;) (2g;)-2F; (g;)9;-2(k, B0, ) =87k, (g;) -sky ]
i i i i i i
+Z}\ (C g)
i

The first order conditions require that:

dL

.= 1 =+ AT[p‘(;gi)($gi)+ p(;gi)~f5( J)gJ fJ(gJ) z (k1,§gi)
j i i i i
- skyi(g)] < 0; (3.3.1.M/1)
dL. e . . .
Ea.gj = 03 gjdz 0; j=1,000,m - 1;
J
ot _ + 2390 (29 )+ p(Zg )-F1(9:)g-F (g,)-2,(ky,Eg,)
dg. 73’3 j 21001
j i i i
- sk!.(qg. - A,. < O3 3.3.T.M/2
Bl
“a_g_\]g‘] = 0; gj 2 0 J = m, s
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oL
= }\1[—21(k1,2igi) - 5] < 0; (3.3.1.M/3)

dlL .

HXTK1 = 0 h1_z 0; (3.3.1.M/4)
dL
- =G, -~ g. > 0; (3.3.1.M/5)
dKZj J J
dL A .
'5121K23 = 0y th-z 0 J=my.e.yn.

1 assume that gj >0 for 3 =1, ..., n and k1 > 0 at the solution,

implying that (3.3.1.M/1) - (3.3.1.M/3) are equalities with M £ 0.

Theorem 3.3.17.M.A: Given two sources a and b which are not subject to a

wellhead price ceiling, the price-minimizing regulator would seek to

assure that

fé(ga)ga+fa(ga)+3kéa(ga) = 1:t')(gb)gbﬂcb(gb)“‘Skéb(gb)'

(3.3.1.M4/6)

In words, the marginal cost of gas from the two sources are equal, where
this marginal cost includes capital cost evaluated at the allowed rate

of return s.
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Proof: Since sources a and b are not subject to the wellhead price
ceiling, it must be that a <n - 1T and b < n - 1. Subtracting
(3.3.1.M/1) with i = b from (3.3.1.M/1) with 1 = a and dividing through

by i, yields the desired result.

1
Q.E.D.

Corollary: If the firm could buy gas from source a without further
capital investment, then (3.3.1.M/6) is equivalent to setting the pro-

ductivity of capital invested in source b equal to s.
Proof: Solve (3.3.1.M/6) with kéa(ga) = 0 for s yielding

filg )g, + fa(ga) - fé(gb)gb - fb(gb)
K25 (9p)

= 5.

The term on the left is the marginal reduction in gas purchase costs to
the firm with an increase in 9, and corresponding decrease in 9,
divided by the marginal increase in capital investment with the increase
in 9y, Hence, the term on the left is the productivity of capital
invested in source b, which is being set equal to s.

Q.E.D.

Theorem 3.3.1.M.B: Given a source a which is not subject to a wellhead

price ceiling and a source b subject to a wellhead price ceiling, the

price-minimizing regulator would seek to assure that either:
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1 9y < Gb and

fé(ga)g + fa(ga) + skéa(ga) fé(gb)gb + fb(gb) + skéb(gb);

(3.3.1.M/7)

or 2) g, = Gb and

fllg g + F(g)) + skj (g)) > fllg )g, + F (g.) + skj (qg).

(3.3.1.M/8)

In words, either the marginal cost of gas from the two sources are
equal, or the firm buys all gas avallable from source b, at which point
its marginal cost is less than or equal to the marginal cost of gas from
source a. Marginal cost includes capital cost evaluated at the allowed

rate of return s.

Proof: Since source a is not subject to the wellhead price ceiling, it
must be that a < n - 1; since source b is subject to the wellhead price

ceiling, it must be that b > n. By (3.3.1.M/5), g9, £ G So there

b
are two cases to consider.

1)  Assume 9 < Gb at the solution. Then th = 0 by
(3.3.1.M/5). Subtracting (3.3.1.M/2) with i = b from (3.3.1.M/1) with
i = a and dividing through by h1 yields (3.3.1.M/7).

2) Assume g, = Gb at the solution. Subtracting (3.3.1.M/2) with

[
1}

b from (3.3.1.M/1) with 1 = a and dividing through by A, yields

A
2b
fé(ga)g + fa(ga) * Skéa(ga) = f:I;)(gb)gb * fb(gb) * Skéb(gb) +-X;—’

which is equivalent to (3.3.1.M/8).

Q.E.D.
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Corollary: If the firm could buy gas from source a without further
capital investment, then {(3.3.1.M/8) is equivalent to setting the pro-

ductivity of capital invested in socurce b greater than or equal to s.

Proof: Solve (3.3.1.M/8) with kZa(ga) = 0 for s yielding

fé(ga)ga * f-‘a(ga) - fé(gb)gb - fb(gb) 5 s
Kop(9p) -

As in the previous corollary, the term on the left is the productivity

of capital invested in source b.

Q.E.D.

3.3.2 Welfare Maximization

The capital productivity rule derived in the Section 3.2.2 for the
welfare-maximizing regulator is less easily extended to investments in
new supply projects. As before, a first-best welfare maximum would
require that the consumer price of gas equal its marginal social cost,
while capital productivity should equal the cost of capital. One need
only note that in calculating capital productivity the savings in gas
purchase costs from the new supply project is calculated from the per-
spective of society rather than the perspective of the firm, based on
differences in price rather than marginal cost. Unfortunately, if a
regulator were to follow these first-best principles, it would be a

coincidence for the firm to earn its allowed rate of return.
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A second-best welfare maximization will require the regulator to
permit some departure from these principles. The regulator's objective
is to permit those departures which minimize welfare loss while holding
the firm to its allowed rate of return. Since the savings in gas
purchase costs from the project should be viewed from the perspective of
society as they affect welfare, but from the perspective of the firm as
they affect the rate of return constraint, the second-hest welfare-maxi-
mizing rule-of-thumb is no longer conveniently stated as a capital pro-
ductivity requirement. The new rule-of-thumb involves the ratio of the
effect on welfare of an additional unit of gas to the effect on the
rate-of-return constraint of an additional unit of gas.

A measure of how much an additional unit of gas from a given source
of supply contributes to welfare is the consumer price of gas (that is,
its value to consumers) minus the wellhead price of gas (its resource
cost to society), minus the marginal operating cost to the gas firm,
minus the cost of the capital invested in the supply project to produce
the gas. Call this measure the "marginal gain in welfare" of gas from a
source. Note that under the first-best welfare maximization, the mar-
ginal gain in welfare of gas from each source will be zero; no improve-
ment of the outcome is possible.

It is also possible to construct a measure of how much an
additional unit of gas from a given source lowers the firm's earnings
relative to its allowed earnings. This will be the marginal purchase
cost of the gas to the firm, plus the marginal operating costs to the

firm, plus allowed earnings on the capital invested in the supply
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project, minus marginal revenues from the sale of the gas. Call this
measure the "marginal drain on earnings" of gas from a source.

The second-best rule-of-thumb for the welfare-maximizing regulator
is to require that the ratio of marginal gain in welfare to marginal
drain on earnings for each supply source be greater than some minimum
value, where the source produces a positive marginal drain on earnings.
The managers could then expand supplies from each non-price-controlled
supply source until the ratio equalled this ceiling, and expand supplies
from price-controlled sources until either the ratioc equalled this
ceiling or until all available supplies had been contracted for.

To see why welfare-maximization requires equal ratios from all
non-price-controlled sources, suppose there is some solution giving the
firm its allowed rate of return at which these ratios for different
sources were not equal. Then one could obtain another solution which
also gives the firm its allowed rate of return, but has higher social
welfare, by expanding supplies from sources with large ratios and
reducing supplies from sources with small ratios. Although the managers
may not be able to expand supplies from price-controlled sources until
the ratio reaches the desired level, welfare would be increased by
expanding supplies from price-controlled sources with large ratios, or

negative drain on earnings, as much as possible.

3.2.2.M Mathematical Formulation

In this subsection, I will show that a welfare-maximizing regulator

would seek to assure equal ratios of marginal gain in welfare to
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marginal drain on earnings from all non-price-controlled scurces.
Effectively price controlled gas would be purchased up to the limit
available, at which point either its marginal drain on earnings will be
negative, or its ratio will be above the desired ratio for non-price
controlled sources. As in Section 3.1.2.M, I assume the regulators
maximize welfare for each firm independently.

As in Section 3.2.1.M, I assume the firm has n potential sources of
gas supply available, 1 = 1,..., n. I will use the same notation in
this section as I used there. The regulator's problem is to maximize

welfare

Egi 9;

i

jp(g)dg - ? Ifi(gi)dgi - Z(k1!?gi) - F?kZi(gi) - rk1 - Xy
0 ia0 i i

subject to the constraint that the firm earn its allowed rate of return,

p(?Qi)(%Qi) - ?fi(gi)gi - Z(k1,§gi) - s%kZi(gi) - Sk1 - x = O,

and perhaps subject to a wellhead price ceiling, fi(gi) S_Fi, which is

equivalent to a ceiling on gas supply,

I assume sources i = m,...,n are subject to the wellhead price ceiling.
Maximization is over 9; for i = 1,..., n as well as k and x, where all
these variables must be non-negative. The variable x is again included
in the model as a mathematical convenience.

The Lagrangian will be
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il i
L = ép{g)dg-g gfi(gi)dgi-z(k1,?gi)-rszi(gi)-rk1~x)

+ M [P(20:) (3950 -7, (g;)9;-2(Ky, 795 ) -3k, (g5 ) sk y-x ]

+ 253 (G5-g4)-

For ease of notation, I make the following additional definitions:

29; 95
d A
MGW, = qo-LIp(g)dg - = [f(g;)dg;- z(ky,2g;) - r3ky;(g;) - rky - x]
j 0 i0 i i
= marginal gain in welfare from sale of gas from source j;
d
MDEj = - Haf{p(§gi)(ggi)—gfi(gi)gi—z(k1,Egi)—52§2i(gi)—sk1—x]

J

marginal drain on earnings from sale of gas from source j.

The first-order conditions require that:

%%§= MGW, - MMDE, < 03 (3.3.2.M/1)
%%&95 = 0 95 2 05 3= Tyeee, m =13
oL Mew, - AMDE, - A, < 03 (3.3.2.1/2)
6gj I i b 23 2 08
%éﬁgj = 05 gj_Z 03 J T Myeaey N3
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= -(1 + A1)z1(k1,§gi) - (r + qu)_g 03

%%-k = 0 k > 03
oL
‘&—*(1+7\.1)50,

%% x = 03 x > 0;
aL

vl p(ggi)(ggi) - gfi(gi)gi - 2(k,§91)

- s?kZi(gi) - sk1 - x = 03

bl

—-—-:G.-g.>0,
al
= A, = 03 Ay, > 0
bkaj 23 2] —

J= 1.,

(3.3.2.M/3)

(3.3.2.M/4)

(3.3.2.M/5)

(3.3.2.M/6)

I assume gj >0 for  =1,...y nand k > 0 at the solution, implying

that {3.3.2.M/1) - (3.3.2.M/3) are equalities.

Lemma 3.3.A: It is always true that k1

Proof: A

> -1 and x = 0.

1 > - 1 by (3.3.2.M/4). But k? = -1 contradiects (3.3.2.M/3),

since s > r by assumption. So k1 > - 1, which implies by (3.3.2.M/4&)

that x = 0.

lLemma 3.3.B: It is always true that MGWj > - MDEj.

Proof: By definition,
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MGW MDE. = -p'{(Zqg.){(Zqg. fi(g.)qg. -r)kl.{g.}).
it 3 P (igl)(igl) + ﬁ(gJ)gJ + (s-r) 23(93)

Since p'( ) < 0, f}(gj) >0, s >r, and kéj(gj) > 0 by assumption,

this shows that
MGW, + MDE, > O,
J J

from which the desired result follows immediately.

Q.E.D.

Theorem 3.3.2.M.A: The welfare-maximizing regqulator would seek to

assure that

MDE, > O
J
MGWj
and MEE; = K1 (3.3.2.M/7)

for all non-price-controlled sources j = i,..., m - 1.

Proof: Assume MDEj = 0. Then MGWj = 0 also by (3.3.2.M/1). But
MDEj = MGWj = 0 contradicts Lemma 3.3.B. So MDEj £ 0. Solving
(3.3.2.M/1) for R1 yields (3.3.2.M/7). Since l1 > -1 by Lemma 3.3.A,
this implies that

MGW .

—J s
MDE . > -1
J

Assume MDEj < 0. Then it must be that MGWj < —MDEj, contradicting Lemma

3.3.B. So MDEj > 0.

Q.E.D.
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Theorem 3.3.2.M.B: For all price-controlled sources j = my..., n, the

welfare-maximizing requlator would seek to assure that either
1 . < G,, MDE, > 0O
) gJ 3? 3 ’

(3.3.2.M/8)

or 2) g. = G. and either
J J
a) MDE., <0

or b) MDEj > 0 and

MGW .

J
MDE.-Z h?'

J

Proof: By (3.3.2.M/6é), gj_s Gj' So there are two cases to consider.

1) Assume gj < Gj at the solution. Then th = 0 by (3.3.2.4/6).
Assume MDEj = 0. Then MGWj = 0 also by (3.3.2.M/2). But MDEj = MGWj =0
contradicts Lemma 3.3.B. So MDEj # 0. Solving (3.3.2.M/2) for h1

yields (3.3.2.M/8). Since Ay > -1 by Lemma 3.3.A, this implies that

MGW
s 1.

WE;
Assume MDEj < 0. Then it must be that MGWj < -MDEj, contradicting Lemma
3.3.B. So MDEj > 0.
2) Assume gj = Gj at the solution. There are then two cases to
consider.
ay 1If MDEj < 0, then (3.3.2.M/2) can always be satisfied for

any value of K1 by the appropriate choice of KZj' For k1 > - 1 by Lemma
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3.3.A, hence

- A

1MDE. > MDE..
J = J

This implies that
MGW. - A ,MBE. > MGW. + MDE..
N R

The expression on the right is positive by Lemma 3.3.B, hence so is the
expression on the left. Thus (3.3.2.M/2) can be satisfied by an appro-
priate non-negative KZj'

b) If MDEj > 0 then (3.3.2.4/2) implies

MGW .
WOE 2 M

Q.E.D.

The welfare-maximizing rules for capital investments derived in
Section 3.2.2 can also be expressed as a ratio rule. Solving
(3.3.2.M/3) for M yields

-21(k,§gi) -r

K1 =

s + 21(k,§gi)

The numerator is the capital productivity minus cost of capital, or
marginal welfare of capital investment, while the denominator is the
allowed rate of return minus capital productivity, or marginal drain on

earnings of capital investment.
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3.4 Regulatory Policies on New Consumer Hookups

Investments in new consumer hookups may yield benefits to the gas
firm in the form of additional revenues, plus additional benefits to gas
producers and consumers. As with investments in new supply projects,
the question arises as to what perspective should be taken in evaluating
these benefits. This section extends the analysis of the preceding
sections to treat the special problems presented by investments in new
consumer hookups. Since the question of whether to hookup a new class
of consumers is somewhat inseparable from the question of how different
classes of consumers should be charged, consumer pricing will be discus-
sed in this section as well. Modified rules-of-thumb are derived, which
regulators might apply, given profit-maximizing behavior by gas firms.

In the first subsection, I consider the case of the regulator seek-
ing to maximize consumer surplus. Here the regulator should view the
benefits of the project as they affect consumer surplus from the per-
spective of consumers, but as they affect the firm's rate-of-return
constraint from the perspective of the firm. The rule-of-thumb in this
case is therefore expressed as a ratio rule, similar to the one for
welfare-maximizing investment in new supply projects derived in the
previous section. In the second subsection, I consider the case of the
requlator seeking to maximize social welfare. The optimum policy again

takes the form of a ratio rule.

3.4.1 Consumer Surplus Maximization

Even in the case of regulators seeking to act in the interest of

consumers, the evaluation of new hookups necessarily involves some
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difficult interpersonal comparisons. Should the regulators seek to
benefit primarily consumers already hooked up to the system, potential
consumers who could be hooked up to the system, or some combination of
both? Economic theory cannot provide an answer to this question. 1
shall assume that the regulators seek to maximize consumer surplus,
meaning that they choose to maximize total consumer benefits without
regard for the equity with which these benefits are distributed.

For the rate-of-return regulated firm, the marginal effect of a
cost-saving investment on consumer surplus exactly equals its marginal
effect on the firm's allowable costs. Hence, in the preceding two
sections, one could maximize consumer surplus or, equivalently, minimize
consumer price, by minimizing the firm's allowable costs. For invest-
ments in new hookups, there is always some increase in consumer surplus
which cannot be recovered as revenues by the firm. There is, therefore,
no analogous rule for setting the consumer surplus-maximizing number of
new hookups. The consumer surplus-maximizing rule turns out to be a
ratio rule, very similar to the one I derived for the welfare-maximizing
investment in new supply projects in Section 3.3.2.

An additional consumer hookup increases consumer surplus by an
amount equal to the area under the consumer's demand curve minus total
payments by the consumer. Call this amount the "marginal consumer
surplus" of the additional hookup. Since the area under the consumers
demand curve is always greater than or equal to the payments from the
new consumer (otherwise, the consumer would not choose to hook-up),

marginal consumer surplus is non-negative.
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It is also possible to construct a measure of how much each new
hookup lowers the firm's earnings relative to its allowed earnings.
This measure will be the marginal purchase cost of gas supplied to the
new consumer plus the marginal operating costs to the firm of supplying
the gas plus allowed earnings on the capital invested in the new hookup
minus revenues from the new consumer. Call this the "marginal drain on
earnings" from the new hookup. Note that this is exactly the same con-
cept as the "marginal drain on earnings" from the sale of gas discussed
in Section 3.3.2.

If the marginal drain on earnings for a new hookup is positive, the
rule which should be followed by the consumer surplus-maximizing
regulator is to set a minimum level on the ratio between the marginal
consumer surplus and the marginal drain on earnings. That is, the
managers should be required to show that each new hookup produces at
least a given number of dollars of consumers surplus per dollar of
additional charges which will have to be levied on other consumers. If
the marginal drain on earnings from a new hookup are negative, the new
hookup should be automatically permitted. Not only does such a hookup
produce consumer surplus for the newly hooked-up consumers, but it also
reduces the charges which the firm must levy on other consumers, thereby
increasing their consumer surpluses as well.

A similar rule applies to the pricing of gas. The sale of an
additional unit of gas increases consumer surplus by an amount equal to
the value of the gas to the consumer--its price--minus the additional

payment for the gas--its marginal revenue to the gas firm. This will be
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the '"marginal consumer surplus" from the sale of an additional unit of
gas. It will always be positive. The marginal drain on earnings from
the sale of gas will be as defined in Section 3.3.2. It should by now
come as no surprise that the consumer surplus-maximizing rule for gas
pricing is that each consumer should have the same ratio of marginal
consumer surplus to the marginal drain on earnings as every other
consumer, and that this ratio should be the same as the minimum of the
ratio set for new hookups. Intuitively, every decision the managers

make, whether to sell additional gas or hookup new consumers, should

produce some given increase in consumer surplus per dollar of additional

charges which will have to be levied on other consumers.

3.4.1.M Mathematical Formulation

In this subsection, I shall derive the ratio rules which the
consumer surplus-maximizing regulator would seek to assure are met by
all new consumer hookups and the gas firm's consumer prices. I assume
there are n classes of potential consumers i = 1,..., n, with all

consumers in a given class having identical demand curves. Let:

g9; = gas sold to each consumer in class ij

pi(gi) = consumer price to consumer class i;

q; = number of consumers in class i hooked-up to the
system;

kZi(qi) = investment required to hook-up q; consumers of
class i3

Qi = total population of class i customers;

k1 = investment in other plant;

147



z(k1,§giqi) = operating cost;

f(;giqi) = wellhead price of gas;
i
c = constant representing value of any rents accruing to
firm from partial wellhead price controls;
s = allowed rate of return.

The consumer surplus-maximizing regulator's problem is then to

maximize consumer surplus

95
?[épi(g)dg - py(9;)9; Jays
1

subject to permitting the firm to earn its allowed rate of return,
1pi(9;)959; - z(kys2g;0;) - FZg39;)(2g;q;)
+C - s[k1 + §k2i(qi)).z 0,
and the limit on the number of consumers in each class,

q; S_Qi; i =1y veey N

Maximization is over 9; and a5 for i =1, ...,n, where all these

variables must be non-negative.

For ease of notation, I make the following additional definitions:

93
(g)dg - p.(g.)g.
é pj(g) g DJ(QJ)QJ

MCSH.,
J

marginal consumer surplus from new hookup to consumer
of class j;
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MCSG, = -pl{g.)g.
5 = Pilag)e;
= marginal consumer surplus from sale of gas to consumer
of class j;
_d
MDEH, = aa&[gpi(gi)giqi—z(kq,ggiqi)-f(ggiqi)(Egiqi)~5(k1+§k21(qi))]
= marginal drain on earnings of new hookup to consumer
of class J;
d
MDEGj = - H’gj[?pi(gi)giqi“z(k*l5§giqi)‘f(§giqi)(Zgiqi)‘s(k']"'?kzj_(qi))]

= marginal drain on earnings from sale of gas to consumer
of class j.

Lemma 3.4.A: MCSHj > 0.

Proof: Since (g.) <0b ti . > p.(g.) T < G
93(93) y assumption, pj(g) DJ(QJ) or g < g;

Hence,

95
. dg > p.{g.)g.
épj(g) g > pylas)g;
Q.E.0,
Lemma 3.4.B: MCSGj > 0
Proof: Since p!{g.} < 0, -p'{g.) > 0.
c DJ(QJ) ; pg(gJ)
0.E.D.

The l.agrangian will be
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95

L= ?[épi(g)dg - pilopdg; lay + M[Epy(apo a; - 20k, 3g;a;)
i 1 1

- F(30;95)(59;a;) + o - slky + Ty (ag) )] + 2y (Qy-ap)-

The first-order conditions require that:

%%-: MCSH, - AMDEH, - h. < 03 (3.4.1.M/1)
A}
dL
-— q, = 0,3 g. » 0; =1 sy N3
dq. -
a; 3 3
dL
dg,- MCSGy - AMDEG, < 0; (3.4.1.M/2)
hj
dL
= 9. = 03 g. > 03 T =Teeoy g
dg. =
9573 J
@ _y [-z,(k.,2g.q,) - s] < 03 (3.4.1.M/3)
dk,~ Mot = sl
dL .
ac k1 = 0 k]_z 03 F=1500ey 03

db
a‘lz %Pi(gi)giqi - Z(k'l’?giqi) - ﬂggiqi)(%giqi) + C
- s(ky + ngi(qi))_g 0; (3.4.1.M/8)
dl.
HX1K1 = 0; Kq_i W H
dL
Hié.z Qj - qj > 0; (3.4.1.M/5)
J
di .
E—XZ‘.‘-FKZJ = 0, ?\.2j _>'_ 0. J = 1, +y N«
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I assume qj > 0 and gj >0 for j =1,+e., n and k1 > 0 at the solution,

hence (3.4.1.M/1) - (3.4.1.M/3) are equalities.

Theorem 3.4.1.M.A: The consumer surplus-maximizing requlator would seek

to insure that either:

1 . < Q., MDEH, > 0
) qJ QJ, 3

MCSHj
and M—D-E_H;: )\_1, (3."-1-.1.M/6)

or 2 . = Q, and either
) a5 QJ

a) MDEH; < 0

MCSH,

J
or h) MDEHj and MOEH > A

J

1

Proof: By (3.4.1.M/5), as S_Qj. So there are two cases to consider.
1)  Assume qj < Qj at the solution. Then sz = 0 by (3.4.1.M/5).

Assume MDEHj < 0. Since k1 > 0 by (3.4.1.M/4), this would imply that

MCSHj < 0 by (3.4.1.M/1), which contradicts Lemma 3.4.A. Hence,

MDEHj > 0. Dividing (3.4.1.M/1) through by MDEHj yields (3.4.1.M/6).
2) Assume qj = Qj at the solution. There are then two cases to

consider

a) If MDEHj_i 0 then (3.4.1.M/1) can always be satisfied for

any value of R1 by appropriate choice of A For A

25" 4 2.0 by

(3.4.1.M/4), while MCSHj > 0 by Lemma 3.4.A. Hence, if MDEHj_i 0, then

MCSH. - A MDEH, > 0.
J 1 J

So (3.4.1.M/1) can be satisfied by the appropriate non-negative th'
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b) If MDEHj > 0 then (3.4.1.M/1) implies

MCSH,

J
MDER, 2 M

J Q.E.D.

Theorem 3.4.1.M.B: The consumer surplus-maximizing regulator will seek

to assure that the gas firm's pricing policies satisfy MDEGj > 0 and

MCSG.,
J

" (3.4.1.M/7)
17 MDEGj

A

for all consumers.

Proof: Assume MDEGj < 0. Since K1 > 0 by (3.4.1.M/4), this would imply
that MCSGj_S 0 by (3.4.1.M/2). But this contradicts Lemma 3.4.B. Hence
MDEGj > 0. Dividing (3.4.1.M4/2) through by MDEGj yields (3.4.1.M/7).

Q.E.D.

Note that both the minimum ratio for new hookups specified by
Theorem 3.4.1.M.A and the ratio for gas prices specified by Theorem

3.4.7T.M.B are equal to Ay

3.4.2 Welfare Maximization

The first-best rules for welfare maximization would require a
consumer price of gas equal to its marginal social cost. It would also
require the installation of new hookups until the marginal gain in
welfare from new hookups is zero. Unfortunately, it would be a coinci-

dence if a gas firm which followed these rules were to earn its allowed
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rate of return. Here again, the ratio rule provides a second best
solution.

In the case of new hookups, the solution requires that the ratio of
the marginal gain in welfare from each new hookup to the marginal drain
on earnings from the new hookup be greater than some minimum value if
the marginal drain on earnings from the hookup is positive. If the
marginal drain on earnings from the new hookup is negative, the hookup
should always be permitted. In setting gas sales, the ratio of the
marginal gain welfare from the sale of gas to the marginal drain on
earnings from the sale of gas would be required to be the same for each
consumer, and the same as the minimum acceptable ratio for new hookups.
Intuitively, if any of these ratios were to differ, one could improve
welfare, while holding the gas firm at its allowed rate of return, by
increasing hookups and/or gas sales where the ratios are high and

reducing hookups and/or gas sales where the ratios are low.

3.4.2.M Mathematical Formulation

In this subsection, I shall derive the ratio rules which the
welfare-maximizing regulator would seek to assure are met by all new
consumer hookups and the gas firm's consumer prices. As in Section
3.2.2.M, I assume the regulators maximize for each firm independently.
As in Section 3.4.1.M, I assume there are n classes of potential consum-
ers i = 1,..., n, with all consumers in a given class having identical
demand curves. I use the notation which was introduced in that section.

The welfare-maximizing regulator's problem is to maximize welfare
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g %giqi

i
?qigpi(g)dg - é flg)dg - z(ky,2g;a;) - rlky + Tk (a;)) - x,
1 1 1

subject to the firm earning its allowed rate of return,

pile3)9;0; - 2(kyoRa;0;) - FlZg;9;)(Fgg9;) + ©

- s{ky + Tk, (q)) - x = 0,

1 i
and the limit on the number of consumers in each class,
qi_i Qi; i=1 iy, N

Maximization is over 9z and g; for i = 1,...,n, and x, where all these
variables must be non-negative. The variable x is again included in the

model as a wmathematical convenience.

The Lagrangian will be

g ?giqi

i
L = Eqiépi(g)dg - [flg)dg - z{kysIg;9,) - r(k1 + ZKZi(qi)) - X
i 0 i i

+ M[2pi(ag;a; - 2(kpZe595) - F(39;05)(39;q;) + ©

- s(ky + By (a)) - ]+ 305 (05-9;)-

For ease of notation, I make the following additional definitions:

154



MCWH, =
J

MGWG. =
J

Recall that

%glql

9;
dg [2a; fp (g)dg- If(g)dg z(k1,Eg 1ay)-r(ky +Zk s(a;) )-x]
Jl

marginal gain in welfare from new hookup to consumer of
class j;

Eg 193

ag-129; Ip (9)dg- ff(g)dg -2 (kq 735D (g3, () )]
J i

marginal gain in welfare from sale of gas to consumer
of class j.

MDEHj and MDEGj were defined in Section 3.4.1.M.

The first-order conditions require that:
OL MGWH, - A MDEH, - A, < 03 (3.4.2.M/1)
bqj i 1 J 2j =
Bl
== q. = 03 q. > 03 J =1 ceyng
34, Z
q; b
OL . MGWG. - A.MDEC. < O; (3.4.2.M/2)
agj J 1 j_ ’ T
pL
— qg. = 03 g. > 03 F =71y veey 1
g . Z
9573 hj
OL L L1+ Az (kesRa.q.) - (0 + AuS) < O (3.4.2.4/3)
Bk, 174939059193 (R sl
L
ok K1 = 03 k1 205
al
= -1+ hy) <05 (3.4.2.M/4)
“g'E-X=O, X_)_O,
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oL
— = Epi(gi)giqi - Z(RT’ﬁgiqi) - f(%giqi)(ggiqi) +c

oA,
- s{kyt %kzi(qi)] - x = 0; (3.4.2.M/5)
Bl )
o, Q - a5 2 0; (3.4.2.M/6)
J
L oAl . .
Exzjhzj = 0; KZj-Z 03 =1 .0, n.

I assume qj > 0 and gj >0 for J =1,..., nand k. > 0 at the solution,

1
hence (3.4.2.M/1) - (3.4.2.M/3) will be equalities.

Lemma 3.4.C: It is always true that Kg > - 1 and x = 0,

Proof: Ay > -1 by (3.4.2.M/4). But Moo= -1 contradicts (3.4.2.M/3),
since s > r by assumption. So h1 > -1, which implies by (3.4.2.M/4)
that x = 0.

Q.E.D.

Lemma 3.4.D: It is always true that MGWHj > - MDEHj.

Proof: By definition,

qJ.
MGWH, + MDEH, = [pY(ag)dg-p.(g.)g.+F'(Zg.q.)(Sg.q.)q.+(s-r)}k' (q.).
. ; épj(g) 9-P;(9)94+7 ' (29;0;) (2g;0;)g4+(s-1) Zj(qJ)

Since pé( ) <0, £'( ) > 0, and kéj(qj) > 0 by assumption, the

desired result follows immediately.

Q.E.D.

Lemma 3.4.E: It is always true that MGWGj > MGEGj.
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Proof: By definition,

MGWG, + MDEG, = -pl(g,)g.q. + f'(%g.q9,)q.(Xg.q;).
i 5 = ~P3loglasas + T1(2g;0,)q,(2g;9;)

Qg.E.D.

Since pi( ) < 0 and f'( ) > 0 by assumption, the desired result
follows immediately.

Q.E.D,

Theorem 3.4.2.M.A: The welfare-maximizing regulator would seek to

insure that either:

1 , < Q., MDEH. > 0
) a5 QJ, 3

MGWH .

S
and MDEHj = l? {(3.4.2.M/7)

or 2 . = Q. and either
) a5 QJ

a) HDEH, < 0

MGWH ,
J

MOEH,
J

or b) MDEHj > 0 and 2 A

1

Proof: By (3.4.2.M/6), qj E_Qj. So there are two cases to consider.

1)  Assume a5 < Qj at the solution. Then AZj = 0 by (3.4.2.M/6).

Assume MDEHj = 0. Then MGWHj = 0 also by (3.4.2.M/1). But
MDEHj = MGWHj = 0 contradicts Lemma 3.4.D. So MDEHj £ 0. Solving

(3.4.2.M/1) for X, yields (3.4.2.M/7). Since A, > -1 by Lemma 3.4.C,

1 1

this implies that
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MGWH

j
MDEH, © '
j

Assume MDEHj < 0., Then it must be that MGWHj < -MDEHj, contradicting
Lemma 3.4.D. 5o MDEHj > 0.
2} Assume qj = Qj at the solution. There are then two cases to
consider:
a) If MDEHj_S 0 then (3.4.2.M/1) can always be satisfied for

any value of RT by the appropriate choice of A For h1_2 - 1 by Lemma

2"
3.4.C, hence

-\,MDEH. > MDEH..
1 i= J

This implies that

MGWH. - A,MDEH. > MGWH, + MDEH,.
3 1 j-= J J

The expression the right is positive by lLemma 3.4.D, hence so is the
expression on the left. Thus (3.4.2.M/1) can be satisfied by an

appropriate non-negative KZj'

b) If MDEHj > 0 then (3.4.2.M/1) implies

MGWH,

i
MDER, 2 M1
i

Q.E.D.

Theorem 3.4.2.M.B: The welfare-maximizing requlator will seek to assure

that the gas firm's pricing policies satisfy
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MDEG, > O
J

HGHG,
and ﬁDEGj

!
B

1 (3.4,2.M4/8)

for all consumers.

Proof: Assume MDEGj = 0. Then MGWGj = {0 also by (3.4.2.M/2). But
MDEGj = MGWGj = 0 contradicts lLemma 3.4.E. So MDEGj # 0. Solving
{(3.4.2.M/2) for M

yields (3.4.2.M/8). Since A, > -1 by Lemma 3.%.C,

1 1

this implies that

MGWG.,

T R
WOEG, © T
j

Assume MDEGj < 0. Then it must be that MGWGj < uMDEGj, contradicting

Lemma 3.4.E. So MDEGj > 0.

0.E.D.

Note that both the minimum ratio for new hookups specified by
Theorem 3.4.2.M.A and the ratio for gas prices specified by Theorem

3.4.2.M.B are equal to K1.

3.5 Practical Implications

This chapter has discussed a second instrument available to
regulators under rate-of-return regulation: restrictions on capital
investment. The application of this instrument was explored in the

context of a strict profit-maximizing firm. It was shown how restric-
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tions on capital investment, in the form of a required capital produc-
tivity, can induce the firm to purchase gas beyond the point where its
marginal cost egquals its marginal revenue product.

Restrictions on capital investment may be an especially appealing
policy to regulators who perceive firms as strict profit-maximizers,
since there are simple rules-of-thumb which a consumer surplus-maximiz-
ing or welfare-maximizing regulator might follow. For most cost-saving
investments, the consumer surplus-maximizing regulator would require a
capital productivity (marginal internal rate-of-return) equal to the
allowed rate of return. The welfare-maximizing regulator would require
a capital productivity less than the allowed rate of return but greater
than the cost of capital if the firm's average cost exceeds its marginal
social cost, or a capital productivity below the cost of capital if the
firm's average cost is less than its marginal social cost.

Investments in new supply projects and new hookups pose special
problems, since the effect of these investments on consumer surplus or
welfare may differ from their impact on the firm's rate-of-return con-
straint. In the case of a supply project, the consumer surplus-maximiz-
ing regulator would again require a capital productivity, measured from
the perspective of the firm, equal to the allowed rate of return. The
welfare-maximizing regulator would require a minimum ratio of the margi-
nal gain in welfare to the marginal drain on earnings for each supply
project, if the project would create a drain on earnings. In the case
of new consumer hookups, the consumer surplus-maximizing regulator would

require a minimum ratio of marginal consumer surplus to marginal drain
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on earnings from each hookup, if the hookup would create a drain on
earnings. The welfare-maximizing regulator would require a minimum
ratio of marginal gain in welfare to marginal drain on earnings from
each hookup, if the hookup would create a drain on earnings.

Of course, the model I have proposed is somewhat idealized. Infor-
mational problems would limit the regulators' ability to implement these
policies. First, the regulators do not have the resources to evaluate
the productivity of each and every dollar the firm may wish to invest,
so they will tend to look at the average productivity of the entire
project all at once. Second, the regulators must actually base their
decisions on forecasts of the impacts of capital investment, since
actual impacts are never known until a project is completed, if then;
this adds risk and uncertainty to the decisionmaking. Third, the regu-
lators must generally base their forecasts partly on evidence provided
by the managers itself; this evidence may be manipulated by the managers
to their own advantage. Finally, for investments in new hookups, there
are practical difficulties in estimating consumer surplus which would
prevent exact implementation of the proposed rules-of-thumb. However,
this model does capture the basic appeal of capital investment
restrictions to regqulators, and provides some insight into the effects

of this little-acknowledged regulatory instrument.
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CHAPTER 4

GAS FIRM BEHAVIOR WHEN PROFIT MAXIMIZATION IS NOT THE ONLY

OBJECTIVE AND CAPITAL INVESTMENT IS RESTRICTED

This chapter introduces a model of gas firm behavior which combines
the assumption of utility-maximizing managers examined in Chapter 2 with
the restrictions on capital investment examined in Chapter 3. If firm
managements do, indeed, have objectives other than profit-maximization,
then restrictions on capital investment could affect the emphasis the
firm places on profits compared to other objectives. This could poten-
tially alter the results of the two previous chapters. Although, in
fact, this chapter does not demonstrate any dramatically new results, it
does allow one to identify which of the results of these previous
chapters can be extended to this new model. The chapter also lays the
groundwork for the examination of the effects of wellhead price
controls, which will be made in the following chapter.

The first section examines how the capital productivity requirement

would affect the budget constraint faced by the managers of a rate-of-
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return regulated firm. The second section uses these results to examine
how changes in the capital productivity requirement would affect the
firm's profits and institutional costs. The third section examines how
changes in the allowed rate of return would affect the firm's profit

and institutional costs when the firm is subject to a capital
productivity requirement. The final section offers a few reflections on

the practical implications of the chapter.

4.1 Another Look at the Firm's Budget Constraint

With or without a constraint on capital preductivity, the combina-
tion of profit and institutional costs which maximizes a manager's
utility function will be found at the point of tangency between the
firm's budget constraint and an isoutility curve. The impact of the
capital productivity requirement will be through its impact on the
budget constraint. This section therefore examines how the capital pro-
ductivity requirement affects the budget constraint.

First, consider the case of an allowed rate of return greater than
the cost of capital. Recall that without a capital productivity
requirement, the budget constraint is of the general form shown in
Figure 26. 7* represents the ceiling on the firm's profit assuming the
managers invest the amount of capital they would choose without
requlation. Standard theory of the firm requires that, in the absence
of regulation, the managers would choose an amount of capital investment
such that capital productivity exactly equaled the cost of capital. At

all values of profit less than w* the profit ceiling is not binding, so
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the managers behave as they would without rate-of-return regulation.

Hence, capital productivity exactly equals the cost of capital. To

/\ Institutional Costs

I
!
i
i
i

N
0 T* Profﬁt

Figure 26
Budget Constraint of a Rate-of-Return Regqulated Firm

with an Allowed Rate of Return Greater than the Cost of Capital
attain values of profit greater than ©*, the managers must invest more
capital than they would in the absence of regulation, so as to increase
the profit ceiling. Hence, as one moves to values of profit greater
than w*, capital productivity must decline.

It follows that, if the regulator were to set a capital productiv-
ity requirement less than the cost of capital, there would be no impact
at values of profit less than =*, or even at values of profit greater
than #* but less than some m**. At w** the productivity of capital
would have dropped low enough that the capital productivity requirement
becomes binding. The capital productivity requirement would make it

more expensive for the managers to expand profits beyond 7** than it
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would be under the rate-of-return constraint alone. This is because
they must not only acquire capital at a cost which exceeds the value of
its marginal product, but must also acquire gas at a cost which exceeds
the value of its marginal product, so as to justify the capital. As a
result, the budget constraint will be lower at values of profit greater
than w** than it would be without the capital productivity requirement.

The new budget constraint is shown in Figure 27.

N

Institutional Costs

budget constraint with capital
productivity requirement

i budget constraint without capital
productivity requirement

L%

»
0 LA L Profit

Figure 27
Effect of Capital Productivity Requirement Less
Than the Cost of Capital Given an Allowed Rate of Return
Greater than the Cost of Capital
If one were to increase the capital productivity requirement, m**
would shift leftward, while the budget constraint would drop lower to
the right of w**. One would expect the constraint to become steeper to

the right of w** as well, as increasingly large increases in gas

throughput become necessary to justify a given increase in capital
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investment, and hence a given increase in profit. This latter result,
however, I have only been able to prove for a homogeneous production
function with non-decreasing returns to scale. The difficulty stems
from the fact that increasing the capital productivity requirement means
increasing the gas throughput at any given level of capital investment.
Therefore, if the firm had a decreasing returns to scale production
function, it is conceivable that this larger volume of gas throughput
could produce an offsetting tendency for smaller increases in gas
throughput to justify a given increase in capital investment. The non-
decreasing returns to scale production function assumption is, however,
not terribly restrictive, since increasing returns to scale provides the
rationale for regulating gas firms to begin with.

If the regulators were to set the capital productivity requirement
greater than the cost of capital, the budget constraint would be every-
where affected, since capital productivity would be everywhere less than
or equal to the cost of capital without the capital productivity
requirement. In order to satisfy the requirement, the firm must use a
more costly mix of capital and other inputs at any given level of
profit. As a result, the constraint shifts downward everywhere. Figure

28 illustrates the general shape of the new budget constraint.
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Institutional Costs

budget constraint without

capital productivity requirement
budget constraint
with capital
productivity requirement

>
0 T* Profit

Figure 28
Effect of a Capital Productivity Requirement Greater Than
the Cost of Capital Given an Allowed Rate of Return Greater
Than the Cost of Capital
If one were to increase the capital productivity requirement, the

budget constraint would continue to drop lower. At values of profit
greater than =n*, where the rate-of-return constraint is binding, one
would also expect the budget constraint to become steeper, as increas-
ingly large increases in gas throughput become necessary to justify a
given increase in capital investment, and hence a given increase in
profit. But, again, I can only prove this for a homogeneous production
function with increasing returns to scale. At values of profit less
than n* the slope of the budget constraint is unaffected by an increase
in the capital productivity requirement. This is because the capital
productivity requirement would not affect the profit/institutional costs
tradeoff the managers would face in the absence of a rate-of-return

constraint. Since the capital productivity requirement does alter the
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amount of capital the firm would choose to invest in the absence of a
rate~of-return constraint, which in turn determines =w*, % itself may be
affected by an increase in the capital productivity requirement. The
direction of the change cannot, in general, be determined.

The situation when the allowed rate-of-return is less than the cost
of capital should also be considered. Recall that in this case m* is
negative, since the firm is required to lose money if it invests the
amount of capital it would invest without rate-of-return regulation.

The firm can reduce its losses below w* only by reducing its capital
investment below the amount it would invest if unregulated, until losses
are reduced to zero when capital investment reaches zero. Figure 29
illustrates the budget constraint when the allowed rate-of-return is

less than the cost of capital and there is no capital productivity

/\ Institutional Costs
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Figure 29
Budget Constraint of a Rate-of-Return Regulated Firm
with an Allowed Rate of Return Less Than the Cost of Capital

168



requirement. At values of profit less than w*, capital productivity
equals the cost of capital, as before. At values of profit greater
than n*, capital investment is being reduced, and hence capital produc-
tivity is increasing.

Now suppose the regulators set a capital productivity requirement
less than the cost of capital. This requirement would automatically be
met by the firm, since the firm would always choose a capital productiv-
ity greater than or equal to the cost of capital. Hence, the require-
ment will have no impact on the firm's budget constraint.

Suppose, then, that the regulators set the capital productivity
requirement greater than the cost of capital. The budget constraint
will certainly be affected at values of profit less than %, where
capital productivity would otherwise equal the cost of capital. The
budget constraint will also be affected at values of profit greater than
n*, but less than some w¥*. At w** capital productivity would have
risen high enough to meet the requirement.

At values of profit less than n*, the firm must use a more costly
mix of capital and other inputs under the capital productivity require-
ment, hence the budget constraint shifts downward. At values of profit
greater than w* but less than n**, the locus must also shift downward.
However, the amount of the shift diminishes as one moves toward =**, as
the difference between the capital productivity the firm would choose
without the requirement and the required capital productivity dimin-

ishes. At values of profit greater than w**, capital productivity would
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have been at least as large as required anyway, and the requirement has

no effect. The new budget constraint is illustrated in Figure 30.

budget constraint without capital
productivity requirement
/N

Institutional Costs

budget constraint
with capital
productivity requirement

e L e .

T gwx%Q Profit

Figure 30
Effect of Capital Productivity Requirement Greater
Than the Cost of Capital Given an Allowed Rate of Return Less
Than the Cost of Capital

If one were to increase the capital productivity requirement, m**
would shift rightward, while the budget constraint would drop lower at
values of profit less than w**, For values of profit less than =*, the
slope of the constraint would again be unaffected. For values of profit
between w* and w**, the slope of the constraint would probably become
less negative, as increasingly large reductions in gas throughput become
possible with a given reduction in capital investment, and hence a given

decrease in losses. However, I can only prove this for a homogeneous

production function with increasing returns to scale.
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Finally, consider the case of an allowed rate-of-return equal to
the cost of capital. Recall that, in the absence of a capital produc-
tivity requirement, the budget constraint would be vertical at the
institutional cost axis. This is because it is impossible for the firm
to earn a positive profit in this case, but since the rate-of-return
constraint is not binding at values of profit less than or equal to
zero, the managers could operate as they would in the absence of regula-
tion over that interval. The budget constraint is therefore as shown in

Figure 31.

Institutional Costs

\' 4

0 Profit

Figure 31
Budget Constraint of a Rate-of-Return Regulated Firm
With an Allowed Rate of Return Equal to the Cost of Capital
Since, 1n the absence of regulation, the managers would set capital

productivity equal to the cost of capital, a capital productivity requi-

rement less than or equal to the cost of capital would have no impact on
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this budget constraint. A capital productivity requirement greater than
the cost of capital would produce a downward shift in the budget con-
straint, as the managers are forced to use a more costly mix of capital
and other inputs. The slope of the budget constraint would be unaf-
fected, since the capital productivity requirement would not affect the
profit/institutional costs tradeoff in the absence of the rate-of-return
constraint. Figure 32 illustrates how a capital productivity require-
ment greater than the cost of capital would shift the budget constraint.

Table 2 summarizes the results of this section.

budget constraint without
capital produc’iivi ty requirement

Institutional Costs

budget
constraint
with capital
productivity
requirement

W

i Profic

Figure 32
Effect of a Capital Productivity Requirement Greater
Than the Cost of Capital Given an Allowed Rate of
Return Equal to the Cost of Capital
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TABLE 2

EFFECT OF AN INCREASE IN THE REQUIRED CAPITAL PRODUCTIVITY
ON THE FIRM'S BUDGET CONSTRAINT

Relationship of{Relationship of

Allowed Rate of|Required Capital||Effect on Position| Effect on Slope

Return to Cost

of Capital

Productivity to
Cost of Capital

of Budget
Constraint

of Budget
Constraint*

greater than

less than or
equal to

shifts downward
if © > w¥%; no
effect if n_ﬁ T**

more negative
if m > w¥%; no
effect if = < ¥¥

greater than

greater than

shifts downward

more negative

everywhere if © > w5 no
effect if n < o
less than less than eor no effect no effect
equal to
less than greater than shifts downward less negative
if n < w¥*; no if o < 7 < 7¥¥;
effect if = > w* [no effect if
m < or m > ¥
equal to less than or no effect no effect
equal to
equal to greater than shifts downward no effect

everywhere

*Assumes homogeneous production function with non-decreasing returns to

scale.
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4.1.M Mathematical Formulation

This subsection presents a mathematical formulation of the model
discussed above. I will show how the budget constraint is derived, and
that it has the shape described above, as well as the responses to in-
creases in the required capital productivity shown in Table 2. I will
show how a capital productivity requirement could lead utility-maximiz-
ing managers to purchase gas with a marginal cost greater than its
marginal revenue product. I will also show how the utility-maximizing
solution for the managers, subject to a capital productivity require-
ment, continues to be at the point of tangency of the budget constraint
in m - x space and an isoutility curve. This subsection uses the basic
notation and assumptions which were introduced in Section 2.2.M, with
the addition of the variable B for required capital productivity.

The budget constraint in = - x space is defined in this subsection
as the largest value of x which the firm could achieve at each value of
n, where the firm is subject to the rate-of-return constraint and the
capital productivity requirement. The budget constraint in 7 - x space

may be obtained by maximizing
{p(g) - f(g))g + c - z(k,g) - rk - =
subject to the rate-of-return constraint
(s-r)k - = > 0,
and the capital productivity requirement

'21('(;9) = B 2 0'
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Maximization is over g and k, where both must be non-negative.

The Lagrangian will be
L=(plg) - f(@))g + ¢ - z{k,g) - rk ~ =
+ My (s-r)k - m) - a5(z,(k,g) + 8).
The first-order conditions require that:
g; = p'(g)g + plg) - f'(g)g - flg) - z,(k,g)

L
%5 g = 0; g > 0;

o 2 (k) - T+ Ay(ser) - Agzy(keg) < 05 (4.1.M/2)

ok T TAd 2 37910090 2T e
&k = o0; k > 0

%Zz (s-r)k - m > 0; (4.1.1/3)
3L _ _
_a'xz}\.z = O, ?\.2 2- O,

oL

&7 #ke9) - B2 0; (4. 1.M/4)
L .
3, = O Ay 2 0.

I shall assume that g and k are greater than zero at the solution, which

implies that (4.1.M/1) and (4#.1.M/2) must be equalities.
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The following theorem is a result introduced in Chapter 3, which
easily transfers to the firm with utility-maximizing managers. It shows
how a capital productivity requirement might lead the firm managers to
choose to purchase gas with a marginal cost greater than its marginal

revenue product.

Theorem 4.1.M.A: At all points on the budget constraint in = - x space

for which KB # 0, the marginal cost of gas exceeds its marginal

revenue product,

Proof: By (4.1.M/1),

p'{glg + plg) - F'(glg - flg) - z,(k,g) = Mz q5(k,g).

The term on the left is the marginal revenue product of gas

p'(g9)g + plg) - z,(k,g) minus its marginal cost f'(g)lg + f(g). The term
on the right is always negative, since A > 0 by assumption and

212(k,g) < 0 by assumption (see Section 2.5.M). So the marginal cost of

gas must exceed its marginal revenue product.

g.E.D.

the remaining theorems of this section are more easily proven given
the set of lemmas which follow. The first two lemmas deal with capital
productivity on the budget constraint in m - x space when the capital
productivity requirement is non-binding. They will be useful later in

exploring how a capital productivity requirement might alter the budget

constraint in = - x space.

176



Lemma &4.7.A: If the capital productivity requirement is non-binding,
then the capital productivity -zT(k,g) at any point on the budget con-

straint in = - x space with =n < =* will equal r.

Proof: By Lemma 2.2.A, there are unique values for g and k on the
budget constraint in « - x space of the unregulated firm, which I have
called g* and k¥. If the capital productivity requirement is assumed
non-binding, and if = < n*, then g* and k¥ are also feasible solutions
for the firm under a rate-of-return constraint. To see this, note that

if m < w* then
(s-r)k* - m > (s-r)k* - z*.

Since the right side of this inequality is equal to zero by Lemma 2.2.K,
g* and k* satisfy the rate-of-return constraint (4.1.M/3). Hence, g*
and k¥ must be the unique values of g and k on the budget constraint in
T - x space of the rate-of-return regulated firm as well. But by
(2.2.M.1/2), —21(k*,g*) = r, as claimed.

Q.E.D.

Lemma 4.1.B: If the capital productivity requirement is non-binding,
then capital productivity —21(k,g) at points on the budget constraint in
® - x space with = > wn* declines monotonically with increases in = if s

> r and increases monotonically with increases in n if s < r.

Proof: If the capital productivity requirement is non-binding, then

(4.1.M/4) is satisfied by assumption and KB must equal zero. In this
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case (&4.1.M/1) - (4.1.M/3) become identical to (2.2.M.2/1) -
(2.2.M.2/3), and the lemmas of Section 2.2.M.2 apply. By Lemma 2.2.L,

if m > w* the rate-of-return constraint must be an equality. So by

Lemma 2.2.F,

jo R

a";n' (-21(](’9)) < O

if s > r and

(—21(k,9)) > 0

alo.
A

if s { r at points on the budget constraint in = - x space with = > 7w¥*.
This shows that capital productivity on the budget constraint in =n - x
space with m > % declines monotonically with increases in n if s > r
and increases monotonically with increases in =w if s < r, as claimed.

Q.E.D.

For notational convenience, define the budget constraint in = - x

space, subject to a capital productivity requirement, to be

X = B(TE,S,B)-

It will be useful throughout the remainder of this chapter to know some
of the partials of B(=,s,8), given that the rate-of-return constraint
and the capital productivity requirement are equalities with KZ and KB
greater than zero. The following series of lemmas gives the needed par-

tials. MNote first, however, that the rate-of-return constraint

(#.1.M/3) is identical to the rate-of-return constraint (2.2.M.2/3).
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Hence, Lemmas 2.2.B - 2.2.E, which are derived using only this cons-
traint, also apply to a firm subject to a capital productivity require-

ment .

Lemma 4.1.C: If the capital productivity requirement is an equality,

then

""211“{!9)
d B 212(k’g> ’

dg

This is always positive.

Proof: If the capital productivity requirement is an equality, then

(4.1.M/4) is an equality. Totally differentiating yields

g-‘g_ ~ ‘Z],](k,g)

k ~ zqz(k,g) :

By (2.2.M/7), -211(k,g) = R11(k,g), which is negative by the strict
concavity of R(k,g). T have assumed that sz(k,g) < 0 {see Section

2.5.M). Hence,
49 5 o,
Q.E.D.

Lemma 4.1.D: If the rate-of-return constraint and the capital produc-

tivity requirement are equalities and s is not equal to r, then

dg It
dn = z;,(k,g) s-r

This will be positive if s > r and negative if s < r.
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Proof: By the chain rule,

dg _ dg dk
dn ~ dk d=n’

Using Lemmas %4.1.C and 2.2.B to substitute for dg/dk and dk/dm yields

ag _ ntked)

dn ~ 212(k,g)\s—r

Since, by lLemma 4.1.C,

E_‘ "211(k$g)

>0
d zquk,g) !

it must be that dg/dn > 0 if s > r and dg/dn < 0 if s < r.

Q.E.D.

Lemma 4.1.E: If the rate-of-return constraint is an equality and s is

not equal to r, then

dk
F=0.

o

Proof: If the rate-of-return constraint is an equality and s is not
equal to r, (4.1.M/3) is an equality, determining k as a function of

exogenous variables s, r, and n alone., Hence, it must be that

dk

¢.E.D.
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Lemma &.1.F: If the rate-of-return constraint and capital productivity

requirement are equalities with s not equal to r, then

dg _ _ -1 > 0.
B 212“(395

Proof: If the capital productivity requirement is an equality, then

(4.1.M/4} is an equality. Differentiating yields
dk dg _
—z1q(k,g) I 212(k,g) i 1.

By the preceding lemma, dk/dg = 0 if the capital productivity require-
ment is an equality with s not equal to r. 5o

dg _ -1
dg ~ 212(k,g) ’

Since 1 assume that 212(k,g) < 0 (see Section 2.5.M), this expression is

positive.

0.E.D.

Lemma 4.7.G: If the rate-of-return constraint is an equality and s is

not equal to r, then

j=1

=
I
Q

ja
=
w0

Proof: By lLemma 2.2.B, if the rate-of-return constraint is an equality

then
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de _ 1

T §-r

Taking the derivative with respect to B yields the desired result.

Q.E.D.

Lemma 4.1.H: If the underlying production function g = h{(z,k) is homo-

thetic, and the capital productivity requirement is an equality then

dz

Z
d [

Proof: One can express the capital productivity requirement -21(k,g) = B
in terms of the underlying production function g = h{z,k). To do so, I

differentiate the production function with g held fixed to obtain

bz “hZ(Z’k)
B =3k = R (2K

If h{z,k) is homothetic then the term on the right, call it v(z,k) is
homogeneous of degree zero. Totally differentiating v(z,k) = B yields

an expression for dz/dk,

dz  ~V2(zk)
ak v1(z,k) )

But, by Euler's Theorem, since v(z,k) is homogeneous of degree zero,
v1(z,k)z + vz(z,k)k = 0,

or
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Hence,

Q0.E.D.

Lemma 4.1.1: Assume that the gas firm's underlying production function
g = h(z,k) is homogeneous with non-decreasing returns to scale and that
inputs have positive marginal products. Assume also that the

rate-of-return constraint and the capital productivity requirements are

equalities. Then

if s > r and

2
dg ¢ o

dndp

jw R

if s <r.

Proof: By the chain rule and Lemma 2.2.B,

dg _d dgy __E(iq diy _ d (dg) 1

dk dn’ T dptdk’ s-r

d dgy 1 _ 2 (dg Qu_l_ D (dgydk 1
ds(d)s-r‘ﬁ(d)dﬁ ¥ bk(d)d—ﬁsr
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But, by Lemma 4.1.E, dk/dB = 0, so this simplifies to,

d°g dg)

1
ngz(ay gz T | (4.1.M/5)

dz
dpf s-r

One can obtain an expression for dg/dk as a function of z and k by

differentiating the production function g = h(z,k},

dg _ hy(z,k) + hy(z,k) —gﬁ- )

o

Since the underlying production function is homothetic and the capital
productivity requirement is an equality I can substitute for dz/dk using

Lemma 4.1.H,

jal

E%': hy(z,k) + h1(z,k)-§ .

Taking the partial of dg/dk with respect to z,

d 7 1
Z(a-%) = h12(2,k) + h11(2,k) T(‘ + h1(z’k) T(‘ .

01@

If h(z,k) is homogeneous of degree > 1, that is, with non-decreasing
returns to scale, then h1(z,k) is homogeneous of degree > 0. By Euler's

Theorem,
h11(2,k)z + h12(z,k)k_z 0.

Since inputs are assumed to have positive marginal products,

hq(z,k) > 0. Hence,
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Now,

g_zﬁ' = Z1(k:g) g_'; + Zz(k!g) %% .

By Lemma 4.1.E, dk/dB = 0; by (2.2.M/3), zz(k,g) > 0 since 1 assume
h,(z,k) > 0; by Lemma 4.1.F, dg/dB > 0. Hence dz/dB > 0.

So I have shown that dzg/dndB, as expressed in (4.1.M/5) is
positive if s > r and negative if s < r.

Q.E.D.

Lemma 4.1.3J: If the rate-of-return constraint and capital productivity
requirement are equalities with KZ and K3 greater than zero and s is not

equal to r, then
B‘I(‘E,S’a) < -1.

Proof: By definition,

B(m,s,B) = (p(g) - flg))g + ¢ - z(k,g) - rk -

50
By(7,s,8) = [p'(g)g + plg) - F'{g)g - f(g) - zz(k,g)]—Glg
~lz4(k,g) + r1 - 1.

Substituting for dg/dm and dk/dn using Lemmas 4.1.D and 2.2.B yields
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' 271(%9)
By (%:5,8) = ~[p'(0)g + p(a) - £'(a)a - Fla) - 2,(,0)] 3y

(=)

1
- [21“(59) + I‘}g: - 1.

But if g and k lie on the budget constraint in = - x space (4.1.M/1) and

(4.1.M/2) may be solved simultaneously to eliminate h3 yielding

-lp'(g)g + plg) - f'(g)g - flg) - z,(k,g)}] z,5(k,g) ‘s-r

1
- [zq(k,g) + r] recd i KZ’

SO

B,(1,5,8) = -\, - 1.

Since I assume kZ > 0, I have shown B1(ﬁ,s,B) < -1,

Q.E.D.

Lemma &4.1.K: If both the rate-of-return constraint and the capital

productivity requirement are equalities with KZ and KB greater than

zero and s is not equal to r then
B3(ﬂ,5,3) < 0.
Proof: By definition,
B(n,s,B) = (p(g) - f(g)]g + ¢ - z{k,g) - rk - =,

50
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83015, 8) = [p'(a)g + p(a) - F'(g)g - Flg) - z,(k,q) 1G]

(zy(k,0) + £IGS (4.1.M/6)

By Lemma %&.1.E, dk/d8 = 0, while, by lLemma 4.1.F, dg/d8 > 0. By

(4.1.M/1),

p'(glg + plg) - F'lglg - f(g) - z,(k,q) = Az, ,(k,q),

which is negative since I assume As > 0 and Z1Z(k,g) < 0 (see Section

2.5.M). Hence, By(m,s,B) < 0.

Q.E.D.

Lemma 4.1.L: Assume that the underlying production function g = h(z,k)
is homogeneous with non-decreasing returns to scale, and that inputs
have positive marginal products. Assume also that the return constraint

and capital productivity requirement are equalities with kz and KE

greater than zero. Then
813(%,8,8) <0
if s > r and
813(n,s,8) > 0

if s < r.
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Proof: From (4.1.M/6),

By(m,5,8) = [p"(a)g + plg) - F'(a)g - F(g) - z,(k,q) IGd

- [21(k,g) + r}%% ’

50

dg d
B, 3(m,s,8) =-%§[p'(g)g + plg) - f'(glg - f(g) - Zz<k’9>}a%'a%
dk d
- z1z(k,g)'aE“ﬁ%

2
+ [p'(g)g + plg) - f'(g)g - flq) - Zz(k’g)}ﬁ%

dg dk dk dk a2k

- 212(k’9)HE'3§ - 21909 9 - EZT(k’g)+r]dsdn'
(%.1.M/7)
Consider the first two terms together. Using Lemmas 4.1.D, &4.1.F,
and 2.2.B, these may be written as

211(k’9))( 1 ) 1
212(k,g) S-T 212(k,g)

%a{p'(g)g + plg) - f'(g)g - f(g) - zz(k,g)3(

1
zfa(k,g)

1
+ 212(ka9)(5_r][

zgp(ks9) 1

]2 s-r’ tsrr

B
===[p'(g)g + p(g) - f'(glg - flg) - z,(k,q)]
%9 2 (Z1Z(kfg)

Substituting, using (2.2.M/7) - (2.2.M/9), yields

(qu(ksg))z
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Since
Ry, (kyg) Ros(kyq) = (Ry,(k,a))* > 0
11 Sg 22 !g 12 ’g

by the strict concavity of the revenue function, the term in brackets
will be negative. This implies the first two terms of (4.1.M/7) are
negative if s > r and positive if s <{ r.

Consider, then, the third term. By (4.1.M/1),

p'(glg + plg) - f'glg - flg) -~ z,(k,q) = A3z 45(K,0),

which is negative since K3 > 0 by assumption and 212(k,g) < 0 by
assumption (see Section 2.5.M). By lLemma #%#.1.1,
d2

g
3 >0

ey

if s > r and

2
d
I8 <0

jos] el

if s < r. Hence, the third term of (4.7.M/7) iIs also negative if s > r
and positive if s < r.
The last three terms of (4.1.M/7) equal zero, since, by Lemma

4,1.E, dk/d8 = 0 and, by Lemma 4.1.G,

So BQB(E,S,B) <0 if s>r and BTB(ﬂ’S’B) >0 if s > r.

Q.E.D.
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The final lemma in this series provides a useful property of w*.

Lemma 4.1.M: If 38 < r, then the value of n* is the same as it would be

in the absence of a capital productivity requirement.

Proof: =¥ was defined in Section 2.2.M.2 to be the largest profit the
firm could make under the rate-of-return constraint given the capital
investment on the budget constraint in = - x space in the absence of the
rate-of-return constraint. In Lemma 2.2.A, I showed that if there were
no rate-of-return constraint or capital productivity requirement, there
would be unigue values for g and k on the budget constraint in n - x
space, which I called g* and k*. By {2.2.M.1/2), capital productivity
at this solution -zq(k*,g*) equals r. Hence, this solution remains
feasible under a capital productivity requirement of B < r. It follows
that g* and k* must be the unique values of g and k under this capital
productivity requirement as well. Given capital investment k*, the
largest profit the firm could earn under the rate-of-return constraint

may be determined from (4.1.M/3}:
™ = {s-r)k*.

This value for w* is the same as that specified by Lemma 2.2.K for the
firm in the absence of a capital productivity requirement.

Q.E.D.
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4.17.M.1 The Case of s > r and 8 < r

Having laid out the necessary lemmas, I will now use them to
explore how a capital productivity requirement affects the budget cons-
traint in m - x space. In this subsection, I consider the case of s > r
and 8 < r. Note that, by Lemma 4.1.M, n* is unaffected by the capital

productiviiy requirement in this case.

Theorem 4.1.M.A: Assume s > r, B < r, and that the capital productivity

requirement affects the budget constraint in m - x space. Then there
exists a w** > =¥ such that the budget constraint in m - x space is
unaffected by the capital productivity requirement at all values of

“.i wEE,

Proof: By Lemma 4.1.A, if the capital productivity requirement is not
binding, then capital productivity —21(k,g) at any point on the budget
constraint in n - x space with = < w* will equal r. Hence, the intro-
duction of a capital productivity requirement of B < r will have no
impact on the budget constraint in = - x space if = < n*. By Lemma
4.1.8, if the capital productivity requirement is not binding, then
—zT(k,g) at points on the budget constraint in =n - x space with = > =*
declines monotonically with increases in = if s > r. Clearly, ~z1(k,g)
must drop below g at some point if the capital productivity requirement
is to have any impact on the budget constraint in = - x space. Let n**
be the value of 7 at which —21(k,g) = B, with #** defined to equal =* if

B =r. Since —21(k,g)‘3 B at all values of =  w* in the absence of a
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capital productivity requirement, the requirement will not affect the
budget constraint in = - x space at values of nm < m¥*,

Q.E.D.

Theorem 4.1.M.1.B: If s > r and B8 < r, then an increase in B reduces

the value of x¥*,

Proof: By Lemma 4.1.A, if the capital productivity requirement is not
binding, then the capital productivity -zT(k,g) on the budget constraint
in m - x space at m = w* equals r. By Lemma 4.1.B, if s > r this
—21(k,g) declines monotonically with increases in = over the interval

n > w*. Hence, if B < r, an increase in B reduces the value of 7 at
which —21(k,g) = B, which is @**,

Q.E.D.

I now make the additional assumption that if s > r, B <r and
® > 1*%, then hz and K3 are greater than zero at points on the budget
constraint in m - x space. As the following theorem demonstrates, both
the rate of return constraint and the capital productivity requirement
affect the values of g or k on the budget constraint in = - x space if
n > w**. One would, therefore, normally expect the associated Lagrange
multipliers hz and KB to be positive. I have, however, been unable to
rule out the possibility of a pathological solution. So I must assume

that kz and KB are indeed positive.

Theorem %.1.M4.1.C: If s > r, B <, and = > 1%, and one were to drop

either the rate-of-return constraint or the capital productivity
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requirement, the value of g or k at points on the budget constraint in

T ~ X space would change.

Proof: Consider, first, dropping the rate-of-return constraint, leaving
only the capital productivity requirement. The new solution In this
case may be found by first noting that if there were neither a rate-of-
return constraint nor a capital productivity requirement, then, by Lemma
2.2.A there are unique values for g and k on the budget constraint in

n - x space, which I have called g* and k*. By {(2.2.M.1/2),

—21(k*,g*) = r, 50 the addition of a capital productivity requirement of
8 < r does not affect the feasibility of this solution. Hence, g* and
k* must be the optimum values for the firm subject to this capital
productivity requirement as well. But this solution is not feasible

under the rate-of-return constraint. For if = > n** > =¥, then,
(s-r)k* - 1 < {s~r}k* - x*.

Since the right side of this inequality equals zero by lLemma 2.2.K, this
is a contradiction of the rate-of-return constraint, (4.1.M/3). So the
value of k must change if one were to drop the rate-of-return
constraint.

Now consider dropping the capital productivity requirement, leaving
only the rate-of-return constraint. By definition of w**, capital
productivity, ~z1(k,g) equals 8 at © = w¥* on the budget constraint in
% - x space in the absence of a capital productivity requirement. By

Lemma 4.1.B, -11(k,g) would therefore be less than B at values of

193



n > w¥¥ in the absence of the capital productivity requirement. Since
this solution is infeasible if there is a requirement that -z1(k,g) be
greater than or equal to B, the values of g or k must change if one were
to drop the capital productivity requirement.

Q.E.D.

Having offered some justification for my assumption that KZ 3

are greater than zero if m > n**, the following two theorems demonstrate

and A

how the budget constraint in = - x space would be affected by a change
in B if m > w**,

Theorem &4.1.M.D: If 5 > r, p<r and 7 > w* with hz and KB greater

than zero, then an increase in B shifts the budget constraint in m - x

space downward.

Proof: If hz and KB are greater than zero, then both the rate-of-return
constraint (4.1.M/3) and the capital productivity requirement (&4.1.M/4)

are equalities. So by lLemma 4.1.K,
BB(TE!S!B) < 0

if s > r. This shows that an increase in B shifts the budget constraint

in m - x space downward.

Q.E.D.

Theorem 4.1.M.1.,E: Assume that s > r, B <{ r, and = > 7** with Ay and h3

greater than zero. Assume also that the underlying production function

is homogenous with non-decreasing returns to scale and that inputs have
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positive marginal products. Then an increase in B makes the budget

constraint in m - x space more negatively sloped.

Proof: If A and K3 are greater than zero, then both the rate-of-return
constraint (4.1.M/3) and the capital productivity requirement (4.1.M/4)

are equalities. Then by Lemma 4.71.3J,
B‘l(ﬂ!S’B) < _1’

indicating that the slope of the budget constraint in = - x space is
negative. By Lemma %.1.L, if the underlying production function is
homogeneous with non-decreasing returns to scale and inputs have

positive maginal products, then
813(“3595) <0,

if s > r. This indicates that the budget constraint in m - x space
becomes more negatively sloped as B increases.

Q.E.D.

4.1.M.2 The Case of s >rand g > r

The following subsection explores how a capital productivity
requirement affects the budget constraint in 7 - x space when s > r and

B>r.

Lemma 4.71.N: The values of g and k on the firm's budget constraint in
T - X space in the absence of a rate-of-return constraint must be inde-

pendent of .
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Proof: In the absence of a rate-of-return constraint, the budget con-

straint in m - x space may be obtained by maximizing
(ptg) - f(g))g + ¢ - z(k,g) -~ rk ~ =

subject to the capital productivity requirement
-21(k,g) - B> 0.

Maximization is over g and k. Since m does not appear in the capital
productivity requirement and appears only as an additive constant in the
objective function, the optimum values of g and k must be independent of
T.

0.E.D.

I assume g' and k' to be the unique values of g and k on the firm's
budget constraint in = - x space in the absence of a rate of return con-
straint. I call this an assumption, rather than a definition, since I
have been unable to rule out the possibility of multiple optima.

Recall that =n* was defined to be the largest profit the firm could
make under the rate-of-return constraint given the capital investment on
the budget constraint in m - x space in the absence of the rate-of-

return constraint.
lemma &.71.0: m* = (s-vr)k'.

Proof: I assume g' and k' to be the unique values of g and K on the

firm's budget constraint in m - X space. Given capital investment k',
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the largest profit the firm could make under the rate-of-return con-

straint may be determined from (&4.1.M/3)

w* - (s-T)K'. (4.1.M.2/1)

Q.E.D.

Lemma 4,1.P: If n < 7%, then the values of g and k on the budget
constraint in m - x space are the same as they would be in the absence

of a rate-of-return constraint. That is g = ¢g' and k = k',
Proof: If n < =¥, then by (4.1.M.2/1)
n < (s-r)k'.

This indicates that g' and k' are feasible values of g and k under the
rate-of-return constraint. Since g' and k' are assumed to be the unique
values of g and k on the firm's budget constraint in =« - x space in the
absence of a rate-of-return constraint, they must also be the unique
values under the rate-of-return constraint.

Q.E.D.

Lemma 4.1.0: hz = 0 at points on the budget constraint in = - x space

with = { w*.

Proof: By Lemma 4.1.P, if = < w* then g = ¢' and k = k' on the budget

constraint in m - x space. If =m < w¥, then by (4.1.M.2/1)

n < {s-r)k'.
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By (4.1.M/3) this implies Ay = 0 over this range. But if the solution
with hz = 0 satisfies (4.1.M/1) - (4.1.M/4) with 7 < =¥, it must also
satisfy these equations with n = n*, This is because only (4.1.M/3) is
a function of w, and it is satisfied by k = k' and n = ¢ by
(4.1.M.2/1).

Q.E.D.

Lemma %4.1.R: If B8 > r, the capital productivity requirement (&.1.M/4)
is an equality at all points on the budget constraint in m - x space

with = < .

Proof: Assume (4.1.M/4} were an inequality at some point on the budget

constraint in m - x space with = < n*, implying that A, = 0 at that

3
point. By Lemma 4.1.(, KZ = 0 as well, hence —21(k,g) = 1 by

(4.1.M/2). But if (4.1.M/4) is an inequality, then ~z,{k,g) > B, which
Is a contradiction since B > r. So (4.71.M/4) must be an equality at all

peints on the budget constraint in n - x space.

Q.E.D.

Theorem 4.1.M.2.A: If s > r, 8 > r and n < 7w*, then an increase in 3

shifts budget constraint in = - x space downward.

Proof: Recall that the budget constraint in = - x space is defined to

be

x = (plg) - f(g))g + ¢ - z(k,g) - rk - m,

so 1 must show that
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E‘.’éz [pt(g)g + p(g) - f'(g)g - f(g) - zz(k,g)]%g

o]

- [24(k,9) + 1] {]’% < 0. (4.1.M.2/2)

Differentiating (4.1.M/4), which is an equality by lLemma 4.1.R.,

vields

dk dg _
—211(k,g) a5 212(k,g) ri 1. (4.1.M.1/3)

Now, by Lemma 4.1.0Q, A, must equal zero since m < w*. Hence, (4.1.M/1}

- (&#.1.M/2) may be solved to eliminate ka yielding

[p'(glg + p{g) - f'(g)g - f(g) -~ zz(k,g)]zﬂ(k,g) i
—21(k,g) -r

212(k3g) =
Substituting for z1z(k,g) in (4.1.M.1/3)
dk
-211(k,g)'ag

[P (9)g + p(g) - £'(a)g - F(g) - z,(k9)]zyy(keg) 4

M.,

—zq(k,g) -r B

or

[p'(@)g + p(9) - T'(9)g - F(a) - 2,(k, ) I - [2,(k,0) + TS

21(k,g) + T

- 211(ksg)

»
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The term on the left is dx/d8 by (4.1.M.2/2). The numerator on the
right is negative since —21(k,g) =8 >r by (4.1.M/4), The denominator
equals —R11(k,g) by (2.2.M/7), which is positive by the strict concavity
of R{k,g). Hence, dx/dp < 0, and an increase in B shifts the budget

constraint downward.

g.E.D.

Theorem 4.1.M.2.B: If s >r, B > r, and n { #*, then the slope of the

budget constraint in m - x space is -1 regardless of the value of 8.

Proof: Lemma 4.1.P and the defintion of the budget constraint in u - x

space require that if n < =* then
x = (p(g') - f(g"))g" +c - z(k',g') - rk' - T

Taking the derivative with respect to n yields

dx
ar = 1

showing that the slope of the budget constraint in = - x space is -1

regardless of the value of 3.

Q.E.D.

For the case of s > r and 8 > r, I will make the assumption that if
T > w* then KZ and h3 are greater than zero at points on the budget
constraint in m -~ x space. As the following theorem demonstrates, both
the rate-of-return constraint and the capital productivity requirement

affect the values of g or k on the budget constraint in m - x space if
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n > m*. One would, therefore, normally expect the associated Lagrange
multipliers Az and h3 to be positive. I have, however, been unable to
rule out the possibility of a pathological solution. So I must assume

AZ and k3 are indeed positive.

Theorem 4.1.M.2.C: If s > r and B > r, and = > w*, and one were to drop

either the rate-of-return constraint or the capital productivity re-
quirement, the values of g or k at points on the budget constraint in

n - X space would change.

Proof: Consider, first, dropping the rate-of-return constraint, leaving
only the capital productivity requirement. Recall that w* was defined
to be the largest profit the firm could make under the rate-of-return
constraint given the capital investment on the budget constraint in

% - X space in the absence of the rate-of-return constraint. Since

n > m¥, the capital investment on the budget constraint in = - x space
after dropping the rate-of-return constraint would, therefore, have been
insufficient under the rate-of-return constraint. So the values of ¢ or
k must change when the rate-of-return constraint is dropped.

Now consider dropping the capital productivity requirement, leaving
only the rate-of-return constraint. By Lemmas 4.1.A and 4.1.B, capital
productivity would be less than or equal to r everywhere on the budget
constraint in n - x space in the absence of a capital productivity re-
quirement. Hence, the values of g and k after dropping the capital pro-
ductivity requirement would have been infeasible under the capital
productivity requirement. So the values of g or k must change when the
capital productivity requirement is dropped.

Q.E.D.
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Having offered some justification for the assumption that Az and KB

are greater than zero if =n > =¥, the following two theorems demonstrate

how the budget constraint in = - x space would be affected by a change

in B if 1> w*.

2

than zero, then an increase in B shifts the budget constraint in = - x

Theorem 4.1.M.2.D: If s >r, B> r, and 1> o with A, and R3 greater

space downward.

Proof: If KZ and k3 are greater than zero, then both the rate-of-return
constraint (4.1.M/3) and the capital productivity requirement (4.71.M/4)

are equalities. Then by Lemma 4.1.X,
By(7,5,8) < 0

if s > r. This shows that an increase in B shifts the budget constraint

in m - x space downward.

Q.E.D.

Theorem 4.1.M.2.E: Assume that s >r, 8> r and > m with A, and A

2 3
greater than zero. Assume also that the underlying production function

is homogeneous with non-decreasing returns to scale and that inputs have
positive marginal products. Then an increase in B makes the budget

constraint in m - x space more negatively sloped.

Proof: If hz and KB are greater than zero, then both the rate-of-return

constraint (4.1.M/3) and the capital productivity requirement (&.71.M/4)

are equalities. Then by Lemma 4.1.3,
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B (m,5,8) < -1,

indicating that the slope of the budget constraint in = - x space is
negative. By Lemma 4.1.L, if the underlying production function is
homogeneous with non-decreasing returns to scale and inputs have

positive marginal products, then
813(“5:5:5) < 0,

if s > r, indicating that the budget constraint in =n - x space becomes

more negative as B increases.

Q-E-D-

4.1.M.3 The Case of s <r and 8 < r.

This subsection is a short one, since I only need to prove one
theorem. Note that, by Lemma 4.1.M, 7w* is unaffected by the capital

productivity requirement in this case.

Theorem 4.1.M.3.,A: If s < r, then a capital productivity requirement of

B < r has no impact on the budget constraint in = - x space.

Proof: Lemmas 4.1.A and 4.71.B taken together imply that, in the absence
of a capital productivity requirement, capital productivity will be
greater than or equal to r at all points on the budget constraint in

T - X space if s < r. Since this solution remains feasible under a
capital productivity requirement of B < r, it must be that a capital
productivity requirement of § < r has no impact on the budget constraint
in © - x space.

Q.E.D.
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4.1.M.4 The Case of s < r and B > r

The following subsection explores how a capital productivity requi-
rement affects the budget constraint in n - x space when s < r and

B >r. In this case, m* may be determined as in Section 4.71.M.2.

Theorem 4.1.M.4.A: Assume s < r and 8 > r. Then there exists a

w*% > o* such that the budget constraint in n - x space is unaffected by

the capital productivity requirement at values of > TR,

Proof: Note first that if s < r, then the budget constraint is unde-
fined at values of n > 0. To see this, note that a positive 7 with
s < r would contradict (&4.1.M/3).

By Lemma 4.71.A, if the capital productivity requirement is not
binding, then capital productivity -z1(k,g) equals r at = < 7* on the
budget constraint in = - x space. By Lemma 4.1.B, if s < r and ©n >
this capital productivity increases monotonically with increases in 7.
Define m** to be the point at which ~z1(k,g) equals B, or, if —21(k,g)
is everywhere less than B on the budget constraint in =n - x space,
define n** to equal zero. Capital productivity, ~z1(k,g), must then be
greater than or equal to B at all values of = greater than or equal to
n** for which the budget constraint in = - x space is defined. Thus, a
capital productivity requirement would not affect the budget constraint

in = - x space at values of 5 > **,

Q.E.D.
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Theorem 4.1.M.4.8: If s < r and 8 > r, then an increase in B increases

the value of w** 1f w¢* £ 0.

Proof: By Lemma #.1.B, if the capital productivity requirement is not
binding, then capital productivity -z1(k,g), at points on the budget
constraint in n - x space with n > =¥ increases monotonically with
increases in 7w if s < r. Hence, an increase in B increases the value of
n at which -21(k,g) = B, which is mw¢* if w¢* £ Q.

Q.E.D.

I will now make the additional assumption that if s < r, B > r, and
n* < n < m*¥¥, then hz > 0 and h3 > 0 at points on the budget constraint
in m - x space. As the following theorem demonstrates, both the rate-
of-return constraint and the capital productivity requirement affect the
values of g or k chosen by the firm if =* > «w > w**, One would, there-

fore, normally expect the associated Lagrange multipliers A, and A, to

2 3

be positive. I have, however, been unable to rule out the possibility
of a pathological solution. So I must assume that KZ and h3 are indeed

positive.

Theorem 4.1.M.4.C: If s <r, B> r and #¥ > n > w¥¥%, and one were to

drop either the rate-of-return constraint or the capital productivity
requirement, the values of g or k at points on the budget constraint in

% - x space would change.

205



Proof: Consider, first, dropping the rate-of-return constraint, leaving
only the capital productivity requirement. Recall that 7* was defined
to be the largest profit the firm could achieve under the rate-of-return
constraint given the capital investment on the budget constraint in

n - X space in the absence of a rate-of-return constraint. Since

® > w*, the capital investment on the budget constraint in = - x space
after dropping the rate-of-return constraint would, therefore, have been
insufficient under the rate-of-return constraint. So the values of g or
k must change when the rate-of-return constraint is dropped.

Now consider dropping the capital productivity requirement, leaving
only the rate-of-return constraint. Recall that % was defined to be
the point at which —z1(k,g) equals B, or if -21(k,g) is everywhere less
than B on the budget constraint in m - x space, then #** was defined to
equal zero. In either case, Lemma 4.1.B requires that, in the absence
of a capital productivity requirement, —21(k,g) < B for =% > 7 > W,
Hence, the values of g and k after dropping the capital productivity re-
quirement would have been infeasible under the capital productivity
requirement. So the solution must change when the capital productivity
requirement is dropped.

g.E.D.

Having offered some justification for the assumption that A, and A

2 3

are greater than zero if mw*¥ < = < 7*¥*, the following two theorems demon-
strate how the budget constraint in m - x space would be affected by a

change in 8 over this interval.
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Theorem 4.1.M.4.D: If s <r, 8> r, and w¥ > n > w** with A, and A

2 3
greater than zero, then an increase in 8 shifts the budget constraint in

m - x space downward.

Proof: IF AZ and AB are greater than zero, then both the rate-of-return
constraint (4.1.M/3), and the capital productivity requirement (4.1.M/4)

are equalities. Then by Lemma 4.1.K,
By(mys,B) < 0O

if s < r. This shows that an increase in B shifts the budget constraint

in 1 - x space downward.

Q.E.D.

Theorem 4.1.M.4.E: Assume that s < r, B> r and 7w > = > w¥¥ with A

2

and h3 greater than zero. Assume also that the underlying production
function is homogeneous with non-decreasing returns to scale and that
inputs have positive marginal products. Then an increase in B makes the

budget constraint in m - x space less negatively sloped.

Proof: If Rz and k3 are greater than zero, then both the rate-of-return
constraint (4.1.M/3) and the capital productivity requirement (4.1.M/4)

are equalities. Then by Lemma 4.1.3],
81(7':!5’5) < ‘13

indicating that the slope of the budget constraint in = - x space is

negative. By Lemma 4.71.L, if the underlying production function is
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homogeneous with non-decreasing returns to scale and inputs have

positive marginal products, then
513(7‘:35’8) > 0,

if s < r. This indicates that the budget constraint in = - x space
becomes less negative as 8 increases.

Q.E.D.

Next, I consider the behavior of the budget constraint in = - x

space for values of n < 7*.

Theorem 4.1.M.4.F: If s <r, B> r and n < ¥, then an increase in B

shifts the budget constraint in n - x space downward.

Proof. The proof of this theorem is identical to the proof of Theorem

4.1.M.2.A.

Q.E.D.

Theorem 4.1.M.4.G: If s < r, B > r and w < =¥, then the slope of the

budget constraint in m - x space is -1 regardless of the value of g,

Proof: The proof of this theorem is identical to the proof of theorem

4.1.M.2.8.

Q.E.D.

4.1.M.5 The Case of s = r.

This subsection concludes my discussion of the budget constraint in

T - X space under a capital productivity requirement with an examination

of the case of s = r.
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Theorem 4.1.M.5.A: If s = r then =n* always equals zero, regardless of

any capital productivity reguirement.

Proof: By Lemma 4.1.0,

w = (s-r)k',

where k' is the level of capital investment on the budget constraint in
m - X space in the absence of a rate-of-return constraint. It can be
seen that if s = r, 7* must equal zero regardless of the value of k'.
Therefore, w* always equals zero, regardless of any capital productivity
requirement.

Q.E.D.

Theorem 4.1.M.5.B: If s = r, the budget constraint in = - x space is

undefined for values of = > n* = Q.

Proof: Any m on the budget constraint in = - x space must satisfy

(4.1.4/3)
n < (s-r)k.
It can be seen that if s = r, no positive = can satisfy this condition.
Q.E.D.

Theorem 4.1.M.5.C: If s = r, then as long as B < r a capital productiv-

ity requirement has no impact on the budget constraint in = - x space.
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Proof: By Lemma 4.1.A, if the capital productivity requirement is not
binding then capital productivity —21(k,g), at any point on the budget
constraint in 7 - x space with = < #* will equal r. By Theorem
4.1.M.5.8, the budget constraint in = - x space is only defined for

% < ®*, so capital productivity at any point on the budget constraint in
% - X space will equal r in the absence of a capital productivity re-
quirement. A capital productivity requirement of 8 < r does not affect
the feasibility of this solution, so the capital productivity require-
ment of B <{ r has no impact on the budget constraint in = - x space.

Q.E.D,

Theorem 4.1.M.5.D: 1If s = r and B > r, then an increase in B shifts the

budget constraint in m - x space downward.

Proof: By Theorem 4.1.M.5.B, the budget constraint in = - x space is
only defined over values of n { n* if s = r. The rest of the proof is
then identical to the proof of Theorem &4.1.M.2.A.

Q.E.D.

Theorem 4.1.M.5.E: If s = r and B > r, then the slope of the budget

constraint in = - x space is -1 regardless of the value of B.

Proof: By Theorem 4.1.M.5.B, the budget constraint in = - x space is

only defined over values of n < «¥ if s = r. The rest of the proof is

then identical to Theorem 4.1.M.2.8.

Q.E.D.
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4.1.M.6 The Tangency Condition

Having examined how the budget constraint in m - x space is
affected by the capital productivity requirement, it remains to show
that the solution chosen by the firm managers continues fo lie at the
tangency of this budget constraint in 7 - x space and an isoutility
curve. To demonstrate this, I must first derive the first-order condi-
tions for the solution to the managers' problem.

The firm managers' problem is to maximize utility
U(m,x),
subject to the budget constraint
(plg) - f(g))g = z(k,g) - rk -~ ©= - x> 0,

the rate of return constraint

(s-r)k - = > 0,

and the capital productivity requirement

'21(k:g) - B Z O’

where x, g and k, but not =, must be non-negative. The Lagrangian will

be

L= U(m,x) + Kﬁ{[p(g) - f(g))g + ¢ - zlk,g) - rk - © - x]

+ KE[(s~r)k - ) - h§{z1(k,g) + B).

The first-order conditions require that:
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al.

= ~21(ky9) - B> 0; (4.1.M.6/7)
3
oL A%X = 0; AL > 0
b?\§ 3~ 3=

I shall assume that g, k, and x are all greater than zero at the
solution, and that = and x have positive marginal utilities, that is
U1(n,x) > 0 and Uz(n,x) > 0. These assumptions are sufficient to insure
that conditions (4.1.M.6/2) - (4.1.M.6/5) are equalities with h? > 0.

I now prove the desired theorem.

Theorem &4.1.M.6.A: If s # r, the solution chosen by the managers of

the rate-of-return regulated firm subject to a capital productivity
requirement lies at the point of tangency between the budget constraint
in m - x space and an isoutility curve in 7w -~ x space. If s = r, the
solution either lies on the budget constraint at n = 0 or lies at the

point of tangency.

Proof: I first show that the solution chosen by the managers must lie
on the budget constraint in =m - x space. Suppose the contrary. Since
the budget constraint in m - x space is defined to be the largest value
of x which the firm could achieve at each value of =n, this would imply
that the chosen value of x was less than the firm could have achieved at
the chosen value of =. Since I assume x to have positive marginal util-
ity, the managers could improve on this solution by moving to a larger
value of x. But this is a contradiction, since the initial solution is
assumed optimal. So the solution must lie on the budget constraint in

T - X space.
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To show tangency, it remains to demonstrate that the slope of the
isoutility curve equals the slope of the budget constraint in 7 - x
space at the solution. An isoutility curve is defined by U{m,x) =

constant. Total differentiation yields a slope

dx Uq(n,x)
drn ~ Uzin,xi'

Hence, one may obtain an explicit expression for the slope of the isou-
tility curve at the solution by solving (4.1.M.6/1) - (4.1.M.6/7) for
—U1(n,x)/U2(ﬁ,x).

The budget constraint is defined to be
x = {plg) - F(g))g + ¢ - z(k,g) - rk - m.

Hence, the slope of the budget constraint in m - x space is

%%-: [p'(g)g + plg) - f'(g)g - f(g) - Zg(k’g)}%%

- [z,(k,q) + r]g-‘% -1, (4.1.M.6/8)

where dg/dx and dk/dn are determined from the conditions for g and k on

the budget constraint in = - x space (4.1.M/1)} - (4.1.M/4),

i) Assume the solution to (4.1.M.6/1) - (4.1.M.6/7) is such that
K§ = K§ = 0. Then (4.1.M.6/1) and (4.1.M.6/2) may be solved to

eliminate AT yielding

U1(n,x)

——_‘_"_'_'_"_'3-11
Uz(n,x)
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This indicates that the slope of an isoutility curve must equal minus

one at the solution. Since (4.1.M.6/3) requires that

pt{g)lg + plg) - f'(g)g - f(g) - z,(k,g) =0

and (4.1.M.6/4) requires that

- [21(k,g) + r] =0

at the solution, (4.1.M.6/8) simplifies to

indicating that the slope of the budget constraint in wn - x space is

minus one. So the two slopes are the same if Kg = h§ = 0.

ii) Assume the solution to (4.1.M.6/1) - (4.1.M.6/7) is such that

KE > 0 and K§ = 0. If s £r, one may solve (4.1.M.6/1),

(4.1.M.6/2), and (4.1.M.6/4) to eliminate h? and Ag, yielding

Uplmex)  -[z4(k,g) + r]

- U2<TF,X) = 5-r -1

as the slope of the isoutility curve at the solution.

If k% = 0, then (4.1.M.6/3) requires that

p'{(g)g + p(g) - f'(g)g - flg) - z,(k,g) = 0,

so (#.1.M.6/8) simplifies to

dx

_Tc. = ...[21(}(,9) + r] g—::- - 1. (4-1.M-6/9)
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Now 1if A3 > 0 and M = 0 in (4.1.M.6/1) - (4.1.M.6/7) then Ay > 0
and Ay = 0 at the same solution in (4.1.M/1) - (4.1.M/4). But if
A, > 0, then the rate-of-return constraint (4.7.M/3) must be an
equality, so by Lemma 2.2.B, if s £ r,

1
S5 - T

dk _
dn —

Substituting in (4.1.M.6/9) yields

dx —[21(k,g) + r]

dn ~ S-r -1

as the slope of the budget constraint in = - x space at the solution.
So if s £ r, the two slopes are the same if h§ > 0 and k§ = 0. If
s =r, (4.1.M.6/6) requires n = 0.

iii) Assume the solution to (4.1.M.6/1) - (4.1.M.6/7) is such that

Ag = 0 and h§ > 0. Then (4.1.M.6/1) and (4.1.M.6/2) may be solved

to eliminate h? yielding

U1(n,x)

This indicates that the slope of an isoutility curve must equal minus

one at the solution.

If hg = 0 and h§ >0 in (4.1.M.6/1) - (4.1.M.6/7), then KZ =0
and KB > 0 at the same solution in (4.1.M/1) - (4.1.M/4). But if

Ay = 0, (4.1.M/1) and (4#.1.M/2) may be solved simultaneously to

eliminate KB yilelding
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211(k,g)
[p'(a)g + plg) - F'(g)g - f(g) - z,(k,q) J“T—ZTZ 59

+ [zq(k,g) +r] = 0.

If Ay > 0, (#.1.M/4) is an equality, so one may use Lemma %4.1.C to

substitute for 211(k,g)/212(k,g)
-[p'(g)g + p(g) - F'(g)g - f(g) - Zz(k,g)]'g%
+ [zq(k,g) +r] = 0.

Multiplying through by -dk/dw yields

[p'(9)g + p(a) - £'(a)g ~ f(g) - z,(k,g) ] 9L

dk _ o,
T

So (4.1.M.6/8) simplifies to

dx

dTl: - _10

This indicates that the slope of the budget constraint in n - x space is

minus one. So the two slopes are the same if h5 = 0 and A§ > 0.

iv) Assume the solution to (4.1.M.6/1) - (4.1.M.6/7) is such that

h§ > 0 and h§ > 0. If s £r, one may solve (4.1.M.6/1) -

(4.1.M.6/4) to eliminate AY, 15, and My yielding
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Uy (myx) zy4(k5q)
= -[p'{g)g+p(g)-F' (g)g-T(g)-2,(k,9)] 7

- Uz(n,x) s~r)z12(k,g)

[21(k,g) + r]

- - 1
S5~

as the slope of the isoutility curve at the solution.

But if Ay > 0 and h§ >0 in (4.1.M.6/1) - (4.1.M.6/7), then
hz > 0 and KB >0 in (4.1.M/1) ~ (4.1.M/4), and rate-of-return con-
straint (4.1.M/3) and the capital productivity requirement (&.1.M/4) are

equalities. Then by lLemma 2.2.B, dk/dn = 1/{(s-r) and, by Lemma 4.1.D,

dg _ "211(k’9), 1
dm ~ 212(k,g)ks—r

if s £ r. Substituting in (4.1.M.6/8) yields

zy4(k,g)
s—r)sz(k,g)

%%-= -[p'(g)g + plg) - f'(g)g - flg) - z,(ky)

[-z,(k,g) + r]

5-r

as the slope of the budget constraint in m - x space at the solution.

So if s £ r, the two slopes are the same if K§ > 0 and k§ > 0. If

s =r (4#.1.M.6/6) requires that = = 0.
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So I have shown that, in each of these four cases, if s £ r
(4.1.M.6/1) - (4.1.M.6/7) require that the slope of an isoutility curve
equal the slope of the budget constraint in w - x space. Hence, if
s £ r, the solution chosen by the managers must lie at a point of
tangency between the budget constraint in n - x space and an isoutility
curve. In cases ii and iv, if s = r then the solution lies on the
budget constraint at m = 0; in the other two cases the solution is at
the point of tangency even with s = r.

Q.E.D.

4.2 Effect of a Change in Required Capital Productivity

This section discusses how a change in the required capital produc-
tivity might affect the level of profit and institutional costs selected
by the firm managers. Throughout the section, I will assume that both
the rate-of-return constraint and capital productivity requirement are
binding at the solution selected by the managers.

As with a change in the allowed rate of return, a change in the
capital productivity requirement will have two effects on both profit
and institutional costs. The changing slope of the budget constraint
alters the tradeoff between profit and institutional costs, leading to
a substitution effect. The shifting of the budget constraint lowers the
managers' achievable level of utility, producing an income effect.

Figure 33 illustrates the two effects, assuming an allowed rate of
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T Institutional Costs

5,
Pro{it

Figure 33
Substitution and Income Effects of an Increase in the
Capital Productivity Requirement Given an Allowed Rate of Return
Greater Than the Cost of Capital
return greater than the cost of capital. Budget constraint A is
initially tangent to isoutility curve U1 at point e. If the capital
productivity requirement is increased, the slope of the budget con-
straint becomes steeper (assuming a homogeneous production function with
non-decreasing returns to scale) and shifts to the left. If only the
slope of the budget constraint were changed, without changing the
isoutility curve to which it was tangent, one would get a new budget
constraint A', and a new point of tangency e'. The difference between e
and e' is the substitution effect.
Now shifting the isoutility curve to the left, with no change in

slope, to its actual new position further shifts the point of tangency

with the isoutility curve to its new equilibrium e". The difference
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between e' and e" is the income effect. It can be seen from Figure 33
that the substitution effect causes institutional costs to increase and
profit to decrease, while the income effect causes institutional costs
and profit to decrease. The two effects work in the same direction for
profit, implying that profit must decline when the required capital
productivity increases. However, they work in opposite directions for
institutional costs, implying it cannot be said what will happen to
institutional costs. Figure 33 is drawn assuming a required capital
productivity greater than the cost of capital; however, the effects
would be the same if the required capital productivity were less than
the cost of capital.

Figure 34 illustrates the two effects assuming an allowed rate of
return less than the cost of capital. If the required capital producti-

vity 1is increased in this case, the budget constraint becomes less steep

1"
A lNInstitutional Costs

>
0 Profit
Figure 34
Substitution and Income Effects of an Increase in the Capital
Productivity Requirement Given an Allowed Rate of Return Less
Than the Cost of Capital
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(assuming a homogenous production function with non-decreasing returns
to scale) and shifts to the left. The substitution effect is again
represented by the difference between e and e', while the income effect
is represented by the difference between e' and e". It can be seen
from Figure 34 that the substitution effect causes institutional costs
to decrease and profit to increase, while the income effect causes both
institutional costs and profit to decrease. The two effects work in the
same direction for institutional costs, implying that institutional
costs must decline as the required capital productivity is increased.
However, they work in opposite directions for profit, implying it cannot

be said what will happen to profit. Table 3 summarizes these results.

TABLE 3

EFFECTS OF AN INCREASE IN THE REQUIRED PRODUCTIVITY OF CAPITAL

Relationship of
Al lowed Rate of
Return to Cost Substitution Income Total
Variable of Capital Effect* Effect | Effect

greater than - - -

Profit
less than + - ?
greater than + - ?
Institutional
Costs less than - - -

*Assuming a homogeneous production function with non-decreasing
returns-to-scale.
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4.,2.M Mathematical Formulation

The main thrust of this subsection is to formally demonstrate the
comparative statics results shown in Table 3. I shall use the same
model, assumptions, and notation here as were used in Section 4.1.M.

If one assumes that both the rate-of-return constraint and the
capital productivity requirement are binding at the solution, with

KZ > 0 and K3 > 0, the managers' prcblem is maximize utility
U(m,x),

subject to the budget constraint
B(m,s,p) - x > 0.

Maximization is over = and x, where x, but 7, must be non-negative.

The Lagrangian will be
L = U(=m,x) + A[B(m,s,B) - x]J.
The first-order conditions require that:

oL

a3 = Ug(mx) + A[B,(m,5,8) ] = 05 (4.2.M/1)
L
= = Uy(m,x) = A < 05 (4.2.M/2)
L
X = 0; x > 0;
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aL

oL
= A = 03 A > 0.

If one assumes Uz(n,x) > 0 at the soclution, that is the managers are not
satiated in institutional costs, then A must be greater than zero. If
one also assumes that x > 0 at the solution, then the two conditions
(#.1.M/2) and (4.1.M/3) become equalities.

The second order conditions require that the determinant:

Upy + Mgy Uiz By
b = Uio Usa ol
B, -1 0

be greater than zero. Note that I have dropped the parameters of the
partials of U(m,x) and B(=,s,B) for compactness of notation.

To find the effect of a small change in B, dB, conditions (&4.T.M/1)
and (4.1.M/3) may be totally differentiated. This yields a system of
simultaneous equations in d=n, dx, di, and d8. Dropping the parameters

of U(m,x) and B(=,s,8), the system may be expressed in matrix notation

as
Uy + ABy, Uy B, [ dx -MByy P
Uss U, -1 dx | = | o ds.
L B, -1 0 dr -B,
- = - (4.2.M/4)
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I am now in a position to demonstrate the comparative statics results.

Theorem 4.2.M.A:r Assume that the underlying preduction function is

homogeneous with non-decreasing returns to scale and that inputs have
positive marginal products. Thern the substitution effect of an increase
in the required capital productivity on profit (dﬂ/dﬁ)s, is negative if

s > r and positive if s < r.

Proof: To derive the substitution effect, one wants to add some compen-
sation, call it y, to the budget constraint (£.2.M/3) so as to hold the
solution to the same isoutility curve when B changes. If this were

done, (4.2.M/4) could be rewritten as

Uy + 2B Uy, B, d 3By
U, U,, -1 dx | = | o dg
dy
B4 -1 0 di By - T8 (4.2.M/5)

If one knew dy/dp, this system could be solved for the substitution
effect (dﬁ/dB)S. But it is possible to solve for dy/dB. For, by the

third equation of this system,
B1dn - dx = (-B, - ==)dp.

Now, by (4.2.M/1) and {&.2.M/2},
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U
__1_3g

’
5 1

so substituting back,
- - dn - dx = (-By - %)dB. (4.2.M/6)

If the solution is to be held to the same isoutility curve
U(m,x) = constant, total differentiation may be used to show that
Uy
= = 77
dp U2
which implies that the left side of (4.2.M/6) is equal to zero. Thus,

it must be that

dy _ B

8 3

if the solution is to be held to a given isoutility curve.

Substituting into (4.1.M/5) yields the system

Upy + M8y, Ugs B | [ d= M5 f
Uy, U 1 dx | = 0 dg
B, -1 0 | an | | o0 |

(4.2.M/7)

which may be solved for the substitution effect (dn/dB)S. Applying

Cramer's rule,
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-AB v B

13 12 1
0 Uy, -1
(g%) o -1 0 |
5 D
or
(%% - ABE)B- (5.2.M/8)

I assume A = Uz{n,x) > 0. If the underlying production function is
homogeneous with non-decreasing returns to scale and inputs have

positive marginal products, then, by Lemma 4.1.L, B13 <0 if s >r and

B13 >0 if s < r. Hence I have shown that
dn)
(%) <0
df s

if s > r and

dn
-] > 0
(dB)S

if s <r.

Q.E.D.

Theorem 4.2.M.B: Assume that the underlying production function is

homogeneous with non-decreasing returns to scale and that inputs have

positive marginal products. Then the substitution effect of an increase
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in required capital productivity on institutional costs, (dx/dB)S is

positive if s > r and negative if s < r.

Proof: One can solve system (4.2.M/7) for the substitution effect

(dx/dB)S. Applying Cramer's rule,

Upy + 2By, M3 By
U, 0 -1
@y - i "
s 3]
or
(g%)s = }\31381 . (4.2.1/9)

But, I can substitute from (4.2.M/8) to write

By Lemma &.1.J, B, < -1. Thus, (dx/dB)S always has the opposite sign
of (dn/ds)s. So if the underlying production function is homogeneous
with non-decreasing returns to scale and inputs have positive marginal

products,
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if s < r.

Q.E.D.

Recall from Section 2.3.M that profit is defined to bhe a "normal
good™ if its level would increase with a relaxation of the budget
constraint. One could relax the budget constraint by adding a positive
y to the left side of (4.2.M/3}. Hence, if a small increase in y
produces an increase in profit =, that is if dn/dy > 0, then profit is a

normal good.

Theorem 4.2.M.C: If profit is a normal good, then the income effect

(dﬂ/dB)y of an increase in the required capital productivity on profit

is negative.

Proof: Since profit is a normal good, dn/dy > 0. To find an expression

for dn/dy, I totally differentiate (4.2.M/1) - (4.2.M/3) to obtain

Upg + MByq Ug, B, dm 0
Uss U, -1 dx | = | o dy.
B, -1 0 dn -1

(4.2.4/10)

Applying Cramer's rule,
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0 Uy, B,
0 Uy, -1
P -1 0
dy D
or
dn Y12t B
dy ~ D '

(&.2.M/11)

To find the income effect (dn/dB)y, one first finds the total

effect dn/dg, and subtracts the substitution effect (danB)s.

The

total effect (dn/dg) may be found by applying Cramer's rule to system

(4.2.M/4),
“ABy3 Uiz B
0 U, -1
dn -8, -1 0
dg = 5
i By + BB[U12 + B1U22]
= 5 .

Subtracting the substitution effect (4.2.M/8) yields the income effect,

or, substituting in (&4.2.M/11),
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d d
fa%) = 83683)'
Y

Since 83 < 0 by Lemma 4.1.K, and dn/dy > 0 if profit is a normal good,

(dn/dB)y must be less than zero.

Q.E.D.

Recall from Section 2.3.M that institutional costs are defined to
be a "normal good" if their level would increase with a relaxation of

the budget constraint.

Theorem 4.2.D: If institutional costs are a normal good, then the

income effect (dx/dB)y of an increase in the reguired capital producti-

vity on institutional costs is negative.

Proof: Since institutional costs are a normal good, the dx/dy obtained

by selving (#.2.M/10) is positive. Applying Cramer's rule,

Uyy + A 0 B,
u,, 0 -1
o 8, . 0
dy = D !
or
-{U + AB, ) - U, .B
g—’; .1 D“ 1271 (4.2.M/12)

To find the income effect (dx/dB)y, one finds the total effect
dx/dB, and subtracts the substitution effect (dx/dB)S. The total

effect dx/dp may be found by applying Cramer's rule to system (4.2.M/4),
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Upg + 2By “AB43 B,
u, 0 -1
o B, -8, 0
df = . ’
or
ax _ MBy3By + B3[-(Ugy + AByy) - U8, ] .

dg ~ D
Subtracting the substitution effect (4.2.M/9), yields the income effect

CB31-Ugy # B - U8, ]
_ 5 ,

or, substituting (4.2.M/12),

dx dx

(d_ﬁ) = (Hy)ay
Y

Since 83 < 0 by Lemma 4.1.K and dx/dy > 0 if institutional costs are a

normal good, (dx/dB)y must be less than zero.

Q.E.D.

4,3 Effect of a Change in the Allowed Rate of Return

One might also be interested in how a change in the allowed rate of
return affects profits and institutional costs when the firm is subject

to a capital productivity requirement. It turns out that the results
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are exactly the same as when the firm is not subject to a binding
capital productivity requirement, for exactly the same reasons.

In particular, the firm will continue to exhibit a tendency for
institutional costs to increase as the allowed rate of return is reduced
toward the cost of capital. To understand this tendency, one should
look at the behavior of the firm when the allowed rate of return equals
the cost of capital with the rate of return constraint assumed binding.
Since the firm is prohibited from earning a positive profit in this
situation, the managers would become institutional cost maximizers.

They will choose to set prices and buy inputs as would a monopolist
subject only to the capital productivity requirement, with the henefits
being taken as institutional costs instead of profit. This corresponds
to point A in Figure 32. Since institutional costs must be less than
this if the firm is earning positive profits, institutional costs should
be generally increasing as the allowed rate of return is lowered.

For small reductions in the allowed rate of return, the results
shown in Table 1, Section 2.3, continue to hold under a capital produc-
tivity requirement. It should be noted, however, that in order to
obtain the sign of the substitution effects for the firm subject to a
capital productivity requirement, it is again necessary to assume a

homogeneous production function with non-decreasing returns to scale.
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4.3.M. Mathematical Formulation

The derivations of the effects of a change in the allowed rate of
return given in Section 2.3. are easily extended to the firm subject to
a rate of return constraint and capital productivity requirement with
AZ and k3 greater than zero, as presented in Section 4.1. The following
lemmas, concerning the solution to the managers' problem subject to a

capital productivity requirement, are all that is really necessary.

Lemma 4.3.A: If the rate-of-return constraint and the capital producti-
vity requirement are equalities, then

dg  Z11te9) oy

5 zjz(k,g) s-r’’

This will be negative if s > r and positive if s <{ r.

Proof: By the chain rule,

dg _ (dgycdk
ds ~ (dk)(dsJ'

Substituting, using Lemmas 4.1.C and 2.2.D, yields

ggh Z1—](k79) k )
ds ~ z12(k,g) s-r’"

Since by (2.2.M/7), 211(k,g) = ~R11(k,g). which is positive by the
strict concavity of R(k,g), and since 1 assume 212(k,g) < 0 (see Section
2.5.M), dg/ds will be negative if s > r and positive if s < r.

Q.E.D.
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Lemma 4.3.B: If the underlying production function g = h(z,k} is homo-
geneous with non-decreasing returns to scale and the capital producti-

vity requirement 1s an equality, then

2
QH%ZE 0
dk
Proof: If g = h(z,k), then

d
9 . hT(z,k)—g—E— + hy(2.K).

[n
ey
|

But dz/dk = z/k under these assumptions by Lemma 4.1.H, so

d
gfl h1(z,k)% + hy(z,k)

(hy(z,k)z + hy(z,k)k )

But if h(z,k) is homogenecus with non-decreasing returns to scale, then

by Euler's Theorem,
h1(z,k)z + hz(z,k)k = gh,
where b > 1. So

dg _ gb
dk Tk c

Taking the derivitive,

Q.E.D,
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Lemma 4.3.C: If the rate-of-return constraint and capital productivity

requirement are equalities with A, > 0, and s # r, then

2

B,(m,x,8) > 0.

5

Proof: By definition,

B(m,s,B) = (plg) - flg))g - z(k,g) + ¢ - rk - =.

Taking the derivitive,

B,(m,5,8) = [p'(gdg + plg) - F'(gdg - F(g) - z,(k,q) ]%

- [z,(k,q) + r}%. (5.3.M/1)

Substituting in dg/ds and dk/ds using Lemmas 2.2.D and 4.3.A yields

zyq(ks0)
sz(k,g) s-r

B (7,5B) = (p'(g)g + p(g)-f'(g)g—f(g)—zz(ksg)](

v (2,000 + £ (5.
Substituting for p'(glg + p(g) - f'(g)g - f(g) - z,(k,q) and z,(k,g) +r

using equations (#.1.M/1) and (4.1.M/2) yields

21000 -y

BZ(TE,S,B) = (?\-BZTZ(k!g))(Zqz(k,g) s_r)

+ [h2(5~r) - K32T7(k’g)](g§;) = Ak > 0.

Q.E.D.
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Lemma 4.3.D: If the rate-of-return constraint and capital productivity
requirement are equalities with AZ and KB greater than zero, and if the
underlying production function is homogenous with non-decreasing returns

to scale, and if s > r, then
B1z(ﬂ,5’6) > 0.

Precof: From (4.3.M/1) and the chain rule,

B,(7,5,8) = [(p"(9)g + p(a) - F'(a)g - Flg) - z,(k,g) )32

- [21(k,g) + r)]gg.

Taking the derivitive with respect to =,

By, (7,5,8) = f%g(P'(9>g+p(g)-f‘(g)g“f(g"zz(k’g) E¥%E¥l

k,g)aK dg ' -f! -f{g)-z,(k EEE
212( ’g)dn dk T (P (g)g+p(g) (g)g-f(g) 22( ,g)) dkdm

dg dk 1dk
2120k 9)q - 29q(ke0) g I

[(p'(g)g+plg)-f'(g)g-T(g)- 2(k,g))-g~gk—

d%k
(z4(ks9)+r) Jig, (4.3.M/2)

+

I shall now consider the sign of the first expression in brackets,

%§(p'(g)g + p(g) - f'(g)g - flg) - zz(k,g)E%%{%%
2
- Z1z(k,9)%%'g% + (P19 g+p()-F (9)g-F(a)-2,(k,0) ) T3

dg dk
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Using Lemmas 2.2.B and 4.1.D, the first two terms may be written

-z,4(k,g) 1
35p (@ + ple) - ()3 - Fl0) - 700 )i gy G o

- z12(k,g)[§§;}gg (4.3.M/4)

Using (2.2.M/7) - (2.2.M/9) this expression may be written in terms of

the revenue function as

-R,,(k,g)R,,(k,qg)
22 1] 1, dg
R12(k,g) + R12(k79)](gj;]'ag- (4.3.M/5)

Since R11(k,g)R22(k,g) - (R12(k,g)2 > 0 by convexity of the revenue
function, while R12(k,g) = - 212(k,g) is positive by assumption (see
Section 2.5.M), the term in brackets in (4.3.M/5) is negative. Since,
byLemma &4.1.C, dg/dk > 0, (4.3.M/4) will be negative if s > r.

Using (4.1.M/1) to substitute for p'(g)g+p(g)-f'(g)guf(g)—zz(k,g)

and the chain rule, the third term in (4.3.M/3) may be written as

2

d“g dk

AaZ,5(k,g)—2 ==
3712 de drn

Since le(k’g) < 0 by assumption (see Section 2.5.H), dzg/dk2 > 0 by
Lemma 4.3.B, and dk/dn > 0 if s > r by Lemma 2.2.B, this third term in
(4.3.M/3) will be non-positive if s > r.

Using Lemmas 2.2.B and 4.1.D, the last two terms of (4.3.M/3) may

be written as
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'211(k!g) 1
ZTZ(k’g) 5-T

- 212(k,9)( ) - 211(k5g){§%;J = 0.

I have thus shown that the first expression in brackets in (4.3.M/2) is
negative. Since dk/ds < 0 if s > r by Lemma 2.2.D, the entire first
term of (4.3.M/2) is positive if s > r.

So consider the sign of the second term in (4.3.M/2). Substituting
for p'{g)g + p(g) - f'{(g)g - f(g) - Zz(k,g) and z,(k,g) + r using
equations (4.1.M/1) and (4.1.M/2) and for dg/dk using Lemma %.1.C allows

me to write the second expression in brackets as

211(k,9)

- [Asz5(kyg) J(=—F——
3712 (212(k,g)

)—[Kz(s—r) - l3211(k,g)] = - Az(s-r).

This is negative if s > r. By Lemma 2.2.E,

d7k -1

dnds (s-r)2

b

which is negative if s £ r. Therefore, the entire second term of
(#.3.M/2) is positive if s > r. I have thus demonstrated that
B1a(n,s,B) >0 if s > r.

Q.E.D.

If one replaces B(m,s) and its partials with B{m,s,p) and its
partials throughout Section 2.3, one obtains proofs of the comparative
statics results for the case of a firm under a capital productivity

requirement. Lemmas 4.1.J, 4.3.C and %.3.D assure that the relevant
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partials continue to have the same signs. However, Theorems 2.3.M.A and
2.3.M.B require the additional assumption that the underlying production
function is homogeneous with non-decreasing returns to scale in order to

assure that 812 > 0.

4.4. Practical Implications

This chapter has proposed a third model of firm behavior under
rate-of-return regulation based on the assumption that firm managers
maximize a utility function of profit and institutional costs, instead
of profit alone, and that there are regulatory restrictions on capital
investment. The model was then used to examine the impacts of two
policy instruments available to regulators under rate-of-return regula-
tion: the setting of the required capital productivity and the setting
of the allowed rate of return. The model is of value in demonstrating
which of the results of the previous two chapters continue to apply
under these more sophisticated and, I believe, more realistic assump-
tions

The main practical implication of Chapter 2 continues to hold for
the firm subject to a capital productivity requirement. This is that
setting an appropriate allowed rate of return is likely to involve a
tradeoff--as profits are reduced, institutional costs tend to increase.
Consumer prices as a function of the allowed rate of return will reflect
this tradeoff, probably reaching a minimum somewhere between the cost of
capital and the rate of return the firm would earn as a monopolist

subject only to the capital productivity requirement. One could,
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therefore, again visualize the relationship between the allowed rate of
return and consumer price as being like that shown in Figure 18, where r
is the cost of capital, s* is the rate of return the firm would earn as
a monopolist subject only to a capital productivity requirement and P
the price that would be charged by such a monopolist. Section 4.3
demonstrated that the income and substitution effects of a small
reduction in the allowed rate of return under a capital productivity
requirement are the same as those without the capital productivity
requirement, as derived in Section 2,3,

As in Chapter 3, the imposition of a capital productivity require-
ment would lead managers to purchase gas beyond the point where its
marginal cost equals its marginal revenue product, so as to be ahle to
Justify additional capital investment. Unfortunately, the rules-of-
thumb for how a price-minimizing or welfare-maximizing regulator would
set the capital productivity requirement, as derived in Chapter 3, no
longer apply to a firm with utility maximizing mangers. In Section 4.2,
I was able to determine the signs of the income and substitution effects
of a small change in the required capital productivity on profit and
institutional costs. These expressions could be used in numerical
simulations of actual firms.

The model described in this chapter is also of value in that it can
be used to demonstrate how institutional costs might absorb some of the
rents from wellhead price controls. This is the subject of the follow-

ing chapter.
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4.4.M Mathematical Formulation

In this subsection, I will show why the relationship between
allowed rate-of-return and price for a firm subject to a capital produc-
tivity requirement is as shown in Figure 18. I first show that if
s = r, the firm has the same output and price as a monopolist subject
only to a capital productivity requirement. The cases of s > r and

s < r will then be considered.

Theorem 4.4.M.A: 1If s = r, the values of g and k chosen by the managers

are the same as they would choose if the firm were subject only to a
capital productivity requirement. Since price is a function of g, the
price charged by this firm p(g) is the same as that charged by the mono-

polist subject only to a capital productivity requirement.

Proof: By Lemma 4.1.P, if m < n* then the solution for g and k on on the
budget constraint in m - x space are the same as they would be if the
firm were subject only to a capital productivity requirement. But by
Theorem 4.1.M.5.8, if s = r, the budget constraint is undefined for
values of = > w*. By Theorem 4.1.M.6.A, the solution chosen by the
managers must lie on the budget constraint. Hence, the values of g and
k chosen by the managers are the same as they would choose if the firm
were subject only to a capital productivity requirement.

Q.E.D,

Lemma 4.4.A: The values of g and k always move in the same direction in

response to a change in s.

242



Proof: I consider two cases, depending upon the value of KB'

i) If A, = 0, then by (4.1.M/1),

3
p'{g)g + plg) - ' {g)g - flg) - z,(k,g)= 0.

Differentiating yields

dg 215(k,g)

ol

d ' , .
Hﬁ[p (g)g + plg) - ' (g)g - f(g) ] - z,,(k,q)
Substituting, using (2.2.M/9), vields

dg 212(ks9)

k Rzz(k,g)

Since 212(k,q) < 0 by assumption (see Section 2.5.M), while Rzz(k,g) <0
by the strict concavity of R{k,g), it follows that dg/dk > 0.

ii) If KB > 0, then the capital productivity requirement
(4.1.M/4) is an egquality. By Lemma 4.1.C, dg/dk > 0.

In both cases, dg/dk > 0, implying that g and k must always move in
the same direction in response to a change in s.

Q.E.D.

Theorem 4.4.M.B: If s > r and n > =* at the solution, then the g chosen

by the managers must be greater than the g' they are assumed to choose
if subject to the capital productivity requirement alone, and the con-
sumer price p(g) is less than the price the managers would charge if

subject to the capital productivity requirement alone. Similarly, if
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s <r and = > w* at the solution, then g < g' and p(g) is greater than
the price the managers would charge if subject to the capital productiv-

ity requirement alone.

Proof: The rate-of-return constraint (4.1.M/3) requires that
© £ (s-r)k.

By Lemma 4.1.0,
™ = {s-r)k',

where k' is assumed to be the k the managers would choose if subject to
the capital productivity requirement alone. Using these two expres-

sions, and the assumption that n > w*,
(s—r)k-z %> o = {s-r)k',
or
{(s-r)k > (s-r)k'.

This implies k > k' if s > r, and k < k' if s < r.

By Theorem 4.4.M.A, if s = r then k = k' and g = g', where g' is
assumed to be the g the managers would choose if subject only to the
capital productivity requirement. Since Lemma 4.4.A requires g and k to
move in the same direction in response to a change in s, it must be that
g>g' if s >rand g < g' if s <r. Since p'(g) < 0, the results
concerning price follow immediately.

Q.E.D.
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As in Section 2.5, I have not shown that price as a function of
allowed rate of return necessarily has the concave shape shown in Figure

18.
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CHAPTER 5
WELLHEAD PRICE CONTROLS

Changes in the allowed rate of return and capital productivity are
not the only changes which affect gas firm profit and institutional
costs; almost any change in regulations, taxes, or market environment
should have an impact. In this chapter, I examine a third instrument
available to gas firm regulators -- wellhead price controls. The prin-
cipal result of this chapter is that instead of simply passing the
savings in gas purchase costs from wellhead price controls through to
consumers, gas firms may have a tendency to absorb some of the rents
generated by wellhead price controls as institutional costs.

I consider two models of wellhead price controls. In Section 5.1,
I assume the regulators set a fixed ceiling on the price of all gas. In
Section 5.2, I assume the regulators only set a fixed ceiling on the
price of certain categories of gas, thereby establishing a system of
partial wellhead price controls. In both sections, I shall assume an
allowed rate of return ahove the cost of capital, and that both the
rate~-of-return constraint and the capital productivity requirement are

binding.
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5.7 A Ceiling on the Price of All Gas

In this section, I consider a rather extreme policy, and obtain
some rather extreme results. 1 assume the regulators set a fixed
ceiling on the wellhead price of all gas. I will show that the gas firm
with utility-maximizing managers would respond by charging the market-
clearing price for whatever allocation of gas it has available. Insti-
tutional costs would absorb all rents on the sale of this gas beyond the
profit ceiling established by the regulators. Consumers, as well as gas
producers and the gas firm's stockholders, would actually be worse off
under this system than they would be under a system with no wellhead
price controls.

To establish these results, I first consider the situation with no
wellhead price controls. In this case, the gas market could be visual-

ized as in Figure 35. Curve S is the wellhead supply of gas, while

A S
Price
p e
B T —_
>~
rd
q Quantity

Figure 35
Gas Market without Wellhead Price Ceiling
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curve D is the consumer demand for gas. The market will settle into an
equilibrium where quantity g of gas is sold, with w being the wellhead
price, p being the consumer price, and p - w gas firm markup.

If one were to neglect the response of pipelines and distribution
companies and simply assume their markup is constant, one would expect
the introduction of a wellhead price ceiling to produce a situation like
that depicted in Figure 36. The wellhead price ceiling is set at w'.
With a constant pipeline and distribution company markup, the resulting
consumer price will be p'. The wellhead price controls have succeeded
in reducing consumer prices from p to p', but also create a shortage of
gas equal to g" - q', the difference between what consumers would like
to buy at this new low price, and what producers are willing to produce.

If one assumes the model of gas firm behavior proposed in the pre-
ceding chapter, a different situation emerges, however. Since the gas
price would be limited, the gas supply curve would fix a limit on avail-
able supply, as before. But, given a fixed supply, the capital produc-

tivity requirement would fix a limit on gas firm capital investment.
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Figure 36
Gas Market with Wellhead Price Ceiling Given
Constant Gas Firm Markup
Given the limit on capital investment, the rate-of-return constraint
would fix a limit on gas firm profits. Since there is no way the
managers can do anything to increase profits, there is nothing to stop
them from simply allowing institutional costs to rise until the gas
price reaches its market-clearing level. The outcome would then be as
shown in Figure 37.
It can be seen that the resulting consumer price p" would be higher

than it would be without the wellhead price controls, due to the

increase in gas firm markup. Gas firms would have lower profits under
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Figure 37
Gas Market with Wellhead Price Ceiling Given Gas
Firms as Modeled in Chapter &

the wellhead price ceiling as well, since lower gas volume means lower
capital investment by the capital productivity requirement, which means
lower profit by the rate-of-return constraint. Naturally, gas producers
would also be worse off under wellhead price controls. It should be
added, however, that my model may tend to overstate the case, since it
neglects regulatory lag, which generally gives gas firms some ability to
increase short-term profits by reducing institutional costs.

The change in the gas firm's budget constraint with the introduc-
tion of the wellhead price ceiling is illustrated in Figure 38. The new
constraint has a vertical drop since, as noted, a limit on the firm's

gas supply fixes a limit on the firm's profits.
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Effect of Wellhead Price Ceiling on the Gas Firm's
Budget Constraint

5.1.M Mathematical Formulation

In this subsection, I will demonstrate how a reduction in the well-
head ceiling price of gas is likely to lead to an increase in consumer
prices, and a reduction in gas firm profit. I assume that there is a
well-defined function G(w), with G'(w)>0, giving the gas allocation
available to the firm at each setting of the wellhead price ceiling w.
If the firm is a monopsony in the wellhead gas market, then G{w) is
simply the gas supply function. Otherwise G(w) is determined by some
non-market mechanism, such as prior contracts or rationing by the regu-
lators. The remainder of my notation and assumptions are the same as
were used in Section 4.1.M,

The following theorem is crucial to determining how a reduction in

the wellhead price ceiling affects consumers.
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Theorem 5.1.M.A: The firm with utility-maximizing managers never sells

gas for less than its market-clearing price.

Proof: Assume that the utility-maximizing solution did require the
managers to sell gas for less than its market-clearing price. Given
this solution, they could increase their level of institutional costs
without changing the level of profit by simply increasing the price of
gas. This would always be feasible under the rate-of-return constraint,
the capital productivity requirement, and the firm's gas allocation
under the wellhead price ceiling, since the price increase would not
affect g or k at the solution. But, since institutional costs are
assumed to have positive marginal utility, the managers' utility would
be improved by this price increase. This iIs a contradiction, since a
gas price lower than the market-clearing level was assumed to maximize
utility. So the firm never sells gas for less than its market-clearing
price.

Q.E.D.

The desired result concerning consumer prices then follows easily.

Theorem 5.1.M.B: 1If the gas allocation available to the firm under the

wellhead price ceiling G(w) is a binding constraint on the firm's gas
supply g, then a reduction in the wellhead price ceiling w, increases

the price of gas to consumers p(g).
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Proof: I must show dp/dw < 0. By the chain rule,

dp _ dg
aw = P'(g) g G'(w).

By assumption, p'(g) < 0 and G'(w) > 0. Since G(w) is assumed to be a
binding constraint on g, dg/dG = 1. So I have shown that dp/dw < O.

Q.E.D,

The final theorem gives the desired result concerning gas firm

profit.

Theorem 5.1.M.C: If the gas allocation available to the firm under the

wellhead price ceiling G(w), is a binding constraint on the firm's gas
supply g, then a reduction in the wellhead price ceiling w, leads to a

reduction in gas firm profits =,

Proof: I must show dn/dw > 0. By the chain rule,

drn _ dg dg .
aw = ac &g

Since G{w) is assumed to be a binding constraint on g, dg/dG = 1. By
assumption, G'(w) > 0. By Lemma %#.1.D, if the rate-of-return constraint
and capital productivity requirement are binding and s is not equal to
r, as assumed throughout this chapter, then dg/d= > 0. So I have shown
that dn/dw > O.

Q.E.D.
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5.2 Partial Wellhead Price Controls

An alternative to establishing a fixed ceiling on the wellhead
price of all gas is to establish ceilings only on the price of gas from
low-elasticity sources. Such a system of partial wellhead price
controls can reduce the average wellhead price of gas, but, unlike a
ceiling on the wellhead price of all gas, does not put a corresponding
limit on the overall available supply of gas. Although such a system
could reduce consumer prices, this section will show why it could also
tend to increase the institutional costs of gas firms.

Under a system of partial wellhead price controls, the regulators
set wellhead price ceilings on a discriminatory basis -- low price
ceilings on low-elasticity sources, no price ceiling at all on high-
elasticity sources. The regulators then let the gas firm's average-cost
pricing system determine the outcome. Gas firms pay less than the free-
market wellhead price for gas from low-elasticity sources, but generally
end-up paying more than the free-market wellhead price for gas from
high-elasticity sources. The higher production of gas from high-elas-
ticity sources more than compensates for the lower production of gas
from low-elasticity sources. The result can be greater gas production
at a lower average wellhead price than under a system without wellhead
price controls. The obvious appeal of this system to policymakers
seeking to hold-down consumer gas prices may explain the adoption of the
system by the U.S. Congress in the Natural Gas Policy Act of 1978.

The system does, however, create the potential for increased insti-

tutional costs in gas firms. To see this, one may note that a reduction
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in the price ceiling on price-controlled gas will probably have two
impacts on the gas firm's budget constraint. First, assuming the reduc-
tion in the price ceiling succeeds in lowering the purchase cost of any
given volume of gas to the firm, the budget constraint shifts upward.
This is because there is a fixed volume of gas associated with any given
level of profit, independent of its cost. This fixed volume is deter-
mined by the rate-of-return constraint, which fixes a required level of
capital investment for the given level of profit, and the capital pro-
ductivity requirement, which fixes a required gas volume associated with
that required level of capital investment. Since the purchase cost of
the fixed volume of gas associated with each level of profit is reduced,
the firm can have higher institutional costs at each level of profit.
The budget constraint, therefore, shifts upward.

Second, assuming the marginal cost of non-price-controlled gas
increases as a result of the reduction in the price ceiling on price-
controlled gas, the hudget constraint becomes steeper. One would expect
the marginal cost of non-price-controlled gas to increase as the price
ceiling on price-controlled gas is reduced, since the smaller available
quantity of price-controlled gas leads to increased demand for non-
price-controlled gas. The increase in the marginal cost of non-price-
controlled gas makes it more expensive for the managers to acquire the
gas they need to justify an increase in capital investment under the
capital productivity requirement, so as to increase their profit ceiling
under the rate-of-return constraint. The budget constraint, therefore,
becomes steeper.

The change in the budget constraint with the introduction of

partial wellhead price controls is illustrated in Figure 39. The
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Effect of Partial Wellhead Price Controls on the
Gas Firm's Budget Constraint
shift in the budget constraint will lead to an income effect favoring
higher institutional costs. At the same time, the increased steepness
makes the profit/institutional costs tradeoff more favorable to institu-
tional costs, so the substitution effect also favors higher institu-
tional costs. The overall effect of discriminatory wellhead price

ceilings is thus to increase gas firm institutional costs, just as in

the case of a fixed ceiling on the wellhead price of all gas.

5.2.M Mathematical Formulation

In this subsection, I examine the situation if not all gas sources
are subject to a wellhead price ceiling. I will demonstrate how a
reduction in the wellhead price ceiling could lead to increased gas firm
institutional costs. I assume the firm's total gas purchase costs are a

function of the firm's total gas purchases g and the ceiling price on
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price-controlled gas w. Let d(g,w) be this total gas purchase cost
function. The remainder of my notation and assumptions are the same as
were used in Section 4.1.M.

I assume dz(g,w) > 0. This implies that a reduction in the well-
head price ceiling succeeds in lowering the purchase cost of any given
volume of gas to the firm. I also assume d12(g,w) < 0. This implies
that a reduction in the wellhead price ceiling increases the firm's
marginal gas purchase costs.

To see why it should be that d12(g,w) < 0, let G(w) again give the
allocation of price-controlled gas available to the firm at each setting
of the wellhead price ceiling w, with G'(w) > 0. Also let:

go(w) = total gas volume purchased by all other firms (gé(w)_i 0);

Co(w) allocation of price-controlled gas to all other firms

(G (w) > 0);

f(g-G(w)+g (w)-G_(w)) = wellhead price of non-price-controlled
© © gas (F'( ) > 0).

The following theorem may then be used to help justify the assumption.

Theorem 5.2.M.A: If the marginal cost of gas to the firm is a non-

decreasing function of gas purchases by other firms, then d12(g,w) < 0.

Proof: The firm's gas purchase costs are
d(g,w) = wG(w) + (g - G(w)]f(g-G(w)+go(w)-GO(w)).

The firm's marginal cost of gas is the derivitive of this expression
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with respect to g,

dy(g,w) = f(g-G(w)+go(w)—Go(w))

+ (g - G(w)]f'(g-G(w)+go(w)-Go(w)), (5.2.M/1)

from which it can he seen that

od,(g,w) od,(g,w) ad,(g,w)
W) = ———— g BRIy B AR
dyplgsw) 2g, () N 2G_ () oM T (w)
(5.2.M/2)

To determine the sign of this expression, I must determine the
signs of the partials of dT(g,w). Since I assume the marginal cost of
gas to the firm is a non-decreasing function of gas volume purchased by
other firms, ad1(g,w)/ag0(w)‘z 0. It will be useful to have an ex-
plicit expression for 6d1(g,w)/ago(w), which may be obtained by taking

the partial of (5.2.M/1) with respect to go(w),

dd,(g,w)
._gggzgy_ = f (g—G(w)+go(W)—GO(W))

+{g - G(w)]f"(g~G(w)+go(w)—GO(w)]. (5.2.M/3)
Taking the partial of (5.2.M/1) with respect to Go(w) yields

5d1(g,W)
aGo(w)

= —f'(g—G(w)+gO(w)—Go(w))
- (g - G(w))f' ' {g-Glw)+g (w)-G_(w) ),

which, by (5.2.M/3), is equal to —ad1(g,w)/ago(w). Hence,

ad,(g.w)/2G (w) < 0.
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Taking the partial of (5.2.M/1) with respect to G(w) yields

say - a6 g, (i) -Gy (w) )

-{g - G(w)]f"(g-G(w)+gO(w)-Go(w)]
- f'[g—G(w)+go(w)-Go(w)).

Substituting, using (5.2.M/3),

od,(g,w) ~od,(g,w)

- - f -G _C .
aG(w) ago(w) (g (W)+90(W) 0(w))

Since ad1(g,w)/6g0(w) > 0and f'( ) > 0 by assumption,
adq(g,w)/aG(w) < 0.

Using these results concerning the signs of the partials of dT(g,w)
and the assumptions that gé(w) <0, Gé(w)_z 0, and G'(w) > 0, one
can obtain the signs of each term of (5.2.M/2). The first and second
terms are non-positive while the third term is negative, so I have shown
that d12(g,w) < 0 as claimed.

Q.E.D.

The budget constraint in n - x space faced by the managers of the

firm under partial wellhead price controls may be obtained by maximizing
p(glg - d(g,w)} - z(k,g) - rk - =,

subject to the rate-of-return constraint
{s~r)k - = > 0,

and the capital productivity requirement
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~Z1(k,g) - 8,2 0.

Maximization is over g and k, where both must be non-negative. The

Lagrangian will be

L = p(g)lg - d(g,w) - z(k,g) - vk - = + Az((s-r)k - TE)

= h3(21(k,9) + ﬁ)'

The first-order conditions require that:

3L,
3 ° p'(glg + plg) - dy(g,w) - z,(k,q) - A324,(k,g) <05
L
%ﬁ g = 0 g > 0 (5.2.M/4)
aL _ ~z.(kyg) - v + Ay{s-r) - Az, ,(k,g) < O; (5.2.M/5)
T 2 3299V 97 LN e
%E k = 0; k > 0;
L
3RS (s-r)k - = > 0; {(5.2.M/6)
2
al
6’&27‘2 = 0; A, > 05
aL .
ﬁ; -z,4(k,g) - B8 > 03 (5.2.M/7)
Bl
—613?\3 = 0; A 2 0.

I shall assume that g and k are greater than zero at the solution, which
implies that (5.2.M/4} and (5.2.M/5) must be equalities.

For notational convenience, define the budget constraint in n - x
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space, obtained by solving the optimization problem above, as
x = B{m,5,B,w).

It will be useful throughout the remainder of this section to know some
of the partials of this function, assuming the constraints are binding.
The following series of lemmas gives the needed partials. Note, first,
that the rate-of-return constraint (5.2.M/6) is identical to the rate-
of-return constraint (2.2.M.2/3), while the capital productivity re-
quirement (5.2.M/7) is identical to the capital productivity requirement
(4.1.M/4). This implies that lemmas 2.2.B and 4.1.D also apply to the

firm under partial wellhead price controls.

Lemma 5.2.A: If the rate-of-return constraint and the capital

productivity requirement are equalities and s £ r, then
B1(ﬂ,S,B,W)_S -1.
Proof: By definition,
B(n,s,B,w) = plg)g ~ d(g,w) - z(k,g) - rk - m,
S0

By(ms,8,%) = [p'(g)g + p(g) - dy(g,w) - zz(k,g>]§%

- 1.

otro_
E kS

- [21(k,g) +r

Substituting for dg/dn and dk/d=m using Lemmas 4.1.D and 2.2.B yields

z1z(k,g) s-r

By(m,s,8,w) = -[p'(g)g+p(g)-d,(g,w)-z,(k,g) I(

- [z409) + k= - 1
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But because g and k lie on the budget constraint in = - x space,

(5.2.M/4) and (5.2.M/5) may be solved simultaneously to eliminate KB,

yielding
Zq1(k!g) 1
-lp"(9)g + pla) - d;(g,w) - Zz(k’g)}(z12(k’g) >
1
- [21(;(,9) + r}EIF = -;\2.
So,

Bq(n,s,ﬁ,w) = —kz - 1.

Since kz_z 0, I have shown 81(n,s,5,w)_£ - 1,

Q.E.D.

Lemma 5.2.B: If the rate-of-return constraint and the capital produc-
tivity requirement are equalities and s # r, then total gas purchases
g and capital k must be independent of the price ceiling w for any given

level of profit =

Proof: If the rate-of-return constraint (5.2.M/8) is binding with

s # v, it may be solved to determine k as a function of exogenous
variables s and m, but not w. So k is independent of w. Since T assume
zjz(k,g) < 0 (see Section 2.5.M), —21(k,g) is a monotonically increasing
function of g for any given k. If the capital productivity requirement
(5.2.M/7) is an equality, it will therefore fix a unique level of g for
any given k, so g must independent of w as well.

Q.E.D.
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Lemma 5.2.C: If the rate-of-return constraint and the capital producti-

vity requirement are equalities and s # r, then
Bq(n,s,B,w) < 0.

Proof: By definition
B(n,s,8,%) = p{glg - d(g,w) - z(k,g) - rk - m

Since, by the preceding lemma, g and k are independent to w,
84(n,s,B,w) = ~d2(g,w). (5.2.M/8)

But dz(g,w) > 0 by assumption, so Bq(n,s,ﬁ,w) < 0.

Q.E.D.

Lemma 5.2.0: If the rate-of-return constraint and the capital producti-

vity requirement are equalities and s > r, then
814(n,s,5,w) > 0.
Proof: By (5.2.M/8)
Bq(ﬂssyﬁrw) = ‘dz(gyw)!
50
B dg
14(7‘::5!3,“') = -dTZ(g’W)E?I-. (5.2.4/9)

By Lemma 4.1.D, dg/dn > 0 if s > r, while I assume d,,(g,w) < 0. So

12(
814(n,5,5,w) > 0.

Q.E.D.
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If one assumes that both the rate-of-return constraint and the
capital productivity requirement are equalities at the solution, the

manager's problem is to maximize utility
U(m,x),

subject to the budget constraint,
B(mys,B,w) ~ x > 0.

Maximization is over = and x, where x, but not =, must be non-negative.

The Lagrangian will be
L = U(x,x) + A[B(m,s,B,w) - x].

The first-order conditions require that:

B U (myx) + A[B,(m,s,8,m) ] = 0; (5.2.M/10)
DT 1 1
L
= Uy (mx) - & < 05 (5.2.M/11)
L

%; x = 03 x > 03

aL

B-X = B(TE,S,B,W) - X 2_ 0; (5.2.M/12)
oL, .
=05 A > 0.

If one assumes Uz(n,x) > 0 at the solution, that is the managers are not

satiated in Institutional costs, then A must be greater than zero by
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(5.2.M/11). If one also assumes that x > 0 at the solution, then both
(5.2.M/11) and (5.2.M/12) become equalities.

The second-order conditions require that the determinant

Upp + MByy Utz By
b= Us2 Uso -1
B, 1 0

be greater than zero. WNote that I have dropped the parameters of the
partials of U(=w,x) and B(=,s,p,w) for compactness of notation.

To find the effect of a small change in G, dG, conditions
(5.2.M/10) - (5.2.M/12) may be totally differentiated. This yields a
system of simultaneous equations in dm, dx, dA, and dw. Dropping the
parameters of U(m,x) and B(m,s,B,¥), the system may be expressed in

matrix notation as

U B u B, | [ax] T -2, 7]
11 + My 12 1 T aETA
U12 U22 -1 dx = 0 dw.
i B, -1 o | La] | -8, |

(5.2.M/13)

I am now in a position to show why, under these assumptions, insti-

tutional costs increase when the wellhead price ceiling is lowered.

Theorem 5.2.M.A: The substitution effect of an increase in the wellhead

price ceiling on institutional costs (dx/dw)S is negative if s > r.
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Proof: To derive the substitution effect, one wants to add some com-

pensation, call it y, to the budget constraint (5.2.M/12) so as to hold

the solution to the same isoutility curve when w changes. If this were

done, (5.2.M/13) could be rewritten as

U,H + KB11 U12 B,i dm -2B
U12 UZZ -1 dx |=
Bq -1 0 dh -B

dw.

(5.2.M.14)

1f one knew dy/dw, this system could be solved for the substitution

effect (dn/dw)s. But is possible to solve for dy/dw.

equation of this system,

_ dy
BTdn - dx = (-Bq - dw)dw.

Now, by (5.2.M/10) and (5.2.M/11),

U
Y1

H
> 1

50 substituting back,

- dy
- dn - dx = (-B —-aw)dw.

4

For by the third

(5.2.M/15)

If the solution is to be held to the same isoutility curve

U(m,x} = constant, total differentiation may be used to show that
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which implies that the left side of (5.2.M/15) is equal to zero.

ol

it must be that

U
T+
U,

if the solution is to be held to a given isoutility curve.

Substituting into (5.2.M/14) yields the sysfem

U

11

+ AB

11

dn

dx

dh

b

- B

14

T

Thus,

dw,

(5.2.M/16)

which may be solved for the substitution effect (dx/dw)s. Applying

Cramer's rule,

Upq + A8y, -AByy, 8
U, 0 -1
B, 0 0

D
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or

Lgi] _ 14 1. (5.2.M/17)

Since A = Uz(n,x) > 0 by assumption, while BTa(n,s,B,w) > 0 if s > r by

Lemma 5.2.D, and B1(n,s,5,w)_i 0 by Lemma 5.2.A, I have shown that

5 Q.E.D.

Recall from Section 2.3.M that institutional costs are defined to
be a "normal good" if their level would increase with a relaxation of
the budget constraint. One could relax the budget constraint by adding
a positive y to the left side of (5.2.M/12}. Hence, if a small increase
in y produces an increase in institutional costs x, that is if dx/dy > 0,

then profit is a normal good.

Theorem 5.2.M.B: If institutional costs are a normal good, then the

income effect (dx/dw)y of an increase in the wellhead price ceiling on

institutional costs is negative.

Proof: Since institutional costs are a normal good, dx/dy > 0. To find

an expression for dx/dy, 1 totally differentiate (5.2.M/10) -

(5.2.4.12),
Ujq + Mgy Uss B, dn 0
Uy, Uy -1 dx | = 0 dy
B, -1 0 dx -1
L LT - - (5.2.M/18)
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Applying Cramer's rule,

Uyq + MBy, 0 B,
U, 0 1
& B, -1 0
- 3
dy D
or

ax  (Ugq + AByg) - U8By
& = 5 (5.2.M/19)

To find the income effect (dx/dw)y, one finds the total effect
dx/dw, and subtracts the substitution effect (dx/dw)s. The total

effect dx/dw may be found by applying Cramer's rule to system

(5.2.M/13),
Upq + ABqy Ay By
Uo 0 -1

ax B, -B,, 0

dw ~ b !
or

ax BBy + B [-(Ugy + AByy) - U B, ]

dw ~ '

269



Subtracting the substitution effect (5.2.M/17), yields the income effect

dxy B, [-(Ugq + AByqg) - UppBy ]
dw y - D ’

or, substituting from (5.2.M/19),

(dx] - B

dx
T ).

4(21';7

Since B4 < 0 by Lemma 5.2.C, while dx/dy > 0 if institutional costs are
a normal good, (dx/dw)y must be less than zero.

¢.E.D.

I am now in a position to prove the principal result of this sec-

tion.

Theorem 5.2.M.C: If institutional costs x are a normal good and s > r,

then institutional costs must increase overall if the wellhead price

ceiling w is lowered.

Proof: By Theorem 5.2.M.A, the substitution effect (dx/dw)S is nega-
tive if s > r, while by Theorem 5.2.M.B, the income effect (dx/dw)y is
negative as long as x is a normal good. So the overall effect dx/dw is

negative.

@.E.D.
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CHAPTER &

EMPIRICAL DISCUSSION

The theory proposed in the preceding chapters suggests three hypo-
theses ahout the behavior of firms under rate-of-return regulation which
should be empirically testable. These are that gas firms should be
selling gas with a marginal cost exceeding its marginal revenue product;
that institutional costs should tend to increase as the allowed rate of
return is reduced; and that wellhead price controls should produce
increased institutional costs. Unfortunately, a full empirical investi-
gation of these hypotheses is beyond the scope of this study. This
chapter will, however, survey some of the avalilable data and studies for
suggestive evidence related to these hypotheses. The chapter also
discusses some of the difficulties to be encountered in empirical tests,
and approaches for dealing with them.

The first section presents evidence that gas firms are selling gas
with a marginal cost exceeding its marginal revenue product. The second
section discusses several studies dealing with iInstitutional costs in
regulated firms. One of these studies provides some tentative support
for the hypothesis that institutional costs tend to increase as the
allowed rate of return is reduced. The third section presents an over-

view of gas industry cost trends during the period 1973-1981, when rapid
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rises in the prices of competing fuels, but smaller rises in wellhead
price ceilings, could have produced an environment favorable to higher
institutional costs. The trends show rapid increases in gas industry

costs in a pattern consistent with increasing institutional costs.

6.1, Gas Firm Pricing

In Chapters 3 and 4, I argued that regulatory restrictions on
capital investment might force gas firms to sell gas with a marginal
cost exceeding its marginal revenue product. This result distinguishes
my model, with its restrictions on capital investment, from others, such
as the Averch-Johnson model, which predict that gas firms would set the
marginal cost of gas equal to its marginal revenue product.

Wellhead gas purchase price data for late 1981 have been published
for 19 of the 20 largest interstate pipeline firms having purchased gas
adjustment (P.G.A.) clauses in their tariffs. A P.G.A. clause permits a
pipeline firm to adjust its tariffs for changes in its cost of purchased
gas without formal regulatory review. The data were taken from state-
ments of wellhead gas purchases which these companies file periodically
with FERC in support of these tariff adjustments. 1In 1981, these firms

accounted for 82% of all gas sold for resale by class A and B FERC-
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regulated pipelines1, and 75% of all gas sold for resale in the United
States.2

Table 4 may be used to demonstrate that all 19 pipelines were sell-
ing gas with a marginal cost exceeding its marginal revenue product.
The first column gives the average wellhead price paid by each firm for
gas from sources classified as "high-cost" under Section 107 of the
Natural Gas Policy Act of 1978. The wellhead price of gas from these
sources is either completely unregulated, or subject to a substantially
higher price ceiling than other sources. Since these are average high-
cost gas prices rather than marginal costs, they are certainly conserva-
tive estimates of each firm's marginal cost of gas. The second column
gives my calculation of the highest tariff each firm was charging for
gas. Since these are prices rather than marginal revenues, and since
these prices must cover transmission costs as well as gas purchase
costs, they are certainly over-estimates of each firm's marginal revenue
product of gas.

It can be seen that for every firm except Texas Eastern the average
wellhead price for high-cost gas exceeded the highest tariff the firm

was charging, generally by a substantial margin. In the case of Texas

TVolume of gas sold for resale by each FERC-regulaged pipeline and by
all class A and B FERC-regulated pipelines are given in U.S. Energy
Information Administration, Statistics of Interstate Natural Gas
Pipeline Companies 1981, DOE/EIA-0145(81) (Washington, DC: Government
Printing Office, October 1982), pp. 236-252. Class A and B pipelines
are those having annual gas operating revenues of $1,000,000 or more.

2T0tal volume of gas sold for resale in the United States is given in
American Gas Association, Gas Facts 1981 (Arlington, VA: 1982), p. 85.
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TABLE 4
AVERAGE WELLHEAD PRICE FOR HIGH-COST GAS VS. HIGHEST TARIFF
19 MAJOR INTERSTATE PIPELINES

LATE 1981
Average Wellhead Price Highest Tariff1
Pipeline Firm for High-Cost Gas (S/m.c.f.)
(§/m.c.f.)

Southern 8.04 3.32
Transco 6.89 4.56
United 5.03 3.4
Trunkline 7.58 4,37
Colorado Interstate 7.06 3.74
Columbia 7.76 3.91
Northwest 3.63 3.40
Michigan-Wisconsin 4.96 3.52
£l Paso 4,20 2.44
Transwestern 5.81 3.4
Florida Gas 5.84 2.88
Texas Gas §.81 2.99
Natural Gas Pipeline 3.75 2.80
Tennessee 8.25 3.34
Kansas-Nebraska 6.39 2.31
Northern Natural 3.59 3.32
Panhandle tastern 4.80 3.27
Cities Service 4.02 3.32
Texas Lastern 3.92 5.082

SOURCES: Average high-cost gas wellhead prices were taken from U.S.
Energy Information Administration (E.I.A.), The Current State of the
Natural Gas Market, DOE/EIA-0313 (Washington, D.C.: Government Printing
Office, December, 1981), p.66.

{continued)
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TABLE 4-Continued

Tariffs were taken from H. Zinder and Associates, Summary of Rate
Schedules of Natural Gas Pipeline Companies, 52nd edition (Washington,
DC: September 15, 1981), with the exception of tariffs for Colorado
Interstate, Transwestern, Florida Gas, and Cities Service which were
taken from the 53rd edition of the same source {(March 15, 1982).

NOTES: Gas wellhead price data were developed from the companies' most
recent Purchase Gas Adjustment Filing with FERC as of October, 1981.
Filing dates for each company are shown in E.I.A., Current State, p.
143. Each tariff quoted went into effect on or after the date of the
cited P.G.A. filing for the company.

A 20th firm, Consolidated Gas Supply, was included in the E.I.A.'s
sample, but no average high cost gas purchase price was published for
this firm, since the firm purchased little or no high cost gas. Con-
solidated is a Northeastern regional system which purchases its gas pri-
marily from other pipelines.

1All tariff calculations include both commodity charge and demand
charge, where applicable. For demand/commodity tariffs the buyer was
assumed to take 50% of the maximum contractually available gas volume,
unless the tariff specified a higher take-or-pay requirement, in which
case the required take was assumed. For tariffs quoted in decatherms, a
1.0225 decatherm/m.c.f. conversion factor was used.

This tariff is an "overrun charge" for gas purchased during the winter-
period in excess of the maximum daily volume the seller has contrac-
tually agreed to make available. The next highest tariff was
§3.45/m.c.f.
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Eastern, the $5.09 per m.c.f. tariff would have been charged only under
circumstances too unusual for it to be taken as representative of the
firm's marginal revenue. The next highest tariff is probably more
representative, and at $3.45 per m.c.f. is comfortably below Texas
Eastern's average high-cost gas purchase price of $3.92 per m.c.f.

One may object that these firms' high cost gas purchases are merely
indicative of an industry trying to meet its contractual service obliga-
tions in the face of a gas shortage, rather than the result of con-
straints on capital investment. However, in abstract terms, service
obligations merely require the firm to charge a market-clearing price.
It is the regulatory constraint on capital investment which explains why
firm managers do not alternatively make some, perhaps useless, addition
to their rate base. They could then raise their rates to the market-
clearing level and increase the regulatory ceiling on profits at the
same time,

Of course, Table %4 is only suggestive. A more thorough analysis of
industry gas purchase policies will be needed to determine whether and
how restrictions on capital investment have affected the industry in
practice. However, the data presented here areconsistent with the
hypothesis that restrictions on capital investment have forced gas firms

to sell gas with a marginal cost exceeding its marginal revenue product.
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6.2 Regulation and Institutional Costs

Institutional costs are difficult to investigate empirically since
they are inherently unobservable. There have, however, been several
studies attempting to show how a regulated environment produces higher
institutional costs. This section will discuss these studies, as well
as one other study which may be reinterpreted as a test of my hypothesis
that a reduction in the allowed rate of return leads to an increase in
institutional costs.

Institutional costs are not, unfortunately, a line item in the
accounts of any firm. In fact, as discussed in Chapter 2, they exist
only because of the imperfect information which the firm owners have
about the managers' performance. The researcher seeking to investigate
institutional costs empirically must operate in this same environment of
imperfect information. The approach which the researcher must use is to
carefully try to take into account all of the other factors which should
explain variations in cost between firms or explain variations in cost
for a single firm over time. One may then infer that differences in
institutional costs are part of the unexplained residual variation. If
this residual is correlated with factors which should theoretically
explain differences in institutional costs, then one has obtained some
empirical evidence supporting the theory. Interfirm comparisons of this
nature are easier, and the results more convincing, if one focuses on
some specific cost element which should be reasonably comparable for all
firms. The number of variables needed to explain differences in cost is

then kept to a minimum.
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Three published studies have used this approach to examine whether
regulatory structures which result in less competition lead to higher
costs. A study of the banking industry by Franklin R. Edward53 found
that a high three-bank concentration ratio in a Standard Metropolitan
Statistical Area (S.M.S.A.) was a significant variable in explaining
both the number of bank employees and total bank wages in the S.M.S.A.,
despite the inclusion of other variables in the regression equations
designed to measure the size of the banking market and the costs of
operating in the S.M.S.A.

Turning specifically to utilities, Walter Primeaux, Clr.LF identified
a sample of 23 cities where municipally-owned electric utilities compete
directly with investor-owned utilities. FEach competitive municipally-
owned utility was paired as nearly as possible with a similar monopoly
municipally-owned utility based on location state, annual electricity
sales, and generation power sources. Primeaux found that overall oper-
ating costs were significantly lower for the competitive municipals.
His regression equations included variables designed to measure capacity
utilization, fuel cost, purchased power costs, economies of scale,

market density, and differences in customer sizes and types.

3Franklin R. kdwards, "Managerial Objectives in Regulated Industries:
Expense Preference Behavior in Banking", Journal of Political Economy,
85 (February, 1977): 147-162.

QWalter J. Primeaux, Jr., "A Reexamination of the Monopoly Market
Structure for Electric Utilities" in Promoting Competition in Regulated
Markets, ed. Almarin Phillips (Washington, DC: The Brookings
Institution, 1975}, pp. 175-200.
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Rodney Stevenson5 compared electricity generating costs of a
sample of 25 combination electric/gas utilities with those of 54
straight electric utilities. He found the generating costs for the
combination utilities te be significantly greater than for the straight
electric utilities. He credits this result to more efficient use of
inputs by the straight electrics, who face competition from gas utili-
ties. His regression equations included variables designed to measure
factor input prices, economies of scale, and capacity utilization.

The published study which most directly addresses a hypothesis of
this study is one by Wallace Hendricks6. Although he did not intend to
address the relationship of allowed rate of return to institutional
costs, it is possible to reinterpret his results as providing some evi-
dence on the issue. Hendricks collected data on journeyman lineman's
wages in a sample of 106 unionized electric utilities--this classifica-
tion is considered by the major industry unions to be a "benchmark"
job. Hendricks cites studies which show that in most industries one
observes the most profitable firms paying the highest wages. Yet when
Hendricks divided his sample into high-, medium-, and low-profit firms
based on profit levels over the preceding eleven years, he found that it

was the low-profit electric utilities which were paying the highest

Rodney Stevenson, "X-Inefficiency and Interfirm Rivalry: Evidence from
the Electric Utility Industry", Land Economics, 58 (February, 1982):
52-66.

Wallace Hendricks, "The Effect of Regulation on Collective Bargaining
in Electric Utilities," Bell Journal of Economics, 6 (Autumn, 1975):
451-465.
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wages. He obtained this result despite the inclusion of other variables
in his regression equations reflecting local wage levels and firm size.

Hendricks argues that his results are consistent with a Joskow-type
model of regulatory stickiness7-~low-profit firms will be less resis-
tant to paying higher wages, since they are more likely to be able to
use the higher wage costs to justify an immediate rate increase. This
explanation leaves me unsatisfied. A firm which is close to the thres-
hold of justifying a rate increase may be less resistant to paying
higher wages than one which is not. However, I see no reason why firms
which have had consistently lower profits over an eleven-year period
should be less resistant, unless perhaps these firms had more rapid cost
increases than other firms, forcing them to file for rate increases more
frequently. Low long-term profits may reflect longer lags in approving
rate increases in some states than in others, but one would expect
utilities subject to long lags to more vigorously resist paying higher
wages.

A more plausible explanation is that the lowest-profit firms were
those with the lowest allowed rate of return. Consistent with the
theory proposed in this study, these firms had higher institutional
costs. One form these institutional costs took was the payment of
excessively high wages, as a result of managers bargaining less vigor-

ously then they could have in their union contract negotiations. It

7See Paul Joskow, "Pricing Decisions of Regqulated Firms: A Behavioral
Approach", Bell Journal of Economics and Management Science, 4 (Spring,
1973): 118-140.
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would be useful to see Hendrick's study extended to include an analysis
of why the low-profit firms had low profits. If a principal reason
proved to be a low allowed rate of return, this would tend to support
the hypothesis that a low allowed rate of return leads to higher

institutional costs.

6.3 Wellhead Price Controls and Institutional Costs

One would expect the dramatic increases in oil prices of 1973-74 to
have had an effect on gas firms similar to the hypothesized effect of a
lowering of the wellhead price ceiling, which T discussed in Section
5.2. The budget constraint would shift upward because wellhead price
controls hold down the average cost of gas to the firm in the face of
increased demand. This shift would produce an income effect favoring
higher institutional costs. At the same time, the budget constraint
would become more steep as the price of marginal gas supplies, such as
the "high cost" gas discussed in Section 6.1, Canadian gas, synthetic
gas, and imported liquefied natural gas, was bid up. This increased
steepness would produce a substitution effect favoring higher
institutional costs. So one would expect to see an increase in
institutional costs resulting from the oil price increases.

While an elaborate analysis, such as the ones discussed in the pre-
ceding section, of gas industry costs is heyond the scope of this study,
this section will present a brief overview of cost trends in the post-
embargo period. The data T will present show increases in many cate-

gories of gas industry expense which were well above general inflation.
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While I will discuss several alternative explanations, the data leave
open the possibility that at least part of the increase was due to
increasing institutional costs.

The first subsection examines these cost trends for all investor-
owned gas firms, whether pipelines or distribution companies. The
second subsection repeats the analysis for FERC-regulated pipelines
only. Better data on these latter firms are available then on all
investor-owned gas firms, including breakdowns of transmission expense

and general and administrative expense.

6.3.1 Costs of All Investor-Owned Gas Utilities

The principal published data on the entire investor-owned gas util-
ity industry are the figures compiled by the American Gas Association
(A.G.A.) and published in their annual Gas Facts. Although this source
is lacking in detail, it is sufficient to provide an overview of gas
industry cost trends. Table 5 gives a breakdown of investor-owned gas
utility costs, in nominal dollars, for the years 1973 and 1981. The
A.G.A. has not compiled statistics on the volume of gas sales by these
investor-owned companies prior to 1974. It can, however, be determined
that in both 1974 and 1981 investor-owned companies accounted for about

25% of all gas industry final sales8 and that between 1973 and 1981 all

8American Gas Association, Gas Facts 1978, Table 67, p. 86 and Gas Facts
1981, Table 70, p. 90.
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TABLE 5
BREAKDOWN OF COST
ALL INVESTOR-OWNED GAS UTILITIES

1973 1981
(million §) (million $) % change
Gross Operating Revenues 20,585 102,138 +396%
Cost of Gas Purchased or Produced 11,247 79,391 +606%
Value Added 9,338 22,747 +144%
Operating Expenses
Transmission 564 3,211 +469%
Storage 151 446 +195%
Distribution 558 1,078 + 93%
Customer Accounts 435 1,122 +158%
Sales 131 169 + 29%
Customer Service - 199 -
General and Administrative 976 2,729 +180%
Administrative and General 2,815 8,954 +218%
Maintenance Expenses
Transmission 132 421 +219%
Storage 23 82 +257%
Distribution 346 705 +104%
Other 19 49 +158%
520 1,257 +142%
Depreciation 1,381 2,768 +100%
Taxes 2,043 5,070 +148%
Operating Income 2,579 4,698 + 82%
Producer Price Index (1967 = 100) 134.7 293.4 +118%

SOURCES: 1973 cost data from American Gas Association, Gas Facts 1973,
Tables 99, p. 124, and 109, p. 134; 1981 cost data from American Gas
Association, Gas Facts 1981, Tables 133, p. 160, and 138, p. 165;
producer price index data from Bureau of the Census, Statistical
Abstract of the United States 1982-83, p. 454.
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gas industry final sales declined from 16.1 to 15.0 billion cubic feet,
or 6.7 percent.9

Despite the decline in gas volume, Table 5 shows that many cate-
gories of gas industry expense increased faster than general inflation
during this period, which was 118 percent as measured by the producer
price index.10 This as one would expect in an environment of increas-
ing institutional costs. There are, however, other possible explana-
tions which deserve further examination.

The large increase in transmission operating expense is explained,
at least in part, by the fact that a major portion of this expense is
for compressor fuel, which increased rapidly in price during this
period. It may also be partly explained by a trend toward utilities
contracting with each other for gas transmission and compression.
Contracting would cause the expense of moving a given unit of gas to be
double-counted in the data, once as payments by a contractee and once as
actual cost of transmission by a contractor. Hence a trend toward more
contracting would cause the data to overstate the actual increase in
transmission operating expense. Unfortunately, the A.G.A. did not
collect a breakdown of transmission expense which would allow one to
isolate these two factors.

Another possible explanation is that the rising value of energy

made it economical for gas firms to increase expenditures on efforts to

9American Gas Association, Gas Facts 1981, Table 67, p. 87. A 1.0225
quadrillion b.t.u. per billion cubic feet conversion factor was assumed.

10Calculated from the producer price index reported in Bureau of the
Census, Statistical Abstract of the United States 1982-83 (Washington,
DC: Government Printing Office, 1982), p. 454,
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conserve compressor fuel and reduce system leakage. This might help to
explain not only the increase in transmission expense, but the increases
in the maintenance categories as well.

The increase in storage expense may be at least partly attributable
to the cost of operating new storage facilities built by gas utilities
in the late 1970's in the face of a shift in their market away from
industrial customers toward residential and commercial customers, whose
demands fluctuate more. One should not, however, overstate the effect
of this shift: residential and commercial customers accounted for 44.1
percent of gas utility final sales volume in 1973, while the same figure
was 45,3 percent in 1981.11 Both storage and distribution operating
expense also include a certain amount of compressor fuel cost which is
not broken out in the A,G,A., data.

Finally, the large increase in administrative and general expense
could be due to rising gas prices, which justified more careful analysis
of management decisions. The more complicated regulatory environment of
the late 1970's may also have increased the administrative burdens on

managers.

6.3.2. Costs of FERC-Regulated Pipelines

FERC collects a variety of statistics on the pipelines they

regulate, which is published each year in the Statistics of Interstate

Natural Gas Pipeline Companies. Table 6 presents a breakdown of costs

for all class A and B FERC-regulated pipelines for the years 1973 and

HAmerican Gas Association, Gas Facts 1981, Table 67, p. 87.
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TABLE &
BREAKDOWN OF COST
ALL CLASS A AND B FERC-REGULATED PIPELINES

1973 1981
(million §) (million $)
Gross Operating Revenues 9,870 55,710
Cost of Gas Purchased or Produced 5,296 43,733
Value Added 4,574 11,977
Operating Expenses
Transmission
Compressor Fuel 164 1,125
Transmission by Others 200 1,115
Other Transmission Expense 235 684
599 2,924
Storage
Compressor Fuel 6 47
Other Storage 79 269
85 316
Distribution 77 190
Customer Accounts 53 213
Sales 20 17
Customer Service - 24
Administrative and General 402 1,364
1,236 5,048
Maintenance
Transmission 119 355
Storage 12 52
Distribution 43 122
174 528
Depreciation 8523 1,660
Taxes 915 2,096
Operating Income 1,428 2,646
Producer Price Index (1967 = 100) 134,7 293.4

change

+460%
+727%
+162%

+586%
+457%
+191%
+388%

+683%
+241%
+272%

+147%
+302%
- 15%
+239%
+308%

+198%
+333%
+184%
+204%
+102%
+129%
+ 85%

+118%

SOURCES: 1973 cost data from Federal Power Commission, Statistics of
Interstate Natural Gas Pipeline Companies 1973, pages 101 and 507-501A;

1981 cost data from U.S. Energy Information Administration, Statistics
of Interstate Natural Gas Pipeline Companies 1981, pages 84 and 144-146;

producer price index data from Bureau of the Census, Statistical
Abstract of the United States 1982-83, p. 454.

NOTE: Figures may not add due to rounding.
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1981. Class A and B pipelines are those having more than one million
dollars per year in operating revenues. During the period from 1973 to
1981, total natural gas sales by these pipelines declined from 16.5 to
15.2 billion cubic feet, or 8§ percent.12 Like the data for all
privately-owned gas utilities, the data for FERC-regulated pipelines
shows that many categories of expense increased substantially faster
than general inflation during this period. It will be recalled that
inflation, as measured by the producer price index, was 118 percent
hetween 1973 and 1981.

Again, the largest increase, as measured in both dollars and
percent, was in transmission operating expense. In this case, however,
the data do allow one to break-out the cost of compressor fuel and
payments to other gas utilities for transmission and compression
performed under contract. Table 6 shows that even when these two
explained sources of cost increase are excluded from transmission
operating expense, the remaining costs ("other transmission expense")
still increased by 191 percent between 1973 and 1981. These remaining
costs consisted principally of supervision, labor, and supplies needed
for routine cleaning, lubrication, monitoring, and control of transmis-

13

sion facilities. Increasing energy conservation expenditures are one

12U.S. Energy Information Administration, Gas, p. 30. Note that most

gas pipeline sales are for resale. The pipeline sales volumes quoted
exceed the final sales volumes for the entire gas industry quoted in
Section 6.3.1 because some gas may be rescld by several pipelines prior
to final sale.

13Detailed descriptions of each expense classification are contained in
Code of Federal Regulations, title 18, part 201, items 700-932 (1983).
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possible explanation for the increase, increasing institutional costs
are another. 1In a similar manner, one can break-out the cost of com-
pressor fuel used in the operation of gas storage facilities. Table 6
shows that even when this cost is excluded, the remaining gas storage
operating expense ("other storage") still increased 241 percent between
1973 and 1981.

The FERC data also give a breakdown of administrative and general
expense, as shown in Table 7. One cannot rule out the possibility that
a justifiable need for more careful analysis of management decisions or
an increasingly complicated regulatory environment explain these
increases. However, it is interesting to note that three categories of
administrative and general expense which might be expected to contribute
to management utility showed especially large increases. These are
office supplies and expenses (which includes communication services and
travel expenses), outside services employed, and rents. This would
suggest the possibility of increasing institutional costs.

The author tried two other approaches to the analysis of gas pipe-
line administrative and general expense., These were testing for a cor-
relation between the gas acquisition costs and the administrative and
general expenses of individual pipelines, and a comparison of the
increases in administrative and general expenses of gas pipelines with
those of o0il companies and electric utilities. These approaches did not

produce definitive results, and are therefore discussed in the appendix.
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TABLE 7

BREAKDOWN OF ADMINISTRATIVE AND GENERAL EXPENSE
CLASS A AND B FERC-REGULATED PIPELINES

Salaries
Office Supplies and Expenses

Administrative Expenses
Transferred Credit

Outside Services Employed
Property Insurance

Injuries and Damage

Employee Pensions and Benefits
Franchise Requirements
Regulatory Commission Expenses
Duplicate Charges-Credit
General Advertising
Miscellaneous General Expenses
Rents

Maintenance of General Plant

TOTAL

1973 1981
(million $) {million $)
124.2 407.3
52.8 221.4
(17.4) (100.5)
37.2 177.1
15.8 37.3
12.8 40.1
102.3 353.2
.7 2.1
7.8 21.0
(.4) (3.5)
7.7
&4.4 122.6
17.3 62.2
4.3 15.5
401.9 1363.6

o

change
+227%

+319%

+376%
+136%
+213%
+245%
+200%

+169%

+176%
+260%

+260%

+239%

SOURCES: 1973 data from U.S. Federal Power Commission, Statistics of
Interstate Natural Gas Pipeline Companies 1973, p. 501A; 1981 data from

U.S5. Energy Information Administration, Statistics of Interstate Natural

Gas Pipeline Companies 1981, p.

147.

NOTE: Figures may not add due to rounding.
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6.4 Conclusion

This chapter has briefly surveyed some of the available data and
studies for evidence which might relate to the hypotheses proposed in
the earlier chapters. The available data strongly suggest that major
gas pipelines are buying gas with a marginal cost exceeding its marginal
revenue product, as one would expect under a regulatory restriction on
capital investment. Evidence on the effect of rate-of-return regulation
and wellhead price contreols on institutional costs is more tentative,
diue to difficulties inherent in attempting to measure institutional
costs, and the limited amount of empirical research addressing the issue
of institutional costs in regulated firms. The data and studies discus-
sed in this chapter are, however, consistent with the hypotheses that
institutional costs can be affected by regulation, and that, in particu-
lar, a reduction in the allowed rate of return or wellhead price

controls lead to higher institutional costs.

6.A Appendix--Further Discussion of Administrative and General Expenses

6.A.1T Individual Pipeline Data

Under the theory presented earlier, if all else were held the same,
a pipeline's institutional costs would vary inversely with the pipe-
line's average wellhead gas purchase cost. Hence, if it were observed
that those pipelines with the lowest average gas purchase costs had the
highest administrative and general expenses per unit of gas sold, or
that those pipelines with the smallest increases in average gas purchase

costs in the 1973-81 period had the largest increases in administrative
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and general expenses per unit of gas sold in this period, this would be
evidence tending to support the theory. The principal problem with the
approach 1s that there could be other explanations for such an inverse
relationship as well. For example, a pipeline which purchases gas
through a middleman might have a higher gas cost, but lower administra-
tive and general expenses, than one which purchases directly from
producers.

Table 8 shows the 1973 and 1981 administrative and general expenses
per thousand cubic feet {m.c.f.) of gas sold, and the 1973 and 1981
average wellhead gas costs per m.c.f. for the 20 largest interstate gas
pipeline companies as measured by 1987 revenues. A regression of 1981
administrative and general expense per m.c.f. on 1981 average wellhead
gas cost per m.c.f. yields the following result:

A and G Expense = -.0200(Gas Cost) + .1123
(.0089)

20 Observations RZ = .220.
The standard error of the coefficient of gas cost is shown in parenthe-
sis. A t-test indicates that this coefficient is significant at the 925%
confidence level,
A regression of the 1973-1981 increase in administrative and
general expense per m.c.f. on the 1973-1981 increase in average wellhead

gas cost per m.c.f. yields the following result:

A and G Expense = -.0139(AGas Cost) + .0753
(.0081)

20 Observations R2 = J142.
A t-test indicates that the coefficient of gas cost is not significant

at the 95% confidence level.
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TABLE 8
ADMINISTRATIVE AND GENERAL EXPENSE VS. GAS COST
20 LARGEST INTERSTATE PIPELINES

1

A and G per m.c.f. Gas Cost per m.c.f.

1973 1981 1973 1981
EL Paso + Northwest? .0259 .0982 .27 2.41
Columbia L0142 L0443 .33 2.54
Transco . 0204 L0617 .25 2.88
Tenneco L0143 0531 .21 2.20
United L0104 .0590 .26 2.52
Natural Gas Pipeline L0256 .0788 .23 2.03
Texas Eastern .0210 L0534 .26 1.97
Michigan-Wisconsin .0225 .1291 .28 2.46
Northern Natural .0253 . 1070 .21 1.84
Southern .0208 .0597 .25 2.50
Panhandle Eastern L0246 .0756 .27 2.16
Consolidated .0300 .0669 43 2.52
Texas Gas .0136 . 0431 .27 2.1
Trunkline .0182 L0436 248 2.43
Pacific Gas Transmission .0051 .0233 .35 4.82
Midwestern .0065 .0243 .33 3.35
Colorado Interstate L0244 .0831 .19 2.50
Cities Service 0119 .0536 .20 2.15
Transwestern .0058 .0459 .25 2.36
Mississippi River .0163 .0323 .38 2.67

SOURCES: 1973 data from U.S. Federal Power Commission, Statistics of
Interstate Natural Gas Pipeline Companies 1973, pp. 501<511A and pp.
301-311; 1981 data from U.S. Energy Information Administration, Statis-
tics of Interstate Natural Gas Pipeline Companies 1981, pp. 144-19% and
pp. 124-140,

NOTES:

1Gas cost per m.c.f. is "total production expenses" as defined by the
FERC divided by "total natural gas sales." "Total production expenses"
includes the cost of both produced and purchased gas.

2El Paso Natural Gas spun-off Northwest Pipelines in 1974.
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The negative sign of both coefficients is as one would expect if
institutional costs were subject to an income effect. Although the sign
of the first coefficient is significant, I believe it would be prudent
not to put too much weight on this result without a more thorough inves-
tigation of other factors which might influence administrative and

general expense.

6.A.2 Comparison with Other Industries

The post-embargo increases in gas firm administrative and general
expenses may be compared to those of other firms whose products also
rose significantly in price during this period. If the increases in
administrative and general expenses tended to be larger for gas firms,
this would be evidence that the increases for gas firms were due to
something unique about the gas industry, such as regulation-induced
increases in institutional costs. In this section I compare the in-
creases in gas firm administrative and general expenses to those of
electric utilities and oil companies.

Both the gas and electric utility industries were subject to simi-
lar increases in the value of their product in the 1970's, and both were
subject to similar systems of rate-of-return requlation. However, only
gas firms were subject to wellhead price controls. Hence, it is
tempting to argue that the administrative and general expenses of gas
utilities should have increased more quickly than those of electric
utilities under the theory presented here. The problem with the argu-

ment is that the costs of generating electricity in existing facilities
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did not increase as quickly as energy costs generally. The costs of
hydro-generation were virtually immune to energy price increases; the
costs of gas and oil generation were held down by government price regu-
lation; even increases in the costs of coal and nuclear generation were
frequently delayed by long-term contracts. The availability of low-cost
electricity from these sources could have had an impact on electric
utilities much like the impact of wellhead price controls on gas util-
ities.

It is easy to make such a comparison of gas and electric util-
ities. FERC collects statistics on major privately-owned electric util-
ities in a format essentially the same as that used for gas utilities.
These statistics show that administrative and general expense for class
A and B privately-owned electric utilities increased from $1.681 billion
in 1973 to $5.170 billion in 1981.“+ This is a 208 percent increase,
or a 145 percent increase after adjustment for the 26 percent increase
in sales (in megawatt-~hours) over this period.15 It will be recalled
that this compares to a 180 percent increase for all privately-owned gas
utilities, or a 200 percent increase after adjustment for the roughly 7
percent decline in sales (in billion cubic feet). It also compares to a
239 percent increase for all class A and B FERC-reqgulated pipelines, or
a 268 percent increase after adjustment for the 8 percent decline in

sales.

MU.S. Energy Information Administration, Statistics of Privately-Owned
Electric Utilities, 1981, DOE/EIA-0044(81) (Washington, DC: Government
Printing Office, June 1983), p. 32.

15ibid, p. 29.

294



One might similarly be tempted to argue that the theory presented
here would lead one to expect larger increases in administrative and
general expenses for gas firms than for oil companies, since oil compa-
nies are less-closely regulated. Unfortunately, the only available data
on 0il company administrative and general expenses are derived from an
income account item--"selling, general and administrative expenses"--
which the companies are required to provide in their 10-K reports to the
U.S. Securities Exchange Commission (S.E.C.). Table 9 shows this
expense in 1973 and 1981, and the percent change, for the 19 largest
U.S. o0il companies ranked in order of 1981 revenues. The table shows
that the increases tended to be substantially smaller than the 180 per-
cent increase in administrative and general expense for all privately-
owned gas utilities, the 239 percent increase for FERC-regulated pipe-
lines, or the increases of most individual pipelines (see Table 8}.

Although these results appear to be consistent with the theory,
there are some problems. The most obvious of these is the inclusion of
selling expenses in the oil company figures. It is hard to say how this
would have affected the data. In fact, it is even hard to say what are
meant by selling expenses; since the applicable S.E.C, regulations16
give no definition, the companies are presumably free to define selling
expenses as they see fit. A second problem is that oil companies them-
selves may have had their expenditures distorted by the price regulation

to which they were subject during most of this period, although I cannot

16Code of Federal Regulations, title 17, part 210.5-03 (1983).
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TABLE 92
CHANGE IN OIL COMPANY
"SELLING, GENERAL AND ADMINISTRATIVE EXPENSES"
1973-1981
AS REPORTED TO THE U.S. SECURITIES EXCHANGE COMMISSION

1973 1981

(million $) {(million §) % change
Exxon 2,277 5,231 +130%
Mobil 0il 1,209 2,921 +142%
Texaco 787 1,293 + 64%
Standard 0il (Cal.) 519 1,011 + 95%
Standard 0il (Ind.) 700 1,261 + 80%
Gulf N.A. 4,945 -
Atlantic Richfield 339 1,628 +380%
Shell 369 566 + 53%
Conoco 279 N.A, -
Phillips Petroleum 291 491 + 69%
Sun 231 917 +297%
Occidental Petroleum 239 1,016 +325%
Standard 0il (Chio) N.A. N.A. -
Cetty 0il 107 283 +164%
Union 0il 231 482 +109%
Ashland 0il 216 621 +188%
Amerada Hess 113 286 +153%
Marathon 0il 98 362 +269%
Cities Service 144 255 + 77%

SOURCES: 1981 data are from Moody's Industrial Manual, 1982 edition.
1973 data are from the most recent edition of Moody's Industrial Manual
reporting 1973 data for the particular company; this was the 1980 edi-
tion except for Mobil 0il (1978), Texaco (1978), Standard 0il (Cal)
(1979), Phillips Petroleum (1979); Sun {1979), Occidental Petroleum
(1978), Cetty 0il (1974), Amerada-Hess (1974), and Cities Service
(1979).
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say in which direction. The historical profit regulation to which oil
companies were subject might have induced higher institutional costs,
but the resulting environment of shortages would have discouraged
selling expenditures. Although oil price regulation ended in early
1981, the industry's adjustment to the deregulated environment was
undoubtedly not instantaneous. For these reasons, one must read the

evidence in Table 2 with a good deal of skepticism.
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CHAPTER 7

SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

Previous literature on rate-of-return regulation has focused
primarily on the possible incentives for an improper mix of capital and
other inputs, the Averch-Johnson effect. The possible lack of incen-
tives Tfor minimizing operating costs has received less attention. At
the same time, previous literature on the effects of wellhead price
controls has focused primarily on producers and consumers, with little
attention given to their effect on gas utilities. This study has there-
fore focused on how rate-of-return regulation might affect the operating
efficiency of gas utilities, including an analysis of how wellhead price
controls might affect operating efficiency.

The classic Averch-Johnson model of the rate-of-return regulated
firm produces two results which do not accord with the observed behavior
of gas utilities. First, the model results become indeterminate if the
allowed rate of return set by the regulators equals the cost of capital,
while the firm would simply go out of business if the allowed rate of
return is below the cost of capital. Yet in recent years, high interest
rates have raised the cost of capital to many utilities above their
allowed rates of return without a noticeable discontinuity in their

behavior. Second, the model tells us that the firm should purchase all
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non-capital inputs only up to the point where their marginal revenue
product equals marginal cost. Yet, it is common for gas utilities to
sell gas at a price less than the cost of the most expensive gas they
purchase. The new models proposed in this study were designed to ex-
plain these anomalous results.

To set up my first model, I argued that a firm could be thought of
as a set of contracts between individuals, where the contracts are en-
forced in an environment of imperfect information. The managers of such
a firm have some ability to pursue objectives of their own, which differ
from simple profit-maximization. For my purposes, the managers can be
thought of as maximizing a utility function of profits and the institu-
tional costs arising from their pursuit of other objectives, subject to
a2 budget constraint. The managers will choose to operate at the point
on the budget constraint which is tangent to the highest possible isou-
tility curve.

I showed how lowering the allowed rate of return alters the shape
of the budget constraint. This results in an income effect favoring
lower profits and lower institutional costs, as well as a substitution
effect favoring lower profits and higher institutional costs, assuming
an allowed rate of return above the cost of capital. With an allowed
rate of return equal to the cost of capital, the managers become insti-
tutional costs maximizers, who set consumer prices as if the firm were
unregulated. This raises the possibility that the regulator may face a
tradeoff: as the allowed rate of return is lowered from the unregulated

level to the cost of capital the firm's profits decline, but institu-
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tional costs tend to increase. The budget constraint is also defined
for allowed rates of return less than the cost of capital. In this new
model, there is no discontinuity in the firm's behavior at allowed rates
of return equal to or less than the cost of capital.

I then argued that, in addition to the setting of the allowed rate
of return, regulators have a second instrument of control available:
their power to approve or deny new capital investments. A second model
assumed that the firm managers were strictly profit-maximizing, but that
the regulators set a minimum marginal internal rate of return, or
capital productivity, requirement for new capital Investments. It was
shown how this would force the firm to purchase non-capital inputs, such
as gas, beyond the point where their marginal revenue product equals
marginal cost. Rules-of-thumb for how a price-minimizing or welfare-
maximizing regulator might set this capital productivity requirement
were derived.

The model-building concluded with a discussion of a third model,
combining both utility-maximizing managers and a capital productivity
requirement. I showed how increasing the capital productivity require-
ment altered the shape of the budget constraint. This produces an
income effect favoring lower profits and lower institutional costs, as
well as a substitution effect favoring lower profits and higher insti-
tutional costs, assuming an allowed rate of return ahove the cost of
capital. The effects of changing the allowed rate of return are like
those in the first model. As in the second model, the firm is still

forced to purchase non-capital inputs beyond the point where their
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marginal revenue product equals marginal costs. There are, however, no
simple rules-of-thumb for setting the capital productivity requirement
which a price-minimizing or welfare-maximizing regulator might follow.

I then turned to examine how a firm, as represented by this third
model, would respond to a third instrument used in gas utility regula-
tion: wellhead price controls. Assuming a binding ceiling on the well-
head price of all gas, I showed how the gas firm's institutional costs
tend to consume all rents on the available supply of gas beyond the
regulatory profit ceiling. Consumers, producers, and the firm's stock-
holders would all be worse off than they would be in the absence of the
wellhead price ceiling. If only some gas supplies are subject to a
wellhead price ceiling, but lowering the price ceiling is effective in
reducing the average cost of gas to the firm, I showed how the resulting
income and substitution effects both favor higher institutional costs.
In short, gas firms may have a tendency to absorb some of the rents
generated by wellhead price controls as institutional costs.

I concluded with a brief discussion of the empirical evidence for
these results. The theory suggests that gas utilities should be buying
gas with a marginal revenue product less than marginal cost. Available
evidence for 12 major FERC-regulated pipeline firms suggests that each
of these firms is paying more for high cost gas than the price it is
charging its consumers for this gas. The theory also suggests that
institutional costs should rise as the allowed rate of return is
reduced. This is consistent with the results of a published study

showing that electric utilities with the lowest profits paid the highest
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wages, since the payment of unncessarily high wages could be one form of
institutional costs. Finally, the theory suggests that institutional
costs should rise as wellhead price ceilings are lowered. A survey of
gas utility industry cost trends indicates that many categories of cost
increased more quickly than inflation in the 1973-81 period, when the
market value of energy rose more quickly than natural gas wellhead price
ceilings.

I believe this study has demonstrated some previously unrecognized
drawbacks of rate-of-return regulation and wellhead price controls. It
has also identified some potential tradeoffs faced by regulators between
gas firm capital investment, consumer prices, profit, and institutional
costs. The study has, however, necessarily been limited in three
respects, which need to be addressed in future research. First, the
view of gas firms and their regulation taken here has been a highly
abstract one; many important characteristics of the industry and its
requlation could affect the results and, therefore, deserve to he
examined. Second, no attempt has been made to quantify the tradeoffs
which have been suggested, yet such quantification will be necessary if
the model is to provide sound guidance to policymakers. Third, the
study has been limited to a rate-of-return regulated gas utility in-
dustry, even though there is no shortage of alternative regulatory
systems which might be considered, and even though the approach taken
here is not applicable only to gas utility regulation.

More specifically, there are six characteristics of the gas firms

and their requlation which I feel especially deserve further examina-
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tion. The first of these is regulatory lag. By providing the firm with
a short-term one-to-one tradeoff between institutional costs and before-
and before-tax profit, the introduction of regulatory lag into the model
would probably moderate, but not eliminate, the incentives for higher
institutional costs discussed here. Bailey and Coleman's study (see
Section 1.6) of the effects of regulatory lag on the Averch-Johnson
model provides an example of how regulatory lag might be introduced into
a model of rate-of-return regulation.

A second characteristic deserving further examination is the
difference between marginal and average costs of capital and allowed
rates of return. The difference between the average and marginal costs
of capital develops as a result of the firm's embedded cost of debt
remaining fixed in the face of a fluctuating market cost of capital.

The difference between the marginal and average allowed rates of return
develops out of deliberate regulatory policy, either in response to the
difference between the average and marginal cost of capital, or to give
the firm an incentive to do something, such as invest additional
capital. It would be especially interesting to examine the latter
motive critically by using a model to ask what kinds of incentives would
result from a change in the marginal allowed rate of return, without a
corresponding change in the average allowed rate of return.

A third characteristic deserving further examination is the
presence of institutional costs in capital investments. In this study,
I have assumed that institutional costs add only to the firms operating

costs, thus making an implicit assumption that capital projects are
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accomplished at minimum cost. Clearly, institutional costs exist in
capital projects as well, and rate of return regulation could have an
important impact on the managers' incentives to reduce these costs.

A fourth characteristic deserving further examination is the long
Life and low salvage value of most gas firm capital. This implies that
the managers cannot freely reduce capital investment in response to a
lower than expected allowed rate of return on sunk capital. Even
though, as I indicated in Section 2.4.1, the allowed rate of return used
by the managers in their decisionmaking is prospective over the life of
the investment, and therefore unlikely to change quickly, the constraint
on capital liquidation may occasionally become binding. The mere pos-
sibility that this could happen adds a new element of uncertainty to gas
firm capital investment decisionmaking, which could affect the results
of the model, probably moderating the incentives for capital investment.

A fifth characteristic deserving further examination is the moni-
toring and incentive structure under which the managers operate. I have
assumed a fixed monitoring and incentive structure, yielding a single
management utility function. Firm owners may actually find it in their
interest to modify their monitoring and incentive structure to suit the
regulatory and market environment. This could have some effect on the
model results, probably moderating the managers' incentives for non-
profit-maximizing behavior of all kinds. With an explicit representa-
tion of the monitoring and incentive structure it is also possible that
one might be able to derive restrictions on the shape of the managers’
utility function, which could be used to strengthen some of the model

results.
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A sixth characteristic deserving further examination is the
structure of wellhead gas markets. Section 5.2 discussed the impacts of
a generalized system of partial wellhead price controls on gas firm
institutional costs. A more thorough analysis is needed to determine
the impacts of partial wellhead price controls on consumer prices and
gas firm profits. Such an analysis might also examine the impacts of
specific price~control policies. For example, how do the effects of a
scheme which sets a ceiling on the price of most gas compare to one
which sets a ceiling on the price of only a small fraction of the gas
consumed? A broader analysis might consider the impacts of various
alternative ways structuring the wellhead gas market. For example, how
might gas pipeline firm behavior change if these firms operate as
contract carriers rather than buyers and sellers of gas?

Two approaches could be used in conjunction with each other to
quantify the tradeoffs suggested by the model. The first is to conduct
numerical simulations. Even a simple numerical version of the model
presented here could give one an estimate of the budget constraint faced
by the managers at various settings of the allowed rate of return,
capital productivity requirement, and wellhead price ceilings. Such a
model would give one an idea of how sensitive profits, institutional
costs, capital investment, and consumer prices are likely to be to these
instruments. One could also construct more elaborate models, designed
to represent the situation faced by the managers of an actual firm in
some detail. Using an assumed utility function, one could try to

predict the behavior of the firm. It is conceivable that some day
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regulators might he able to use such models directly in their decision-
making.

The second approach to quantifying the tradeoffs is through addi-
tional empirical studies of actual gas firms. The most immediate need
is for empirical work to demonstrate that institutlional costs respond to
changes in the allowed rate of return and wellhead price ceilings as hy-
pothesized here. The most promising approach would seem to be that used
by the studies cited in Section 6.2, Those studies constructed regres-
sion equations to explain some specific element of industry cost. If
the residual is correlated with differences in the allowed rate of
return or wellhead price ceilings, then one has some evidence for the
hypothesis. Specifically, it would be useful to see Hendrick's study of
electric utility industry wages extended to analyze the relationship
between wage levels and allowed rate of return. It would also be useful
to extend my analysis of the general and administrative expenses of
individual pipelines (see Appendix 6.A.1) to determine whether the
negative correlation between general and administrative expense and gas
purchase cost continues to hold even when differences in the type of gas
suppliers each firm deals with have been taken into account. More
advanced future work might use the numerical simulation models to
develop empirically testable hypothesis, and use empirical tests to
estimate the parameters of the numerical simulation models.

On a broader level, it would be useful to step back from the focus
of this study on rate-of-return régulation as now practiced. A new

study might consider how public utility regulation could be modified to
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reduce the inefficiencies which have been identified in this study. The
agency literature discussed in Section 2.1 has been producing some
promising work on principles for regulation under imperfect informa-
tion. Most of this work is highly abstract in nature. A further study
might examine how these principles could be applied to produce concrete
proposals for regulatory reforms. The models proposed here could be
modified, and used to examine these reforms.

The basic principle of this model, the utility-maximizing managers
who have institutional costs as one objective, could be applied to the
analysis of policy in many areas. The approach is especially appropri-
ate where the impacts of a policy on an organizations's operating effi-
ciency is an issue. As noted in Section 1.1 , the model as it stands is
generally applicable to any rate-of-return regulated firm. With suit-
able choice of the utility function, the model could probably be adapted
to any situation where charges are cost-based, such as health care and
government contracting. Finally, similar models might provide a new

approach to analyzing the efficiency effects of various subsidies and

taxes.
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