Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms

Yu Shi and Shanhui Fan

View online: http://dx.doi.org/10.1063/1.4939915
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Tunable broadband transmission and phase modulation of light through graphene multilayers

Broadband anomalous reflection based on gradient low-Q meta-surface
AIP Advances 3, 052136 (2013); 10.1063/1.4809548

Photonic transitions can induce non-reciprocity and effective gauge field for photons
AIP Conf. Proc. 1475, 16 (2012); 10.1063/1.4750080

Optical phase characterization of active semiconductor microdisk resonators in transmission

APL Photonics
Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms

Yu Shi and Shanhui Fan

Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

(Received 16 October 2015; accepted 3 January 2016; published online 14 January 2016)

We introduce a distinct class of dynamic non-reciprocal meta-surfaces with arbitrary phase-reconfigurability. This meta-surface consists of an array of meta-atoms, each of which is subject to temporal refractive index modulation, which induces photonic transitions between the states of the meta-atom. We show that arbitrary phase profile for the outgoing wave can be achieved by controlling the phase of the modulation at each meta-atom. Moreover, such dynamic meta-surfaces exhibit non-reciprocal response without the need for magneto-optical effects. The use of photonic transition significantly enhances the tunability and the possible functionalities of meta-surfaces.

The ability to manipulate the phase-front of light waves is central to optical engineering. Traditional optical components rely on the mechanism of gradual phase-accumulation as light propagates inside an optical medium, but such mechanism often results in bulky devices that are thicker than the operating wavelength because the accumulated phase is limited by the permittivity of naturally existing materials. To overcome the limitations of traditional optical components, two-dimensional metamaterials, or meta-surfaces, have been recently developed. A meta-surface, consisting of an array of meta-atoms (i.e., subwavelength resonators), can apply abrupt phase-changes for light propagating through the meta-surface. By designing the amplitude and phase responses of these meta-atoms to an incident wave, a meta-surface can create an arbitrary phase-gradient along its interface and hence can flexibly shape the out-going wave-front according to the generalized Snell’s Law. With specific subwavelength meta-atom designs, ultra-thin meta-surfaces have been used to manipulate the polarization of light, steer and focus beams, and create thin refractive and diffractive optical components, and realize special optical physics effects, such as generating vortex beams and optical spin Hall effects.

In spite of tremendous recent progresses in meta-surfaces, there are two significant opportunities that have not yet been extensively exploited. First of all, most of these meta-surfaces are constrained by the Lorentz reciprocity theorem. Yet breaking the reciprocity can lead to non-reciprocal meta-surfaces with significant functionalities, such as optical isolation on an ultrathin surface. Very recently, Shaltout et al. outlined the theoretical formalism for realizing non-reciprocal metasurfaces using time-gradient phase discontinuities, and Hadad et al. demonstrated that a non-reciprocal electromagnetic induced transparency can be introduced from a spatio-temporally modulated metasurface with a sinusoidal impedance. Second, in most of the meta-surfaces, the phase responses of the individual meta-atoms are almost entirely fixed by their geometries. While it is possible to tune such phase responses by refractive index tuning, the achievable tunability is rather limited. In particular, it still remains a significant challenge to tune the phase response of an individual meta-atom over the entire range of $[0, 2\pi]$, which is required in order to achieve arbitrary reconfiguration of meta-surfaces.

Here, we propose to create non-reciprocal dynamic meta-surface by exploiting the concept of photonic transition and photonic Aharonov-Bohm effects as recently proposed theoretically and demonstrated experimentally. Similar to Refs. 22 and 23, our approach breaks reciprocity in a dynamic meta-surface without the use of magneto-optical effect. Unlike Refs. 22 and 23, however, our approach also provides arbitrary phase reconfigurability and hence can lead to a wider range of applications. Consider any optical system with two photonic states at two difference frequencies, undergoing a time-harmonic refractive index modulation. When the frequency of the modulation matches the frequency difference between the two photonic states, a photonic transition occurs between the two states. It has been shown that such a modulation breaks reciprocity. Moreover, the phase of the modulation is imprinted on the amplitudes of the photonic states. Since the modulation phase is imposed dynamically after the structure has been constructed, it can be arbitrarily set. In this letter, we show that such photonic transition can occur in subwavelength meta-atoms, and an array of such meta-atoms undergoing photonic transitions can function as a non-reciprocal meta-surface with the capability of arbitrary reconfiguration.

To start, we first briefly review the concept of photonic transition in the context of meta-atoms [Fig. 1(a)]. Consider a meta-atom with a time-independent dielectric function $\epsilon_{DC}(r)$, supporting eigenstates $|1\rangle$ and $|2\rangle$ at frequencies ω_1 and ω_2 with amplitudes $a_1(t)$ and $a_2(t)$, respectively. Without loss of generality, we assume $\omega_2 > \omega_1$. We then induce coupling between these two states by applying to the meta-atom a permittivity modulation, as described by a dielectric function...
behavior, we consider the excitation of the system at frequency \(\omega \) such that \(a_1(t) = \tilde{a}_1 e^{i\omega t} \) and \(a_2(t) = \tilde{a}_2 e^{i\omega t} \), where \(\tilde{a}_1 \) and \(\tilde{a}_2 \) are the modal amplitudes for states \([1]\) and \([2]\), respectively. By substituting \(A_1(t) = a_1(t)e^{i\theta} = \tilde{a}_1 e^{i(\omega t + \phi)} \), \(A_2(t) = a_2(t)e^{i\phi} = \tilde{a}_2 e^{i(\omega t + \phi)} \), \(s_{1+} = \tilde{s}_{1+} e^{i\phi} \), and \(s_{2\pm} = \tilde{s}_{2\pm} e^{i\phi} \), we obtain the following steady-state solutions:

\[
\begin{align*}
A_1 &= \frac{ik_2\kappa e^{-i\phi}}{D} S_{2+} + \frac{k_1(i(\omega - \omega_0) + \gamma_2)}{D} S_{1+}, \\
A_2 &= \frac{ik_1\kappa e^{i\phi}}{D} S_{1+} + \frac{k_2(i(\omega - \omega_0) + \gamma_1)}{D} S_{2+}, \\
S_{1-} &= \left(c_1 + \frac{k_1^2(i(\omega - \omega_0) + \gamma_2)}{D} \right) S_{1+} + \frac{ik_2\kappa e^{-i\phi}}{D} S_{2+}, \\
S_{2-} &= \left(c_2 + \frac{k_2^2(i(\omega - \omega_0) + \gamma_1)}{D} \right) S_{2+} + \frac{ik_1\kappa e^{i\phi}}{D} S_{1+},
\end{align*}
\]

(3)

where \(D = (i(\omega - \omega_0) + \gamma_1) (i(\omega - \omega_0) + \gamma_2) + \kappa^2 \) and \(\omega_0 = (\omega_1 + \omega_2)/2 \). From Eq. (3), we can readily see that when \(S_{1+} = 0 \), \(S_{1-} \) at \(\omega_1 \) can be generated from \(S_{2+} \) at \(\omega_2 \) as

\[
S_{1-} = \frac{ik_2\kappa e^{-i\phi}}{D} S_{2+}.
\]

(4a)

And when \(S_{2+} = 0 \), \(S_{1+} \) at \(\omega_2 \) can be generated from \(S_{1+} \) at \(\omega_1 \) as

\[
S_{2-} = \frac{ik_1\kappa e^{i\phi}}{D} S_{1+}.
\]

(4b)

Therefore, upon the transition from \([1]\) to \([2]\) that is upward in frequency, the wave emitted to port \(s_{2-} \) would carry a phase \(\phi \), whereas during a downward transition from \([2]\) to \([1]\), the same modulation prescribes a phase \(-\phi\) to waves emitted at port \(s_{1-} \). Such a direction-dependent phase in photonic transition is the essence of the photonic Aharonov-Bohm effect and can be used to break reciprocity.\(^{30,31}\)

The results in Eq. (4) show that the photonic Aharonov-Bohm effect can be achieved in the steady-state response of a meta-atom undergoing refractive index modulation. The conversion efficiency \(\eta = |\frac{k_1k_2}{\kappa^2}|^2 \) can reach unity in a lossless system, provided that \(\kappa = \gamma_1\gamma_2 \). This result can be simply obtained since with the transformation as discussed above, the system as described by Eq. (2) in fact maps exactly to the static coupled-resonator system as discussed in Ref. 33. The significance of the present work however is the effect of modulation phase, which is unique in dynamic systems and hence is the main focus of our paper.

Having discussed the photonic transition in an individual meta-atom, we now consider an array of such meta-atoms, each undergoing photonic-transitions [Fig. 1(b)]. Since the refractive index modulation of each meta-atom is imposed dynamically after the structure is constructed, we may independently control the modulation phase on each meta-atom and hence can create arbitrary phase profiles on the meta-surface. Assume that a plane wave with a frequency \(\omega_1 \) is incident on the meta-surface with an angle of incidence \(\theta \). The outgoing wave at \(\omega_2 \) picks up a discrete phase-profile \(\psi(x) \).
\[\psi(m\Lambda) = \phi_m, \]

where \(\Lambda \) is the spacing between the meta-atoms, and \(\phi_m \) is the modulation phase of the \(m \)-th meta-atom. For a meta-surface, we assume that \(\Lambda \) is much less than the wavelength, so that the phase profile \(\psi(x) \) can be approximated as continuous. The outgoing wave at \(\omega_2 \) now follows the generalized Snell’s Law,\(^2\) namely,

\[k_o \sin \theta_o = k_i \sin \theta_i + \frac{\partial \psi}{\partial x}, \]

where \(k_i, k_o \) are the incident and outgoing waves’ momenta, \(\theta_o \) is the angle that characterizes the direction of the outgoing wave, and \(\frac{\partial \psi}{\partial x} \) quantifies the gradient of the phase profile as induced by the photonic-transitions in the meta-atoms. With a constant phase gradient \(\frac{\partial \psi}{\partial x} \), an outgoing wave at \(\omega_2 \) can experience anomalous reflection and refraction with respect to the incident wave at \(\omega_1 \).\(^2\) Moreover, a spatially variant \(\frac{\partial \psi}{\partial x} \) provides an arbitrary phase-front for the outgoing wave at \(\omega_2 \) and can be used for focusing and other beam-shaping functionalities.

Such a meta-surface undergoing dynamic modulation has a non-reciprocal response. As an illustration, consider the situation as shown in Figure 1(b), where a plane wave at \(\omega_1 \) is normally incident upon the meta-surface. We choose a constant phase gradient such that the outgoing wave at \(\omega_2 \) exhibits anomalous reflection with respect to incoming wave, with a parallel wavevector \(k_2 \sin \theta_2 = \frac{\partial \psi}{\partial x} \). Now, we consider the time-reversed situation as shown in Figure 1(c), where an incoming beam at \(\omega_2 \), at a direction that corresponds to the time-reversal of the outgoing beam in Figure 1(b), is incident upon the meta-surface undergoing the same modulation. The outgoing beam at \(\omega_1 \) in this time-reversed situation will not be at the normal direction, and instead will have a parallel wavevector of \(k_1 \sin \theta_1 = -2 \frac{\partial \psi}{\partial x} \) [Fig. 1(c)]. This result arises due to the extra minus sign when the photon undergoes a downward transition. Therefore, we see in this illustration that the meta-surface indeed breaks time-reversal symmetry and reciprocity.

To verify our theoretical predictions, we perform finite-difference time-domain (FDTD) simulations with a reflective meta-surface formed by an array of independently modulated meta-atoms on top of a gold substrate. As a proof of principle, we consider only the transverse-electric (TE) polarization (i.e., the only field components that are non-zero are \(E_z \), \(H_x \), and \(H_y \)). The meta-atom consists of a gold patch cover and two gold side walls mounted on the gold substrate [Fig. 2(a)]. The cover and the side walls are 120 nm wide, with the cover being 200 nm long. The dielectric medium enclosed in the meta-atom is chosen as silicon, and it has a dimension of 600 nm in height and 440 nm in width. The sidewalls ensure that the modes of a meta-atom are sufficiently contained in itself and do not interfere with the modes of neighboring meta-atoms. In the FDTD simulations, the spatial resolution in the \(x \) and \(y \) directions is 40 nm, and the time step 0.067 fs. Perfectly matched absorbing layers are used to surround the simulation domain.\(^3\)\(^4\) Dispersive FDTD update equations\(^5\) are used to account for material dispersion in gold and silicon. The frequency-dependent dielectric constants of gold, including both the real and imaginary parts, are obtained from Rakic,\(^3\)\(^6\) and we fit them with a Drude model. For silicon, we ensure that our fit agrees well with the data in Li\(^3\)\(^7\) in the frequency range of our interest.

A single resonator described above can support an even mode \(1 \) at \(\lambda_1 = 2790 \) nm and an odd mode \(2 \) at \(\lambda_2 = 1950 \) nm, with their respective modal profiles shown in Figure 2(b) as obtained from the FDTD simulations. Here, the even and odd symmetries are defined with respect to a mirror plane parallel to the \(x \)-axis; the symmetries are approximate since the mirror plane is not an exact one. The dimensions of the meta-atom are far smaller than the resonant wavelengths, and hence, the radiation patterns for the two resonator modes are both nearly cylindrical. Having such nearly identical radiation patterns for these two modes ensures that incoming far-field radiation couples to these two modes with comparable strengths. In the absence of dynamic permittivity modulation, these two modes exist independently.

We perform FDTD simulations on a modulated meta-surface constructed from an array of 13 meta-atoms as described above. The array has a period of \(\Lambda = 800 \) nm. For each meta-atom, the permittivity modulation is applied uniformly in the region as represented by the dashed rectangle in Figure 2(c), and has the form \(\delta \cos(\Omega t + \phi) \), where

\[\delta \] is the modulation amplitude, \(\Omega \) is the modulation frequency, and \(\phi \) is the phase. The boxed region is the dielectric region that undergoes dynamic modulation.

![Image of meta-atom structure and modes](image-url)
with a modulation profile of \(m \). (b) The dashed line represents the boundary between the total field region and the scattered field region. (c) The incident wave is now switched to a plane-wave that is the time-reversal of the plane-wave of (b). In response to the incident wave in (c), the outgoing wave at \(\lambda_1 \) propagates at an angle of \(48^\circ \) with respect to normal.

We then perform simulations on the same meta-surface to demonstrate non-reciprocity. Here, we apply a modulation phase profile \(\{ \phi_m \} \) to the meta-atoms that corresponds to a constant phase-gradient \(\frac{\partial \phi_m}{\partial x} = 0.834 \mu m^{-1} \) on the meta-surface. As we send in a normally incident plane wave at \(\lambda_1 = 2790 \) nm [Fig. 4(a)], in consistency with the calculations using the generalized Snell’s Law in Eq. (6), the outgoing plane wave at \(\lambda_2 = 1950 \) nm is deflected to an angle of \(15^\circ \) as shown in Figure 4(b). In the time-reversed scenario, when we send in a plane wave at \(\lambda_2 = 1950 \) nm back onto the meta-surface at an incident angle of \(-15^\circ \) [Fig. 4(c)], the down-conversion from \(\lambda_2 \) to \(\lambda_1 \) implies that the phase-gradient picked up by \(\lambda_1 \) is in fact \(-\frac{\partial \phi_m}{\partial x} = -0.834 \mu m^{-1} \), which, according to the generalized Snell’s Law in Eq. (6), would deflect \(\lambda_1 \) to an output angle of \(-47.8^\circ \), as we indeed observe in the simulation [Fig. 4(d)]. The FDTD simulations provide strong evidence that our meta-surface breaks time-reversal symmetry. Such non-reciprocal meta-surface design allows it to potentially be used for optical isolation or circulation purposes, which are important in laser feedback prevention, optical computing, and optical communication systems. Since our meta-surface has a linear response with respect to the incoming wave, its non-reciprocity does not suffer from the dynamic reciprocity considerations that constrain the performance of nonlinear non-reciprocal structures.

In the simulation above, both the strength \(\left(\frac{\Delta \lambda}{\lambda_1} \sim 10^{-2} \right) \) and the frequency (\(\Omega \sim 10 \) THz) of the modulation are chosen for the ease of simulation. The agreement of the simulation with the theoretical predictions on the properties of the outgoing beam provides a validation of the physics as
illustrated by the coupled mode theory equations. In principle, the high-frequency modulation that we assumed can be achieved using $\chi^{(2)}$ effect such as sum-frequency generation. Moreover, experimentally, one can design meta-atom structures in which the difference in modal frequencies is in the MHz-GHz range, and induces photon transitions with either electro-optic or acousto-optic effects. In either case, the strength of modulation ($\Delta v \sim 10^{-4}$) will be far weaker than what we have assumed in the simulation. Since the coupled-mode theory is a perturbation theory with respect to the modulation strength, we expect that the coupled-mode theory formalism, and hence the physics concept as described above, should be applicable for such a dynamic meta-surface undergoing electro-optic or acousto-optic modulations.

In summary, we introduce a class of dynamic non-reciprocal meta-surface structures with arbitrary phase reconfigurability, where the phase profile arises from photonic transition in individual meta-atoms. Such a dynamic meta-surface provides arbitrary phase tunability, as well as non-reciprocity, and should prove to be an important step forward to the development of ultra-thin elements for the control of optical and electromagnetic waves.

This work was supported by Samsung Electronics.