Corporate members are an integral part of eWEAR providing unrestricted support for research. Frequent communications between companies, venture capitalists, faculty, and graduate students provide valuable insights on potential opportunities, problems and solutions.

For further information on how to get involved or hear of current and upcoming projects, please contact:

Professor Zhenan Bao
Faculty Director

Angela McIntyre
Executive Director

General inquiries can also be directed to:
wearable-electronics@stanford.edu

Phone:
650-721-1874

For upcoming eWEAR events, and in-depth program information, check our website:
http://wearable.stanford.edu

Images: Linda A. Cicero / Stanford News Service
© Stanford University
CORE FACULTY

Zhenan Bao (ChemE): flexible and stretchable electronics, sensors, materials, devices, printing
Amin Arbabian (EE): low power and wireless power transfer to biomedical sensors
Euan Ashley (Cardiology): device evaluation, medical data
Barbara Block (Biology): ocean wildlife monitoring
Mark Brongersma (MSE): metasurfaces for optics
William Burnett (D-school): applications and roadmaps of wearable electronics
David Camarillo (BioE): sport wearables, surgical robots
Fu-Kuo Chang (Aero/Astro): stretchable electronics for aerospace and structural monitoring
Yi Cui (MSE): battery, energy storage, cooling textiles
Bruce Daniel (Radiology): imaging display assisted surgery
Reiner Dauskardt (MSE): adhesives, skin mechanics
Scott Delp (BioE): analysis of human movement
Sean Follmer (MechE): dynamic 3D displays & interfaces
Sam Gambir (Radiology): devices for cancer diagnosis
Doug James (CS): simulation of knit and woven fabrics
James Landay (CS): human computer interfaces
Fei Fei Li (CS): artificial intelligence in hospitals
Christian Linder (CivilE): mechanics modeling of flexible and stretchable devices
Jan Liphardt (BioE): data science, blockchain
Erin MacDonald (ME): sustainable design
Nick Melosh (MSE): neuro-interfaces
Boris Murmann (EE): flexible circuit design
Lorene Nelson (Epidemiology): mobile clinical studies for neurological diseases
Allison Okamura (ME): haptic sensors and interfaces
Ada Poon (EE): wireless communication for implants
Xiang Qian (Pain Management Center): wearable electronics and nerve stimulators for pain management
Jian Qin (ChemE): modeling of soft materials
Alberto Salleo (MSE): flexible devices and sensors, fabrication, characterization
Debbie Senesky (Aero/Astro): sensors, micro- and nano-systems, multifunctional sensors, materials and packaging
Matthew Smuck (Orthopaedics): phenotyping back pain
Michael Snyder (Genetics): omics for personalized health
Tom Soh (EE/Radiology): sensors for diagnosis
Mintu Turakhia (Cardiology): clinical digital health data
Shan Wang (MSE/EE): GMR sensors, integrated sensor systems
Jamie Zeitzer (Psych): sleep diagnostics and interventions

JOINING THE INDUSTRIAL AFFILIATES PROGRAM

Member Benefits	Full Membership $110,000 / Year	Introductory Membership $40,000 / Year
Invitation to send up to 3 attendees to the annual eWEAR affiliate meeting | Included | Included
Facilitated access to eWEAR research | Included | Included
Opportunity for student recruitment | Included | Included
Opportunity to provide input on future focus areas | Included | Included
Facilitated access to program faculty and opportunities to discuss research engagements outside of the program | Included | Included
Campus visits to discuss future directions of eWEAR research by arrangement | Included | Included
Support for one student / postdoctoral (fellow-mentor-advisor) OR Sending one Visiting Scholar OR Support of a focused area | Includes one item, each additional item is $75k | Not included, can upgrade to full-membership at any time and select an item

PROGRAM MISSION

• Bring together Stanford expertise in materials, electronics, systems, data and clinical science
• Provide a forum for discussing and setting future directions of wearable electronics
• Foster collaborations between Stanford researchers and industry
• Provide a forum for the early communication of new results
• Foster communication among industrial sectors
• Push the forefront of wearable technologies
• Help to set standards for wearable electronics devices, data analysis and testing protocols
• Provide multi-dimensional training for students and postdocs