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ABSTRACT

Theoretical and empirical analyses of the long-run evolution of
energy markets rely on the concept of a backstop energy source: a hypo-
thetical source of unlimited quantities of energy, available at a
constant cost. In this paper we first develop a model which determines
the socially optimal rate of investment in backstop capacity and, simul-
taneously, the optimal rates of production of depletable and backstop
enerqy, under the assumption that the costs of creating backstep capac-
ity increase with the rate of investment., Using this model, it s shown
that it is optimal to expand hackstop capacity before depletion of
conventional energy and keep it idle while conventional energy is cheap.

In the second part of the paper we formulate and study a two-player
Stackelberg game madel decribing the market interaction between the
conventional energy cartel and a competitive backstop sector. In this
game the cartel which is the price leader seeks a dynamic limit-
pricing strategy against the backstop sector depicted as a follower
possessing perfect foresight. MNumerical examples show that the leader's
strategy consists of an initial phase of low production and high prices,
followed by a phase where price equals operating cost and backstop

capacity is idle.



I. Introduction

Depletable energy sources, primarily crude oil and natural gas,
have been the mainstay of world energy consumption for decades. As
these types of energy become more scarce and their costs rise, other
sources of energy and new technologies for utilizing energy will be
developed. Unconventional, nondepletable energy sources will gradually
replace conventional ones, and eventually the world energy economy will
make the transition from reliance on depletable to reliance on nondeple-
table energy.

Uncertainty about future energy demand and supply (both conven-
tional and unconventional) makes it difficult to predict the nature and
timing of this transition. Many of the technologies that will eventu-
ally play a major role in energy production have not yet been invented.
So it is impossible to describe in any detail the evolution of energy
production in the long-run. In particular, predictions of the market
shares of individual unconventional energy sources are subject to wide
margins of error.

The concept of a backstop energy source was 1nvented1 to simplify
the analysis of long-run energy issues. The backstop is a hypothetical
energy source that can produce unlimited quantities of energy at a
constant cost. That is to say, the unit cost of backstop energy is

assumed to remain the same no matter how high the current rate of

production or total cumulative production. The backstop represents in a

1By William Nordhaus. For typical examples of the use of this concept

in theoretical treatments of energy economics, see both Nordhaus [1979]
and Dasgupta and Heal [1979].



highly simplified way the entire range of energy sources and technolo-
gies which must eventually replace depletable energy.

The backstop concept is powerful because it solves the problem of
how best to plan consumption of the fixed stock of depletable energy.
The backstop provides, in effect, a long-run steady-state for the energy
economy: without it, available energy sources must inevitably be
exhausted and economic collapse may be unavoidable., Since the supply of
backstop energy is unlimited (by assumption), its unit cost sets a
ceiling for the price of depletable energy. Typically, then, an effi-
cient consumption plan for depletable energy is characterized by a price
which rises monotonically to the backstop cost. At the moment the price
reaches this level, the stock of depletable energy.is exhausted and the
transition to the backstop occurs.

The standard model of the transition is a social planning model in
which the production rates of two homogenocus resources {depletable and
backstop) are determined over all time so as to maximize the present
value of utility (net of extraction and production costs). In Figure 1
we sketch the results of this model. If depletable resources have a
zero production cost (for simplicity), and fhe unit cost of backstop
energy is ¢, the price {or marginal value) of energy risas monotoni-
cally until depletable resources are exhausted at date T. At that date
price equals the backstop cost and backstop production begins. Its rate
of production, which is constant for all time, equates price and
production costs. The two most notable features of thig model are,
first, that energy prices never rise above the cost of the backstop and,

second, that the transition from one source to the other occurs
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instantaneously; i.e., backstop output jumps from zero to its steady-
state level at the transition date.

This model may be an adequate abstract description of the efficient
allocation of depletable energy sources, but it is clearly inadequate as
a description of the evolution of the unconventional energy sector.2 In
this paper we focus on two potentially important aspects of the inter-
action between conventional, depletable energy and unconventional, non-
depletable energy. The first is the effect of capital costs on the
evolution of unconventional energy production capacity. The available
evidence indicates that capital costs for new energy technologies are
high, and that they rise rapidly with the rate of investment. So even
if the potential supply of backstop energy is unlimited, its cost may
not be.constant over successive vintages of capacity. One question we
seek to answer, then, is what is the optimal rate of investment in back-
stop capacity, and what is the resulting price path of enerqgy? The
second issue we address is the strategic interaction between the estab-
tished conventional energy sector and an unconventional sector whose
potential for'expansion constantly threatens the conventional sector's
market share. Spokesmen for OPEC, for example, have repeatedly
expressed their concern that high OPEC prices will encourage entry of
new energy sources. And potential producers of unconventional energy
(e.g., shale oil and tar sands) have similarly expressed their fear that
OPEC might retaliate against them by driving the world oi}l price below

their breakeven level. We model the interaction between‘these two

2For an overview of empirical modeling of the backstop see EMF [1982].
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sectors as é Stackelberg game, with the conventional sector the leader
and the backstop sector a competitive follower,

The paper is organized as follows. 1In Section II we lay out the
basic backstop capacity model, using a social planning framework. The
analytic solution to this model is developed in detail. Then in Section
ITI we develop a Stackelberg model in which the backstop capacity model
is used for the follower, and the leader is the depletable resource
sector. Finally, in Section IV we present the results of numerical
implementations of these two models. These numerical examples allow us
to compare the Stackelberg and social planning solutions, and to study
the sensitivity of the models to the rate at which backstop capacity

costs rise with investment, 1In Section V we summarize our results.



I1. Backstop Capacity Expansion: Social Planning Model
1. Model Formulation

In this section we develop a basic social planning model for the
evolution of backstop capacity and production., We assume a social
planner controls the rate of production of all energy resources., These
resources are of two types: depletable energy, which is cost]ess3 to
produce but avaiiable in limited amount, and backstop energy, which has
a constant production cost and unlimited (physical} availability. The
two resources are perfect substitutes; that is, a unit of each provides
the same gross utility to society.

Since our interest is primarily in the development of backstop
capacity, we make a distinction between the production or operating cost
of the backstop, and the cost of creating backstop capacity. In keeping
with the spirit of the backstop concept we assume backstop operating
costs are constant, regardless of the scale of production or the vintage
of capital used. The cost of investment for the backstop, on the other
hand, is not constant. Rather, we assume that beyond some critical rate
of investment (per year), the marginal cost of backstop capacity
increases.

The rationale for this crucial assumption is simple, Recall that
the backstop represents an entire industry, one which is expected to
grow very fast over a short time span. Such growth will place severe
demands on the supply of skilled labor (e.g., engineers), and on scarce’

materials (e.g., steel pipe). At some rate of growth these demands will

3Dep1etab1e energy is assumed here to have a zero extraction cost

solely for simplicity of presentation. See Heal [19767], and Oren and
Powell [1983], for a discussion of backstop models in which the cost of
one or both energy sources varies with cumulative production.
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begin to drive up the prices of these key inputs. Eventually, an abso-
lute scarcity of some input may impose a hard constraint on the
feasible rate of expansion of the backstop sector. For simplicity we
assume here that the investment cost function is a continuous and mono-
tonically increasing function of the rate of investment,

The social planner's problem is to choose the optimal rates of
production of depletable and backstop energy, as well as the rate of
investment in backstop capacity. We assume the existence of a concave
social utility function defined on total energy production. Further-
more, we assume the planner's objective is to maximize the present value
of social utility net of production and investment costs. The operative
constraints are, first, that total production of depletable energy
cannot exceed the fixed stock; second, that backstop capacity increases
each period by the rate of backstop investment4; and third, that back-
stop production is limited each period by the current level of backstop

capacity. Formally, the planner's problem can be written as follows:

Social Planning Model

Max fm e"rt[u(xt+ yt) - cy{t) - f(vt)]dt (2.1)

{xt,yt,vt} 0

4He assume zero depreciation of backstop capacity. Including it would
complicate matters with no reward in terms of insight,
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subject to

S(t) = x(t); S(0) = 0, S(t) < §
K(t) = v(t); K(0) = O
y(t) < K(t)

x(t) > 0, y(t) > 0, v(t) > 0,

where
x{t) = depletable resource production
y(t} = backstop production
v(t) = backstop investment
K(t) = backstop capacity
S{t) = cumulative production of depletable energy
S. = stock of depletable energy
u{+) = social utility function
f(+) = backstop investment cost function
C = backstop operating cost
r = social discount rate,

2. Solution to Sobial Planning Mode]5

The solution to the planning problem {2.1) is based on the

current-value Hamiltonian

5Further details concerning the solution are available in Powell
[1983].



H = u(xt+ yt) - oYy - f(vt) + As(t)xt + hk(t)vt + p(t)[Kt-yt] (2.2)

The adjoint variables ks(t) and Ak(t) measure the effect on the
objective of changes in the cumulative extraction of depletable
resources and backstop capacity, respectively. The variable p(t)

reflects the impact of the constraint that backstop production cannot

exceed capacity.
Each of the control variables x(t), y(t), and v(t)} must be
non-negative. Following the maximum principle we maximize (2.2) under

these constraints. This yields the first order optimality conditions:

u (xt+ yt) + hs(t) =0 if X > 0 (2.3)
<0 if ¥ =0,
u (xt+ yt) ~-c -pfty =0 if Yy >0 (2.4)
<0 if Yg =0
2 M (L) if v, =0.

The necessary conditions for an optimal solution are completed with the
adjoint eguations

A (L) = ra (t) {2.6)

»

N AE) = Ta (2) - wlt) (2.7)



and the complementary slackness conditions

Mt) > 0, n(t)K, - Yi1 =0,y <K (2.8)

t.
We begin our analysis of the backstop capacity model (2.1) by
observing that the necessary conditions ({2.3) and (2.6) together imply

that whenever the production of depletable energy is positive, marginal

utility must rise at the rate of interest. That is, when x(t) > 0
W(x, +y,) = -r_(0)e"T (2.9)
t £ S '

A number of properties of the optimal path of depletable energy
production follow from this result, First, we can see that production
of depletable energy must begin at time zero, since it is costless and
é]] units of backstop energy cost at least c. Next, we note that
production of depletable energy cannot extend over an infinite horizoh,
since the marginal utility of energy (from (2.9)) would eventually
exceed the cost of backstop energy. We denote the date of exhaustion of
the stock § of depletable energy by T. Finally, it can be shown that
the marginal utility of energy must exceed ¢ at T, and some backstop
capacity must be created before T. Both these properties follow from
the necessity of continuity in the path of ut{-).

We turn now to anralyze the behavior of backstop production, y(t).
We have seen that marginal utility rises exponentially on [0,T], while
depletable energy is being prdduced. At some time during this interval
u'(+) crosses ¢ from below. We denote this date by Ty.. Ass&me

for the moment that K(Ty) > 0. We will show that backstop output must
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equal capacity after Ty, when u'(") > ¢, and it must be zero before

that date6.

The rate of production of backstop energy is governed by (2.4) and
{2.8). The complementarity condition (2.8) implies that the multiplier
u(t) is positive when y(t) = K(t), and zero when v(t) < K{t). Is it
possible for the marginal utility of energy to be below ¢ and backstop
production to be positive? From (2;4), if y(t) >0, u'(*) - ¢ = uft).
But if wu'(-) < c, it follows that p(t) < 0, a contradiction of (2.8).
Thus, whenever u'(+) < c, y(t) = 0. Again, is it possible when
u'(s) >c that y(t) =0 If y(t) =0, and K(t) > 0, then (2.8) implies
p(t) = 0. But then from (2.4) u'(-) - ¢ < 0, a contradiction of our
original supposition. The only possibility, therefore, when u'(-) > c
is that y(t) = K(t). Thus, whenever u'(+) > ¢, backstop output equals
capacity. Finpally, if u'(+) = ¢, (2.4) tells us nothing about y(t)
beyond the fact that it 1ies between zero and the current level of
capacity.

The third control variable in (2.1) is v(t), the rate of backstop
investment. We have already remarked that the adjoint variable hk(t)
measures the marginal value of a unit of backstop capacity at time
T. Equation (2.5), which determines v(t), simply requires that (for
Ve > 0) the marginal cost of investment (f'(+))} equals its marginal
value Ak(t). And if the marginal cost of the smallest unit of

investment exceeds its return, investment is zero.

6Note that Ty could be zero; that is, u'(0) > c. In this case u'(e)

could rise exponentially as long as any depletable energy remained,
and backstop production would always equal capacity.
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To see how the rate of investment changes over time we must analyze

the behavior of Ak(t), using (2.7) and {2.8). First we define

n(t) = u(t) -u'(x +y ) +c. (2.10)

From our earlier discussion, we know that when u'(+) > ¢ (and Kt) > 0},
y{t) >0 and u'(+) - c - p(t) = 0. Thus, when u'{<) > c, n(t) = 0.
Similarly, when u'(+) <c, y(t) =0 and u'(+) - c - p{t) < 0. Soin
this case, n(t) > 0; thus in all cases ~n(t) > O.

Now we can recast (2.7) in a more meaningful form, first by
integrating it forward in time, and then by eliminating pn(t) using

(2.10). The first operation yields

n (1) = { e

The second gives

C My ) ol (1)

n (£)
Equation (2.11) shows that hk(t), the margina] value of a unit of back-
stop capacity at t, has two components., One is the present value of

net utility, u'(+) - c, measured over the infinite lifetime of a unit of
capacity created at t. The other component relates to the multiplier
w{t). From our earlier discussion we know p(t) = 0 when u'(+) > c,

and p(t) > 0 when u'(+) <c., Thus, when u'(+) > ¢, the value of kk(t)

comes solely from the utility component. But backstop investment may

have value even when wu'(+) < c; i.e.,, when the direct utility gained

12



from backstop investment is negative. This value arises from the fact
that the convex investment cost function penalizes too-rapid rates of
investment. The social planner will choose to create backstop capacity
even when its direct value is negative, and current capacity is idle,
because the cost of delaying investment and creating capacity more
rapidly at a later date is higher,

We can now establish the key property of this model: that backstop
investment heagins before Ty, the date when marginal utility first
reaches the operating cost of the backstop. Assume to the contrary that
TV,_the date backstop investment begins, is later than Ty. If
investment begins at Tv’ then Ak(t) < fr(0) for t < TV and

MATS) > F1(0) at T . But turning to (2.11) we see that & (t) <

k
0 for t > Ty since u'(+) > ¢ and p(t) > 0. Thus, if lk(Tv)_z
f'{0), hk(t) > £'(0) over some interval prior to T, which contradicts
the assumption that investment begins at Tv‘

Summarizing our results to this point, we have shown that marginal
utility rises exponentially on [0,T] while depletable energy is being
produced. At some date TV, when u'({-+) < c, backston investment
begins. At a subsequent date Ty’ when u'{+} = ¢, backstop production
turns positive and equals backstop capacity thereafter. From lTV to
Ty backstop capacity is positive and backstop investment continues, but
capacity sits idle.

Two 1ssues remain to be discussed. The first is the behavior of
the model after exhaustion of the depletable resource at, T. Since
u'(T) > ¢ and K(T} > 0, it follows that marginal utility can only fall
after T, since backstop capacity never depreciates. In fact it can be

shown using {2.11) that backstop investment remains positive after T,
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-as does backstop production, and the marginal value of energy approaches

a lower asymptote given by
u'(Kt) =c +r f'{0).

In effect this says that the last unit of backstop capacity built must
return an amount that covers operating costs plus the amortized cost of
capacity.

The second issue concerns the path followed by backstop invest-
ment, From {2.11) we can easily show that the rate of investment must
be declining after 1&, since p(t) = 0, and u'(s) - ¢ is decreasing.

But from T to T
v N

Thus we cannot use (2.11) directly to infer the behavior of the rate of

p(t) is decreasing while u'{(+) - ¢ is increasing.

investment. The following indirect argument establishes that backstop
investment isrinéreasing up to Ty. Since investment increases up to
Ty and decreases thereafter, it must reach its maximum rate at that
date.

We know that some backstop capacity is created during the interval
from Tv to Ty. We also know that backstop output is zero up
to T& and equal to capacity thereafter. We can, therefore view the
planner’s problem as that of attempting to choose the optimal endowment
of backstop capacity for society at Ty. This endowment, along with
the depletable resource stock S(Ty), determines the value society will
derive from energy consumption after Ty, when backstop output eguals
capacity. This argument implies that an equivalent formulation of the
backstop capacity model (2.1) would be to choose x(t), y(t), and v{t)

optimally from Ty forward, given that society inherits the optimal

14



capital stock K(Ty), and resource stock S(Ty), at Ty. Formally,

this equivalent model is

{XtT;z’Vt} {: e'rtEU(xt+ Ked - eKe = v )] dt + ¢[K(Ty), S(Ty), Ty]
subject to
S(t) = x(t) ; 5(T1,) = sTy , S(t) <3
K(£) = v(t) 5 K(T)) = S
where
T, ot
T SOy Ty e [Ty - ) 0
subject to
§(t) = x(t) ; S{0) = 0, S(t) < STy’
K(t) =v(t) ; K(0) = 0, K(T,) = KTy.

Here ¢ measures the optimal value of energy consumption given that

v(t) = C up to Ty, and the optimal capital endowment K(Ty) is created

by T.
Yoy
Now & is separable in x(t) and y(t). In effect, the optimal rate

of investment depends only on the cost of investment, and in no way on
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the rate of extraction of depletable energy. Thus we can solve for
v{t) in ¢ by solving
T

Max [ Y et flv,) dt
vy o

subject to

K(t) =v(t) ; K(0) = 0, K(T,) =7KTy.

The necessary conditions here are

and

From these conditions we can conclude that the marginal value of back-
stop investment rises exponentially on [O,T&]. Therefore, once Kk(t)
reaches the level where v(t) > 0, investment itself rises monotoni-
cally. This is as one would expect: given discounting, the cheapest
way to invest so that a given level of capacity is reached at Ty is
to start siowly and raise the rate of investment as the terminal date
approaches. We have thus proven that the rate of backstop investment
rises menotonically from TV to Ty, and falls monotonically thereafter,
The solution to the backstop capacity model can be summarized as

follows.

(a) On an initial phase, from 0 to T, depletable energy
extraction is positive and the marginal utility of energy rises
exponentially,

16



(b) Backstop investment begins before the date T  when the
marginal utility of energy equals c¢. The rate of investment
rises to a maximum at Ty and declines thereafter.

(c) Backstop production is zero up to T . After that date,
production equals capacity. Y

{d) In the long-run, backstop capacity approaches a steady-state
Tevel where marginal utility equals c+rf'(0).

We illustrate the solution to Model (2.1) in Figures 2a through d.

We see first that depletable energy is consumed on [0,T], (Figure 2b),

and marginal utility rises exponentially over this period (Figure 2a).

Backstop investment (Figure 2c) begins at some date TV, befare

exhaustion of the depletable resource stock and before the date T

when

u'(+) = c. Investment reaches its maximum rate at Ty and there-

after tapers off. Backstop capacity (Figure 2d) rises at an increasing

rate

between TV and Ty’ and at a decreasing rate thereafter.

Finally, backstcp production is zero up to Ty, and equal to capacity

thereafter. Since backstop production increases discontinuously at T,

Y

we can infer that extraction of the depletable resource must fall dis-

continuously at that date, so as to preserve the continuity of maryinal

utility.
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ITI. Backstop Capacity Expansion: Market Model
1. Model Formulation

In the previous section we analyzed a model in which the socially
optimal rates of investment and production of backstop energy were
determined along with the rate of production of depletable energy. All
energy sources were assumed to be under the control of a single, benevo-
lent agent. HNow we turn to a model in which the same variables are
determined by a market in which several agents compete. We assume
depletable resources are owned by a single agent with the power to
influence market price, and backstop resources are owned by a multitude
of small agents who individually Tack market power. To reflect the
differences in power between theée two competing sectors we model their

7, with the depletable energy sector

interaction as a Stackelberg game
as the leader and the backs;op sector as the follower. Both players are
assumed to have perfect foresight., The crucial difference between them
is that the backstop sector, as the follower, takes as given the deple-
table energy sector's production rate {or, equiva!ent]y; the price of
energy), while the depletable energy sector takes into account both the
effect its production has on price through the demand curve, and the
effect it has on backstop investment and production.

The Teader in this model is pulled in two directions. Its monopoly

power leads it to choose a low rate of production so as to garner high

7Stacke1berg models for depletable resource markets have been proposed
by Marshalla [1978] and Gilbert [1978]. Both develop models in which a
depletable resource cartel is the leader and all remaining depletable
resource producers (the "competitive fringe") together are the
follower, Gilbert's analysis is particularly interesting since he
studies the effects of capacity constraints on fringe production, Our
model differs from his in that the follower is the backstop sector
(there is no competitive fringe), and backstop capacity is endogenous.
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revenues. But high prices convey a signal to the backstop sector that
the return to investment is high. And the higher backstop capacity and
output, the Tower are the leader's profits. So the existence of the
backstop sector forces the leader to choose higher output rates and
lower revenues than it otherwise would.

The backstop sector here, as the follower, is essentially
controlled by the leader, Whatever price the leader sets determines
backstop investment and output. The backstop sector is passive in this
model, while the depletable energy sector is free to choose whatever
price path it can sustain, subject to the constraints imposed by market
demand and the backstop sector.

This model rests on five basic assumptions. First, we assume that
all energy resources, depletable and nondepletahle, are controlled by
either the backstop or depletable energy sectors. Thus, we ignore the
so-calied competitive fringe, producers of depletable energy who act as
price-takersg. Second, we assume the depletable enerqgy sector has
market power, while the backstop sector acts as a price-taker. Third,
as the Stackelberg leader the depletable energy sector takes into
account the reaction of the backstop sector to its own plans., The back-
stop sector, on the other hand, acts as if its decisions have no effect
on the leader., Fourth, we assume both players have perfect foresight.

Finally, we make the technical assumption that the dep]étab]e enerqy

81n Gilbert [1978] exogenous capacity constraints on the competitive

fringe play a central role. Gilbert shows that when fringe capacity is
expanding, the price set by the depletable resource sector may fall
over time. In Section IV we will show how backstop operating costs set
a floor for the price path, which typically falls from time zero toward
the Tevel .of backstop operating costs, then for a period of time stays

constant at that level, and finally rises again as depletable resources
near exhaustion.
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sector acts as the leader only up to an exhaustion date of its
choosing. This is not restrictive, since the exhaustion date can be as
early or as late as the leader chooses. Once the leader has exhausted
its resources, it leaves the market to the backstop sector, which
carries on as a competitive industry.

We base our model of the follower on the backstop model developed
in Section II, The backstop sector's objective is to maximize the
present value of profits, with the future price of energy taken as given
(i.e., fixed by the leader). A constant operating cost and convex
investment cost function are assumed. Finally, we assume the leader
depletes its resources entirely by some date T. After that date the
backstop sector is left on its own, with whatever capacity it inherited
at T.

The formal statement of the follower's problem is

Stackelberg Model --Follower
T

{erit} é e'rt[(Pt-c)yt - F(v,) Mt + o[T,K(T)] (3.1)
subject to
K(t) =v(t) ; K(0) =0
0 <y(t) <k(t), v(t)>o0
where

[T, K{T)] = Max fw e'rt[ P, -C - f dt
(T) o (Po=c)y, - F(v,)]

22



subject to
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the leader's problem can be written very simply if we leave the
constraints imposed by the follower implicit. Thus the Jeader in this

model solves:

Stackelberg Model --Leader

T

Max [ e U[P(x.+ v, )x, Tdt (3.2)
GodT 0 £ Y )%

subject to

S(t) = x{t), S(0) =0, S(t) =5

and the constraints imposed by the backstop sector.

The usual procedure for solving Stackelberg models of this type is
to determine the first-order conditions for the follower's problem, with
the leader's control variables taken as given. These equations are then
added as constraints to the leader's problem. For reasons which we will
discuss fully in Section 3 below, this procedure cannot be used here to
solve the leader's problem analytically. Instead, we will analyze the
leader's behavior using a numerical version of the model. 1In the
following section we discuss the solution to the follower's problem.
Following that we discuss the difficulties in achieving an anlytic

solution to the Teader's problem, and offer some conjectures as to
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general properties it might have. In Section IV we will examine the
results of a numerical version of the full model, and compare the

Stackelberg model with the social planning model of Section II.

2. Solution for Backstop Sector
The follower's problem in the Stackelberg model is closely akin

to Model 2.1. We will, therefore, suppress some of the details of the

solution. - The Hamiltonian for the follower is

Ho= (PeClyy = Flvy) + A (E)vy + u(E)DK -, ] - (3.3)

Here we have added the superscript f to the adjoint variable cor-
responding to the investment constraint as a reminder that this variable
measures the marginal value of capacity to the follower. The multiplier
p{t), of course, reflects the value of being able to produce below
capacify. |
The first-order conditions arising from maximization of (3.3) are

as follows:

P{t) - ¢ - p(t) =0 when y(t) >0,
(3.4)

<0 when y{t) = 0.

Fr(vy) = A(t) when v(t) > 0,
(3.5)

>0, when v(t) = O.
K(e) = rag (1) - u(t), ‘,, (3.6)
p(t) >0, w(t)[K-y,I=0. (3.7)
y(t) < K{t) (3.8)
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We first turn to the analysis of the follower's production plan.

We examine three cases:

(a) P(t) <c
{(b) P(t) >c
(c) P(t) =c.

First, if P{t) < ¢, it stands to reason that backstop production should
be zero since revenues fail to cover operating costs. Formally, this is
a consequence of (3.4) and (3.7), since p(t) > 0 and P(t)-c-p(t) =0
when y(t) > 0. Thus it is a contradiction to suppose y{t) > 0 and
P(t) < c. A similar argument shows that y(t) = K(t) when P(t) > c.
For suppose instead that P(t) > ¢ and y{t) < K{t). Then from the com-
plementarity condition (3.7) u(t) = 0. But if p(t) = 0 and y{t) >0,
(3.4) implies P(t) = ¢ , a contradiction. Finally, suppose P(t) = c.
In this case (3.4) tells us notﬁing about y(t). A1l that we can say is
that 0 < y(t) < K(t); that is, when price exactly covers operating
costs, the backstop sector is indifferent as to its rate of output.
Summarizing this analysis, we can see that the output of the backstop
sector at any one time is completely determined by the relationship
between the price of energy and the operating cost c¢. When P exceeds
¢ all backstop capacity is fully utilized; when P 1is less than ¢
all capacity is idle, and if P should equal ¢ exactly, backstop out-
put is indeterminate between zero and capacity.

We now turn to the determination of backstop investment. Equation
{3.5) has the usual interpretation: the optimal rate of investment at
time t equates the marginal cost of investment to its marginal value,

A;(t). Now XZ(t) is determined from (3.6). Recalling our earlier

25



1}

discussion, we see that if P(t) > ¢, y(t) = K(t) and p{t) = P{t) - c.

On the other hand, if P(t) < c, y(t) = 0 and by (3.7) u{t) = 0. Thus

we can replace p{t) by P(t) - c in {3.6) and integrate forward,
giving an explicit expression for Rz(t):

N (t) =IT er‘(t—'r)[ T f
K ! P, cldr + Kk(T). (3.9}
Once again, we can interpret Ki(t) as the present value of profits
resulting from a marginal increase in capacity at time t. The
multiplier p(t) automatically reflects the fact that when P(t) < ¢
the backstop sector shuts down and incurs no loss, so the value of
capacity inciudes only the profits made when P(t) > c.

As stated previously, the behavior of the backstop sector in this
Stackelberg model is entirely determined by the leader, The leader sets
the price path from time zero to exhaustion at T (and implicitly for
all later periods, since the behavior of the backstop is determined by
the capital stock it inherits at T and the assumption of competitive
behavior thereafter), and backstop investment and output are determined
as described above, The leader's optimal production path must be chosen

in the Tight of the follower's reaction. We turn to this problem in the

following sub-section.

3. Solution for Depletable Energy Sector

In Section 1 we described the procedure for sofving dynamic
Stackelberg games analytically: the response of the follower is
summarized by the first-order necessary conditions, and these equations

are added to the leader’s problem as constraints. In our model this
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procedure runs into two sorts of difficulties. One arises from the
indeterminacy of backstop production when P{t) = c; the other from the
non-differentiability of some of the constraints which represent the
follower. We will discuss these difficulties in turn.

In Section 2 we noted that if the Teader should choose to set the
price equal to backstop operating cost, the actual rate of backstop
production is indeterminate between zero and K(t). Technically,this
indeterminacy is a violation of the basic Stackelberg paradigm.9 If the
response of the follower to any one of the leader's possible strategies
is not unique, then there is indeterminacy in the attainable values of
the leader's objective. Consequently, the leader's optimization problem
cannot be solved. What is missing in this case is an agreement between
the leader and the follower on how to divide the market during any
interval over which P(t) = c. 1If, for example, we knew that backstop
output would always equal capacity, the leader could unambiguousty |
predict the follower's behavior. Alternatively, we could assume
backstop output drops to zero whenever P(t) ; ¢. HNeither of these
possibilities is required by the model as stated; both are, however,
consistent with it. A similar problem of indeterminacy has arisen in
other applications of the Stackelberg paradigm to resource market
models (e.g., Marshalla [1978]).

The second source of difficulty with the model of the follower is
that the constraints which specify both backstop output and investment

are not differentiable. Thus investment is determined by the relations

9See Basar and Olsder [1982], p. 126.
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. _ f
f (Vt) = lk(t) when Vi > 0

and

I

f
kk(t) when ve = 0.

An equivalent expression for the relationship between v(t) and h:(t)

is
v, = Maxfo, (F)7 T ()] O (3.10)

where (1”)'l denotes the inverse function of f'(-).

Now for the leader, v(t) is a control variable and hz(t) is a
state variable. Thus (3.10) is a constraint involving both state and
control variables, and it is not generally differentiable at v(t) = 0.
By the same token, the condition which determines backstop output,
(3.4}, is a non-differentiable relationship between the output rates of
the leader and follower. The presence of these two non-differentiable
constraints rules out use of the Maximum Principle in solving the
teader's problem analytically. Consequently, we resort to numerical
methods the results of which are discussed in the following section.

Before turning to these results, we offer some conjectures as to
general properties that the solution to the Stackelberg model may have,
based partiy on educated intuition and partly on the numerical results
themselvas, First, we note that for the leader, choosing prices in the
vicinity of backstop operating costs is crucial for determining the
response of the backstop sector. As we will see subsequently, the

lTeader's strategy can include a phase where it sets the price equal to
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backstop operating cost and drives backstop output to zero. We suggest
that this is a general property of this modei: that the leader will
control backstop investmeni in early years by threatening to lower
prices drastically in later years. The other side of this policy is to
allow prices to be high in early years, so as to reap maximum revenues
early. This occurs in our numerical examples, and we suspect it is a
general property except in the following circumstance. Recall that in a
depletable resource problem with elastic demand, when a monopoly owns
the resource, equilibrium requires marginal revenue to rise at the rate
of interest. MNow if in our model the leader controlled a very large
resource stock, it might choose an initial marginal revenue, and
possibly price as well, below the backstop operating cost. Here the
teader prices below backstop costs not to delay entry of the backstop,
but to dispose of the large resource stock optimally, HNow what happens
when prices rise to the level of backstop operating costs? There are
two possibilities: either prices continue to rise, or they stay at the
Tevel of backstop operating costs for some time. We suggest on the
basis of our numerical results that the Tatter case is more likely, but
this remains to be proved.

Finally, we offer a comment on how this model might change if the
competitive fringe were taken into account. The competitive fringe
consists of producers of depletable energy with no market power., In
Stackelberg models related to ours, Marshalla's for example, the
equilibrium conditions for the fringe impose an exponentja] price path
on the leader in early years, before fringe reserves are exhausted. In
our model we would expect the presence of the fringe to smooth out some

of the discontinuities in the leader's strategy. Thus if the leader
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faced both a competitive fringe and a backstop sector constituted as in
our model, it would have less power to stave off the backstop and would
most likely not be able to drive it out of the market completely.

Again, these general properties, if true, remain to be established.
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IV. MNumerical Examples
1. Formulation

In order to provide illustrations of the quantitatfve behavior of
the social planning and market models, we have formulated equivalent
discrete-time versions of the continuous-time models analyzed earlier.
These problems were solved numerically using the general constrained
nonlinear optimization program MINOS/Augmentedlo.

A common set of parameters was used for all examples. We took for

market demand the simple Tinear function
P(t) = 100 - .5 (xt + yt).

The social planner's objective function was taken to be the social

surplus generated by this demand curve. The stock of depletable

resources was set at 1000. Finally, the backstop'operating cost was set

at 30 and the quadratic backstop investment cost function

f(vt)'= 1/2 « vt2 was used, with the slope parameter o« taking on

the values 0.1, 1.0, 5.0, and 10.0 in the sensitivity experiments

reported be1ow.11
- The formulation of the social planning probliem in discrete time is

straightiorward. The results reported below are based on the solution

of the following non-linear program.

10Deveﬁoped by Murtagh and Saunders [1977], {1980]f

11Assuming a quadratic investment cost function probably overstates the
penalty associated with rapid backstop capacity expansion. However,
our results show that the actual rates of backstop investment chosen
in the model are generally well above zero, suggesting that the
properties of the investment cost function at low rates of investment
may not be critical.
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T

Max Y (1+r‘)—t {u(xt+ yt) - CYy- f(vt)} (4.1)
{Xt’yt’vt} t=1 '

subject to
T
Loox(t) = 3
t=1
K{t+1) = K(t) + v(t); t =1, ..., T-1
y(t) <K(t)s fely e, T
x(t), y(t), v(t) > 0; t=1, ..., T

In contrast to the simpler social planning model, converting the
Stackelberg model to discrete time involves a number of steps and
several additiconal assumptions. The first step is to solve an
appropriate discrete-time version of the follower's problem (4.1). The
first-order conditions from this solution must then become constraints

in the leader's problem. The follower's problem can be stated as

follows:
T £
Max (1) [P -c)y, - f(v.)] (4.2)
{y,,v,} t=1 vt t
t*'t
subject to
K(tkl) = K(t) + V(t) H t =1, «.., 7-1
0 ¢ y(t) < K(t) ; £l eaay T
vit) > 0 ; t =1, vauy T

If we introduce the multipliers p(t) and n(t) corresponding to the

constraints y(t) < K(t), and y(t) > 0, respectively, we can write the

first-order conditions for this problem as
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P(t) - c- u(t) + n(t) = 0 | (4.3)

f{v,) = A(t+1) (4.4)
MEF1) = (1+)A(E) - n(t) (4.5)
p(t) 2 0, w(t)IK, -y, I =0 (4.6)
n(t) > 0, oft)-y(t) =0, (4.7)

together with the constraints in (4.2).

Mow it can be shown that when P(t) > ¢, y(t) = K(t), and when
P(t) < c, y(t) = 0. And should P(t) =c, y(t) 1is indeterminate., This
is just what we would expect from our discussion in Section I1l.2. But
unless this indeterminacy in the follower's output rate is resolved,
there is no feasible method for solving the model numerically. Two
extreme approaches suggest themselves, One is to require the backstop
to operate at full capacity when P(t) = ¢, the other is to require it to
shut down completely. Since the depletable energy sector is the more
powerfﬁ] in our model, we adopt the second assumption here.

One difficulty remains in translating the first-order conditions
(4.3) - (4.7) into explicit constraints on the leader's optimization.
This is that the value taken by y(t), whether zero or K(t), depends on
the sign of P(t) -~ ¢. That is, if P(t) > ¢, y(t) = K(t), and if
P(t) < c, y(t) = 0. These relationships are not in a form which can be
used in MINOS/Augmented. But we can cast them in a useable form if we
make the additional assumption that at prices equal to or below the

backstop operating cost demand elasticity is such that the leader's

revenues rise with increasing prices. This is in fact a condition which
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is likely to hold, since operating costs are generally a small fraction
of the total costs of producing alternative energy. Under this
assumption the leader would never choose to set a price below ¢, because
its revenues would be greater at higher prices, and hence no competing
backstop production will come on the market until P(t) > c.

He now proceed to simplify the follower's first-order conditions.
First, we can eliminate n(t) since y(t) > 0 is quaranteed, Then we use

(4.3) to eliminate p(t) in (4.5). The resulting first-order conditions

for backstop investment are

1}

f'(vt) At+1) (4.8)

AMt+1l) = (1+r)0(t) - (Pt - c)_ (4.9)

Finally, we guarantee that y(t) = 0 when P(t) = c, and y(t} = K(t)

otherwise, by imposing the following pair of constraints:

P(t) > c
(¥, - K )(Py - ¢} =0. (4.10)

Now we come to the jmplementation of the leader's problem. The
leader's objective is simply
T

Max ) (1+r

)-t
{xt} t=1

P(xt+ yt)xt . (4.11)
The Teader faces the standard resource constraint Zg=1 x{t} <5, as
well as the constraints which summarize the reaction of the backstop

sector to the leader’s behavior. The leader's problem is stated in full

below:
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Max  § (1+r)7C P(x,+ v, )x (4.12)
| {x,} t=1 b
subject to 't

T

Lox(t) = 3
t=1

K{t+1) = K(t) + v(t) t=1, ..., T-1
f'(vt) = A{t+1) t=1, ..., T-1
At+1) = (1+r)A(t) - P(xt + yt) +C t=1, ..., T-1
P(xt + yt) > ¢ t=1, ..., T
y(t) <Kt) t=1, ..., T
(yt - Kt)(Pt ~c) =0 t=1. ..., T.

2. Base Case

Bése caée résu]ts for the social planning and Stackelherg models
are shown in Fégﬁres 3 and 4. In both cases the backstop operating cost
is 30 and the investment cost function is f(vt) = I/ZVE.

Examining the results for the social planning model first, we see
in Figure 3a that the price {or marginal utility) of energy rises from
an initial level around 22 to a maximum of 37 by period 12. As we would
expect on the basis of our earlier discussion, this is approximately the
date at which the depletable resource stock is exhaﬁsted. Figure 3b
shows depietable energy output declining gradually for the first six
periods Trom an initial level of 155, then declining steeply to zero by
period 11, Investment in backstop capacity (Figure 3c) Eegins in the
first period, and reaches its maximum at approximately the date that

price equals operating cost.
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Social Planning Model: Base Case
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Figure 3 (cont.) .

Social Planning Model: Base Case
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Figure 3d shows that idle capacity of over 62 units is in place by
the time backstop output begins. Of course, backstop output is zero
because the price is below operating costs during this early period. At
period & backstop production begins and it reaches the leve] of capacity
by the subsequent period. Thereafter production is always at capacity
since the price exceeds operating cost. And capacity continues to
expand, driving the price back down to the level of operating costs by
period 16. With some allowances made for the discrete nature of this
example, it is evident that all of the essential properties of the
social palnning model are exhibited here.

In Figure 4 we show the corresponding results for the Stackelberg
model. Figure 4d shows that the Teader chooses a price path which falls
from an initially high Tevel to the Jevel of backstop costs at period
4, For the next four periods price is pegged at 30: the leader
chooses to stave off backstop production and delay investment by keeping
the prices at the level of operating costs for a substantial period of
time. After period 8, prices are allowed to rise a few units above 30;
by the last period the expansion of backstop capacity and output has
brought the price back to 30. The production path the leader chooses
which generates this price path is shown in Figure 4b. For the first
three periods leader production is low, around 75 units. Then output
jumps to 140 units for periods 4 through 8: this is the interval during
which the leader takes the whole market and backstop output is zero. By
period 8 most of the leader's resources are exhausted; production falls
to zero by period 12. The leader's strategy, clearly, consists of an
initial quick-kill in which high revenues are secured by low rates of

production, followed by a period of Iimit-pricing in which the backstop

38



(a) '
30 - /—\

5 10 15 20
X, A
100}
(b} ~
5 10 15 20
Figure 4 ;

Stackelberg Model: Base Case

39



(c)

20

100 ¢

(d)

(cont.)

Figure 4

Base Case

Stackelberg Model:

40



sector is totally shut out of the market. The leader can afford to
allow prices.to be high in early years because the threat of a subse-
‘quent period of zero profits causes the backstop sector to invest in
capacity cautiously.

Backstop investment is shown in Figure 4c. The rate of investment
in this case is very high but falling in the first two periods; there-
after, investment increases stowly from about 8 to 10.5 units per year.
At period 8 investment reaches its maximum; it drops to zero by period
15, The most notable conclusion we can draw from these results is that
backstop investment is positive until the steady-state level of capacity
is achieved, even when the leader excludes backstop production from the
market for a lengthy period. The return to backstop investment can be
positive even when backstop output is zero. This is a result, again, of
the rising cost of backstop investment. The leader cannot stave off the
backstop forever, and when the leader's reserves run out, the price of
energy will rise above the Tevel of backstop operating costs, The
return on backstop investment will then be positive, but since there is
a cost penalty for investing too fast, it pays the backstop sector to
increase its capacity before it is actually needed; i,e., to add to
capacity even when existing capacity is standing idle.

The paths of backstop capacity and output which are'(indirect1y)
determined by the leader are shown in Figure 4d. Since backstop invest-
ment is positive until very near the terminal date, it follows that
backstop capacity grows steadily towards its asymptote, But backstop
output is not steady. 1In periods two and three, when a small amount of
capacity is in place and prices are high, backstop output is at capa-

city. By period four the leader has driven the price down to backstop
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operating costs, and backstop capacity lies idle until period 8. Capa-
city increases during this period, as we have remarked. So when the
leader relinquishes control at period 8, backstop output jumps from zero
to over 100 units. Thereafter, as price remains above cost, output
remains at capacity.

We conclude this section with some obéervations on the comparison
of the Stackelberg and socially optimal results. First, prices in the
socially optimal case start out below backstop operating costs and over-
shoot it only in later periods., Prices under the Stackelberg regime, by
contrast, start out high, fall to the level of backstop costs during an
intermediate phase and then drift higher. In later years prices under
the socially optimal regime are above the prices determined by the
Stackelberg leader. Backstop investment is also higher in the social
optimal case; at least for the first half of the total time covared, As
a result, capacity is higher in this early phase in the social optimum
case. Finally, backstop output in the social planning model is zero up
to period 6, at which point it jumps permanently to the Tevel of capa-
city. Backstop output in the Stackelberg model is more erratic, being
positive at periods 2 and 3, and finally rising to the Jevel of capacity

permanently at period 8.

3. Sensitivity to Backstop Investment Costs

The basic assumption behind our backstop models is that investment
costs rise more than linearly with the rate of 1nve§tment. Thus there
is a penalty for creating backstop capacity too fast. Since depletable
energy is finite, the steady-state level of backstop production must

eventually be reached. What our social planning model determines is the
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optimal rate at which to approach this steady-state. The optimal rate
balances the cost of investing with the value of backstop output. OQur
Stackelberg model, by contrast, determines the investment path of an
optimizing backstop industry under the control of a dominant depletable
energy sector.

To study the sensitivity of the models to changes in investment
costs, we have made four parallel runs for each, based on the gquadratic
investment cost function f(vt) = 1/2 avg, with o taking on the
values 0.1, 1.0, 5.0, and 10.0. As the parameter « increases, the
slope of the investment cost function rises, and with it'the cost
penalty associated with high rates of investment. The resulis of these
experiments are shown in Figure 5 for the social planning model, and 6
for the Stackelberg model.

rigure 5a shows the price paths associated with'fhese four cases
for the social planning model. Clearly, higher investment costs lead to
higher prices. Also, the date at which price exceeds operating cost
(¢ = 30) comes sooner in each successive run. The optimal extraction
paths of depletable energy (Figure 5b) show a lower rate of consumption
early and a }ater exhaustion date, The rate of investment (Figure 5¢)
also is Tower as the slope of f(+} increases, and the period during
which investment is positive is longer. We also see in Figure 5¢ con-
firmation of the result proved earlier: the rate of investment rises to
a maximum when p(+) = ¢, and thereafter falls., Finally, in Figure 5d
we show the backstop capacity and output paths for these runs. Although
the uultimate steady-state capacity level is not affected by changes in
the slope of f(-), in these experiments 20 time periods is not enough

to reach the steady-state capacity level for high investment costs. In
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these cases (« = 5.0 and 10.0, for example) we see that investment
begins at time zero but at relatively low rates, and backstop production
begins early, before any significant amount of capacity is installed.

As the cost_of investment declines, however, the rate of expansion
increases. And, what is more, the date at which the idle capacity is
turned on is delayed. So in the extreme case, where « = 0.1, capacity
is haif-way to its steady-state level by period 6 when it is first put
into use., This case, of course, is closest to the standard backstop
model, since investment costs are almost negligible. So, as one would
expect, the transition to the backstop is abrupt in the sense that
backstop output is zero until very nearly the date of exhaustion of the
stock of depletable energy. But there is a difference, Backstop
capacity is created at a steady rate right from the start, and kept idle
until the moment the price rises above operating costs. This is in
contrast to the standard model, in which backstop capacity expands to
its steady-state Tevel at the moment of transition.

The corresponding results for the Stackelberg model are shown in
Figure 6. Figure 6a shows the price paths generated by these four
cases. All show the same pattern: prices decline from an initial level
above operating costs, follow P(t) = ¢ for an interval, and finally
rise above ¢ to the horizon. Generally speaking, the higher the para-
meter « the quicker prices drop to the level of operating costs and
the ﬁigher prices rise above costs in the final phase. The Timit-
pricing interva] is longer when backstop investment is cheap. This is
as expected: when backstop capacity is costly, it provides an addi-

tional constraint on the backstop sector so the leader is free to set a

price above operating cost,
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In Figure 6b we show the output paths chosen by the leader. All
start around 70 units and rise to the limit-pricing level {140 units)
within a few periods. Leader output drops quickly around period 10; we
notice that the higher « 1s the more resources the leader holds for
later periods, Backstop investment is shown in Figure 6¢. When invest-
ment costs are low (a = 0.1), investment rises gradually to a maximum
rate near the date of exhaustion of depletable resources. This is the
closest case to the standard backstop model with no investment cost. As
we will see, backstop output is essentially zero up to the transition
date. But in our mndel backstop capacity, rather than béing created all
at once, is created gradually over a substantial time interval.

Finally, we observe that as jnvestment costs increase; the rate of
investment slows down and the period of capacity expansion is
Tengthened,

Figure 6d shows the associated paths for backstop output and capa-
city. Backstop capacity is generally lower in all time periods with
higher values of «. The exception is the case « =_1.0, in which
substantial investment occurs in periods 2 and 3. Backstop output in
this case is positive in those early periods, before it is driven to
zero by the leader. This is also true for the case « = 0.1. We see,
then, that the relationship between backstop output and capacity is
compiex in these cases. While a 1imit-pricing phase is observed in each
case, in some cases output is positive before this phase. And the date

at which backstop output reaches capacity for good is not systematically

related to the cost parameter «.

49



V. Summary

The standard abstract model of the transition from depletabie to
nondepletable resources predicts that energy prices will never rise
above the cost of nondepletable enerqy, and the transition from one
source to the other will occur instantaneously. In this paper we first
constructed a social planning model in which the rate of investment in
the nondepletable energy sector was determined along with the optimal
rates of production of depletable and nondepletable energy. We showed
that both resources were used simultaneously, and that the price of
energy will rise above the operating cost of nondepletable sources.
Investment in capacity in the nondepletable sector begins prior to the
date when price equals operating cost, but capacity remains idle until
this point is reached.

We then used this model as the foundation for a Stackelberg market
model, in which all depletable resources are owned by the dominant
player, and nondepletable resources are owned by a group of competitive
followers, MNumerical solutions of this model showed that the leader's
strategy is to allow high prices initially, but to contro] backstop
capacity expansion by threatening the follower by setting price at the
operating cost of the nondepletable sector during an intermediate
period. Since the nondepletable sector makes no profit during this
period, its rate of capacity expansion in early years when prices are
high is Timited. In the Stackelberg model prices are generally above
the socially optimum level in early years, and below in later years.
Capacity in the nondepletable energy sector expands initially at a
faster rate than is socially optimal, but output from this sector is

delayed longer.
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