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ABSTRACT: While there has been enormous progress in meta-surface
designs, most meta-surfaces are constrained by Lorentz reciprocity.
Breaking reciprocity, however, enables additional functionalities and
greatly expands the applications of meta-surfaces. Here, we introduce a
realistic nonreciprocal meta-surface that can achieve optical circulation
and isolation. This device consists of a photonic crystal slab that
supports two bands of guided resonances, and upon a temporal
modulation in each unit cell with a spatially varying phase, an indirect
photonic transition can be induced between the guided resonances,
which breaks Lorentz reciprocity without the use of magneto-optic
materials. We provide direct first-principle numerical simulations, using
the multifrequency finite-difference frequency-domain method, to
demonstrate that this device can achieve optical circulation and

isolation with no back reflection under realistic modulation frequency and modulation strength.
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In recent years, there have been significant advancements in
the manipulation of light using two-dimensional meta-
materials, or meta-surfaces.' > Meta-surfaces have been used in
performing refraction and diffraction,*™° manipulating the
polarization of light,”® and realizing special optical physics on
a two-dimensional platform, such as the generation of optical
spin Hall effects” and optical vortices.'® Moreover, there are
now significant recent efforts in developing nonreciprocal meta-
surfaces.' ~'? Breaking Lorentz reciprocity enables meta-
surfaces to be used for important functionalities such as optical
isolation and circulation, which are crucial in signal processing
and for laser feedback protection and which cannot be realized
in any reciprocal structures.”’”>*

There are two major approaches toward creating non-
reciprocity that can be used to achieve complete optical
isolation and circulation. Both approaches have been
considered in meta-surfaces. The first method is to use
magneto-optic materials.'"'#**** Under a static magnetic
field bias, magneto-optic materials exhibit a nonsymmetric
permittivity tensor, which can be used in meta-surfaces to break
the reciprocity between forward and backward propagating
modes, resulting in optical isolation."”'” This approach can be
purely passive, which is attractive. However, standard
optoelectronic materials typically do not have magneto-optic
effects, and consequently it is difficult to apply this approach in
most standard optoelectronic platforms. The second method is
to apply a dynamic modulation to the dielectric constant of the
device. Such modulation also breaks reciprocity and can lead to
complete optical isolation.'*'*#'®'**573% The dynamic modu-
lation approach is an active approach that requires external
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energy input, but it is compatible with most standard
optoelectronic materials. Therefore, there have been several
recent proposals that use the dynamic modulation approach for
constructing nonreciprocal meta-surfaces,' ' #1517

In this paper, we focus on the dynamic modulation approach
toward the creation of nonreciprocal meta-surfaces. In spite of
the significant advancements as summarized above, there still
remain significant challenges in realizing such dynamic
nonreciprocal meta-surfaces in the optical frequency range.
For example, one approach for achieving nonreciprocal
response in dynamically modulated structures is based on the
concept of photonic transition.”~>**'~** In this approach, one
considers a photonic system supporting two optical modes at
frequencies @, and w,. Modulation of the system at a frequency
Q = w; — w, can induce a photonic transition between these
two optical modes. In such a transition, the upward and
downward transition in frequency acquires opposite phases,
which can be used to create nonreciprocal responses. There
have been several attempts seeking to implement this concept
in meta-surfaces."”'*'*'®' However, there is a very large
frequency difference between the modulation frequency and
the optical frequency. The maximum modulation frequency
typically used in electro-optic modulation is usually on the
order of 10 GHz,® whereas a typically optical frequency is
around 200 THz. A realistic design of a dynamic nonreciprocal
meta-surface must take into account such a large frequency
difference.
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In the present work, we introduce a design of a nonreciprocal
meta-surface that operates in optical frequency while being
driven by a refractive index modulation at tens of gigahertz
based on the concept of photonic transition. This design
incorporates two essential considerations. First, the device
needs to have independent modes that are separated by an
attainable modulation frequency of a few gigahertz. Second,
these modes must have high enough quality factors so that they
can be spectrally resolved. To meet these considerations, we
exploit guided resonances in a photonic crystal slab. First, with
a proper choice of the thickness of the slab, the slab supports
guided resonances forming multiple photonic bands, and as a
result, for a given modulation frequency Q, it is always possible
to find two optical modes in the structure with their frequencies
differing by €. Second, with a proper choice of slab parameters,
these guided resonances can achieve high quality factors. Thus,
the photonic crystal slab system naturally satisfies the
considerations as outlined above. By using a pair of such
high-quality-factor guided resonances and by applying a
dynamic modulation with its modulation frequency and
modulation wave-vector matching the frequency and momen-
tum differences of these two resonances, we demonstrate
theoretically and numerically that this device can break
reciprocity in the optical range. In the lossless limit, one can
achieve perfect optical circulation. Even with material loss that
is realistic in the free-carrier-based modulation schemes in
silicon, this device is still capable of attaining complete optical
isolation with no back reflection.

As a concrete implementation, we consider in two
dimensions a one-dimensional photonic crystal slab as shown
in Figure la, which consists of a perfect electric conductor
(PEC) substrate, an air superstrate, and a dielectric slab
waveguide with periodic grooves along the &-direction spaced at
a periodicity of a = 550 nm. The dielectric slab has a thickness
of 625 nm, and it has a relative permittivity of 11.56, which is
similar to that of silicon in the optical range. The periodic
grooves are 100 nm in width and 75 nm in height, and they
have a relative permittivity of 12.25. Without loss of generality,
we study the transverse magnetic (TM) polarization, where the
nonzero field components are E,, H,, and H,. We first focus our
analysis by assuming no material loss is present, which enables
this device to act as a perfect optical circulator. Then, we
introduce material loss that may be associated with modulation
and show that this device can still achieve complete optical
isolation.

We start by analyzing the properties of this photonic crystal
slab with no time-dependent permittivity modulation. Because
of the periodicity along X, according to Bloch’s theorem, such a
structure supports modes with the following form:*’~*’

—iKx+iwt

E(x,9,t) = u,(x, y)e €))

where K is the Bloch wave vector in the X-direction, which is
real, u,(x, y) is the complex Bloch field profile that is periodic in
%, such that u,(x, y) = u,(x + a, ), and w is the complex
frequency of the guided mode. For a photonic crystal slab made
with lossless materials, the imaginary component of @ captures
the rate at which the guided resonance mode radiates its power
into free space.

With a standard frequency-domain eigenmode-solver techni-
que,”” we can numerically compute this photonic crystal slab’s
band diagram. We choose a spatial resolution of Ax = Ay = 25
nm, and the band diagram is plotted on the left side of Figure
1b. This plot shows that around a frequency of 200 THz the
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Figure 1. (a) Schematic of a photonic crystal slab and the geometry of
one unit cell. (b) Left: Band structure of the photonic crystal slab, with
the selected modes I1), I2), and 13) labeled. Right: Bloch field profiles
of the three modes. (c) Modulation can induce a photonic transition
between modes 1) and 12) but not with 13).

structure supports many different guided modes. For the
purpose of subsequent discussions, we highlight three
independent modes, which are labeled in Figure 1b. The
mode labeled |1) has a frequency @, = 27 X 201.1461 THz and
a wave-vector K; = 0, the mode labeled 12) has a frequency w, =
27 X 201.1225 THz and a wave-vector K, = 0.47/4a, and the
mode labeled 13) has the same frequency @, as mode I2) and a
wave-vector K3 = —K, = —0.47/a. From the same eigenmode
solver, we deduce that, due to radiative loss, mode I1) has a
quality factor of Q, = 1.90 X 10° and resonance line width 2y, =
1.1 GHz, and modes [2) and 13) have quality factors of Q, = Q;
= 1.05 X 10° and resonance line width 2y, = 2y, = 0.2 GHz. On
the right side of Figure 1b, we show the Bloch field profiles
u,(x, y) of these guided resonances. With respect to the center
plane of the slab in the x—z plane, mode I1) is approximately
odd and modes [2) and [3) are approximately even.
Furthermore, modes 12) and I13) have the same field profile
due to mirror symmetry. Mode |1) couples to normally incident
and out-going plane waves, whereas mode 12) (13)) couples to
obliquely incident and out-going plane waves with positive
(negative) horizontal wave-vectors.

Following the concepts of ref 28, the reciprocity in this
system can be broken by creating an indirect photonic
transition between modes I1) and 12), which can be realized
by applying a dynamic modulation to the permittivity in the
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regions, as indicated by the dashed lines in Figure la. These
regions are chosen such that there is a significant overlap of the
two modes integrated over the modulation region, as shown in
Figure lc. Mathematically, the permittivity of the modulated
structure is described by””**

€(x, b2 t) = €s(x1 )’) + 5(‘”) )’) Cos(Qt + ¢(x: )’)) (2)

where €,(x, y) is the time-independent permittivity profile of
the device, 5(x, y) describes the spatial distribution of the
modulation strength, Q is the modulation frequency such that
Q= w — w, =27 X 23.6 GHz, and ¢(x, y) is a spatially
varying modulation phase profile that is chosen to satisfy the

phase-matching condition: % =K, - K = AK. It is wel
known that this type of permittivity modulation breaks Lorentz
reciprocity.”’>* As seen from Figure Ic, this modulation can
drive a transition between modes I1) and [2), since the
modulation satisfies the phase-matching condition for such a
transition. On the other hand, this modulation cannot drive the
transition between modes 1) and 13) due to phase mismatch.

Having discussed some of the properties of photonic
transitions in our photonic crystal slab, we now show that
such a photonic transition can be used to construct an optical
circulator. Shown in Figure 2, we consider the response of our
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—

Phase gradient, K

Figure 2. Setup of the three ports for optical circulation.

modulated structure to input/output waves in three ports. We
define port 1 as a plane wave at frequency w; that is
propagating along the direction normal to the slab, port 2 as a
plane wave at frequency w, that is obliquely incident or out-
going from the right, and port 3 as a plane wave at frequency w,
that is obliquely incident or out-going from the left. The labels
Sme With m = 1, 2, 3, correspond to either an incident (+) or
out-going (—) wave amplitude at each port. With this
definition, under the condition that Q > y,, 7,, mode I1)
couples to s;,, mode 12) couples to s,_ and s;,, and mode 13)
couples to s,, and s;_. When the slab is modulated as described
above, the input amplitude s, can scatter into the output
amplitude s,_ through a photonic transition from [1) to [2),

whereas the input amplitude s,, can scatter into the output
amplitude s;_ but cannot scatter into the output amplitude s,_
due to the absence of photonic transition from 13) to I1).
Furthermore, the input amplitude s;, can scatter into s,_
through photonic transition from [2) to I1). Therefore, this
device can function as a three-port optical circulator.

Mathematically, one can describe the modulated device using
the temporal coupled mode theory (CMT).* With the rotating
wave approximation,”’ the dynamics of the modes and their
interactions with the input and out-going wave amplitudes in
the ports can be written as

loss

. (s rad . —iQt rad
ay = (o, = 1 = 1,y + ike " a, + 21y,

rad

rad
— 2}/2 S349

. loss . iQt
a, = (iw, — 7, % )a, + ike™a; +

rad

s (s loss rad
ay = (0, — 1, = 1,")as + {21, 5,4,

rad

Sio = =50+ 421 ay,
rad

Sy = —s3, + 2)/2 a,,
_ rad

S3_ = =Sy T 4/21, a3

(©)

where a, is the amplitude of mode In), Y™ and y°* are the
amplitude decay rate of mode In) due to radiative coupling to
input/output ports and dissipative loss, respectively, and x
denotes the coupling strength between the two modes induced
by permittivity modulation. Due to inversion symmetry
between modes 12) and 13), y54"° = y2dl% In this coupled
mode theory formalism, the frequencies of the input waves in
ports 1,2, and 3 are assumed to be near the frequencies w,, ®,,
and w,, respectively. Moreover, we assume that the modulation
frequency Q is much larger than the decay rates y’s, so that the
converted frequency components are well shifted from the
incident frequency component.

We first analyze eq 3 in the lossless case where we set /5 =
0; that is, we assume that the decay from each mode radiatively
couples to the respective ports. To extract the steady-state
response, we consider an excitation of this system at an input

frequency of w so that a, s, ~ €. Upon making the

substitutions
_ ot _ o2 _ o —i0t)2
A = aje , A, = a,e , Ay = aze
_ ~iQt/2 _ iQt/2 _ iQt/2
Sie = 528 S = sppe T, Sy = sy 4)

we can derive the scattering matrix of this system to be

(b + 1) . 2k
D D
Si- — . Si+
. ra ra .
s, | = 2ik\ 7y, 0 2y, (iAw + ™) sy
D D
Ss- S3+
zyrad
’ Dot °
iAw + y, ()
o +w, _
where Aw = @ — —=—— = @ — , represents the frequency
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Figure 3. (a) Field profiles of the three modes as well as (b) their resonant line shapes. In this figure, @, = 2z X 201.1461 THz and @, = 27 X
201.1225 THz, whose separation is large enough (23.6 GHz) to resolve these modes in frequency, but small enough so that the photonic transition
between these modes can be obtained from an electro-optic modulator.

detuning away from the photonic transition frequency, and D =
(iAw + ™) (iAw + y7) + k% Under the conditions of on-
resonance excitation

Aw =0 (6)
and critical coupling
rad_ rad
k' = 7/13 7/2a (7)
the scattering matrix becomes
Si-) (0 0 i)fSi+
S-|=1i Sav
Ss- 01 S3+ (8)

Such an asymmetric scattering matrix clearly shows that
Lorentz reciprocity is broken, and this device acts a perfect
optical circulator.

Guided by the theoretical discussions above, we now perform
full-wave simulations on the device in Figure la to demonstrate
its ability to achieve perfect optical circulation. To simulate the
modulated structure, we use the multifrequency finite-differ-
ence frequency-domain (FDFD) method as described in ref 41,
which allows for the efficient first-principle simulations of such
a modulated device with drastically different time scales. In
order to describe the dynamic index modulation, the simulation
domain consists of 10 unit cells of the device structure shown
in Figure 1, and we apply periodic boundary conditions on the
left and right boundaries. We implement the stretched-
coordinate perfectly matched layers (SC-PMLs) at the top
and bottom boundaries.”” The spatial discretization is chosen
to be Ax = Ay = 25 nm, which is the same as the calculation in
Figure 1. In the absence of the dynamic index modulation, to
find the guided resonances of this structure, we place a plane
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wave source at 2.85 ym above the structure. The source excites
a plane wave with an electric field strength of 1 V/um with
either K = 0 (normal incidence) or K = +0.47/a (incidence at
+32.8 degrees from normal). In agreement with the band-
structure calculation presented in Figure 1b, we find that mode
I1) exists at K; = 0 with frequency w, = 27 X 201.1461THz
(corresponding to a wavelength A, = 1490.4 nm) and line width
2y, = 1.1 GHz. Mode 12) exists at K, = +0.47/a at frequency w,
=27 X 201.1255 THz (which corresponds to a wavelength 4, =
1490.6 nm) with line width 2y, = 0.2 GHz. In addition, mode |
3) exists at K3 = —K, = —0.47/a at frequency w; = w,, as is
required by symmetry. Importantly, ®, and w, differ by 23.6
GHz > y,, 7, which makes it possible to spectrally resolve
modes 1) with 12) and I3). Furthermore, time-dependent
permittivity modulation at a frequency equal to the frequency
separation between @, and w, is also achievable with silicon
modulation technology.*

Next, we demonstrate numerically that with the appropriate
permittivity modulation this device can function as a perfect
optical circulator. Shown in Figure 1la, the modulation region is
located directly underneath the bump region with a length of
250 nm. The size and the location of the modulation region are
chosen such that there is a significant modal overlap between
modes 1) and 12), 13), as integrated throughout the modulation
region. In each unit cell, the modulation is applied uniformly
according to eq 2 with a modulation strength of § = 7.3 X 107*.
This modulation strength is chosen such that the critical
coupling condition of eq 7 is satisfied. The regions are
modulated at a frequency = ®; — @, = 27 X 23.6 GHz. The
modulation phases of the adjacent unit cells are chosen to differ
by A¢ = 0.4zn. The choice of the modulation frequency and
modulation phase distribution ensures that the modulation

DOI: 10.1021/acsphotonics.7b00420
ACS Photonics 2017, 4, 1639—1645


http://dx.doi.org/10.1021/acsphotonics.7b00420

ACS Photonics

(a)

Power spectrum of the S-matrix

1 1 1
2 2
1Sl ISl
0.5 0.5 0.5
2
1S,
0 0 0
-1 0 17 -1 0 1 -1 0 1
1 1 1
2 2
1S, 1S,
0.5 0.5 0.5
2
1S,
0 0 0
-1 0 17 -1 0 1 -1 0 1
1 1 1 FDFD
2 2 21— = CMT
1S, IS, 1S,
0.5 0.5 0.5
0 0 0
-1 0 17 41 0 1 -1 0 1
Aw, (GHz) Aw, (GHz) Aw, (GHz)

y (um)
y (um)

w4 Port 23
5 5
€ | Noconversion a
3 0 3
> =
0 5
0 5
w1 Port 3>1
5 5 5 5
B 51_I B
3 0 3 0
> >
Bt 1 1
ob— Mg ob— 1M
0 5 0 5
X (1um) X ()

Figure 4. (a) Plot of the power spectrum of various S-matrix elements obtained from the multifrequency FDFD simulations and coupled mode
theory calculations. The theory and the simulations show excellent agreement. On resonance with A, , = 0, we obtain the ideal scattering matrix for
optical circulation. (b) Field plots of the optical circulator showing perfect conversion with no back reflection.

satisfies the phase-matching condition in order to induce the
transition from I1) to [2).

With the multifrequency FDFD algorithm, we can obtain for
this system the S-matrix, ie., the matrix elements of the
scattering matrix that characterizes the input—output relations.
In three separate sets of simulations, we send in incoming
waves from ports s,,, S,,, and s3,, respectively, and obtain the
power spectra of the S-matrix by varying the frequency of the
incoming waves as shown in Figure 4a. The input frequency
detuned away from the resonant frequencies of the guided
resonance modes is represented by Aw,, = @ — w;,. The
numerically obtained spectra agree very well with the coupled
mode theory calculations as described in eq 5 using the
parameters described above that are obtained from the
simulations of the static structure. Several of the spectra
shown in Figure 4a exhibit a strong resonant behavior, which
corresponds to the excitation of the guided resonance
associated with each individual input port. Far away from the

1 00
resonance, the S-matrix approaches the form (8 (1) (1)), which

is symmetric, as is typical for a reciprocal reflector. When Aw; ,
= 0, as a result of the resonant excitation of mode 11) and the
perfect photonic transition between modes 1) and 12), the S-

001
matrix takes the form ( (1) (l) 8), which is the S-matrix for a

perfect optical circulator. From the same calculation, we find
that the 3 dB bandwidth is 400 MHz, which is limited by the
intrinsic quality factor of the guided resonance modes.
Moreover, in Figure 4b, we show the steady-state field
profiles when we send in waves into each input port on
resonance. The incoming wave from port 1 at @, is completely
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scattered into the out-going wave at @, into port 2 through
photonic transition. The incoming wave at @, from port 2 goes
to port 3 through reflection with no frequency conversion,
which indicates the absence of photonic transition. The
incoming wave at @, from port 3 is completely scattered into
the out-going wave at @, at port 1 via photonic transition. In
addition, each of these scattering events incurs no back
reflection. The simulations indeed demonstrate the behavior of
a perfect optical circulator. We note that this meta-surface has a
linear response with respect to the amplitudes of the incoming
wave; it is therefore not subjected to the limitations as imposed
by dynamic reciprocity in the class of nonlinear reciprocity-
breaking devices.””

In all the calculations and simulations above, we assumed
that the loss of the resonance comes entirely from radiation to
the output ports. The material itself is lossless, and the
modulation does not incur any absorptive loss. Such a low-loss
modulation can be achieved using electro-optic effects in
materials such as GaAs and LiNbO,."> On the other hand, in a
material like silicon, electro-optic modulation is typically carried
out by manipulating free-carrier concentration or distribu-
tion.”>** The presence of free carriers inevitably introduces
absorptive loss. In order to construct optical devices that are
compatible with CMOS technology for integration onto silicon
chips, it is important to characterize how such a free-carrier
absorption loss affects the performance of the envisioned
nonreciprocal device. Here, we will show that with loss that is
inherently associated with the required modulation depth, our
device still exhibits strong nonreciprocal response.

To describe the effect of loss, we first estimate the magnitude
of material loss based on the modulation depth."* In our
dynamic simulation as described below, we will use a
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modulation strength of § = 8.3 X 10™* which can be achieved
with a hole concentration of N, = 10" ecm™. Such a hole
concentration in turn induces an imaginary permittivity of e; =
6.5 X 107 in the modulation region.”” We note that the
modulation strength here is slightly increased as compared to
the lossless case in order to achieve optimal performance for
the optical isolation in the lossy case. We now repeat the full
wave simulations of this device as we did for Figures 3 and 4 by
adding the imaginary €; mentioned above inside the modulation
region to account for material loss. In the simulation of the
time-independent device, we find that the line widths of all the
modes were broadened by })1055 = 2z X 0.05 GHz, which is
smaller than the radiation loss rates 77 and 75, We repeat the
modulation simulation with loss using the multifrequency
FDFED at a modulation strength of 6 = 8.3 X 10™* (which does
not significantly affect }/lffis) and plot the power spectrum of the
S-matrix in Figure 5. At the same time, we plot the power

Power spectra of the S-matrix, with loss
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Figure S. Plot of the power spectrum of the S-matrix in the presence
of material loss due to modulation. Both the multifrequency FDFD
simulations and CMT results are included, which show excellent
agreement. Full isolation can be achieved between ports 1 and 2 or
ports 1 and 3, but ports 2 and 3 are becoming more reciprocal.

spectrum of the coupled mode theory calculations from eq 3 by
including ylff%s, which agrees very well with the FDFD results.
We observe that even under loss the power spectrum of the S-
matrix shows that, near the resonance of photonic transition,
full isolation can still be attained between ports 1 and 2 or ports
1 and 3, although the insertion loss is increased due to
dissipation. From the same figure, however, we see that the
same device can no longer function as a perfect optical
circulator because 1S,;| and S;,| are becoming more symmetric
due to material loss.

In all the analyses above, as a proof of principle we
performed two-dimensional numerical computations with a
one-dimensional photonic crystal slab under TM polarization.
However, the coupled mode theory formalism is general, and
hence the concept should be applicable to the TE polarization
as well as to three-dimensional structures with a two-
dimensional photonic crystal slab. As long as the photonic
crystal slab is designed to support multiple guided resonance
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bands near the operating frequency, one can always find two
guided resonance modes that are separated by a few gigahertz
in frequency. Therefore, it is always possible to design a
modulation to induce photonic transition between such guided
resonance modes. In the simulation, we used a perfect electric
conductor mirror for numerical convenience. In practice, one
can use a one-dimensional Bragg reflector that provides near-
complete reflection with negligible loss. In implementing the
required modulation, one can consider a modulator structure
that consists of PIN junctions,36 where the intrinsic (I) regions
occupy most of the slab structure, and the P and N regions are
made sufficiently small as to reduce the contributions to
material loss from these more heavily doped regions. A
modulation array consisting of multiple PIN junctions with all
modulators operating at the same frequency, and with separate
phase control of the modulators, has been demonstrated in ref
29. Such a technology can be used for our purposes here as
well.

In summary, we introduce a realistic dynamic meta-surface
that breaks Lorentz reciprocity and can achieve optical
circulation and isolation. This work combines the features of
guided resonances of a photonic crystal slab and a dynamic
modulation, and it should prove to be a step forward in the
construction of nonreciprocal meta-surfaces for optical wave
manipulation.
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