Vibrational Dynamics of Carbon Monoxide at the Active Site of Myoglobin: Picosecond Infrared Free-Electron Laser Pump–Probe Experiments

Jeffrey R. Hill, A. Tokmakoff, Kristen A. Peterson, B. Sauter, D. Zimdars, Dana D. Dlott, and M. D. Fayer

School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 S. Mathews Avenue, Urbana, Illinois 61801, Department of Chemistry, Stanford University, Stanford, California 94305, and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305

Received: April 27, 1994; In Final Form: July 20, 1994

The vibrational lifetimes of CO stretching modes of CO bound to different conformational substates of myoglobin, and CO bound to a water-soluble bare Fe:porphyrin, Fe tetraphenylporphyrin sulfate, were measured by picosecond infrared (IR) pump–probe experiments using the Stanford Free Electron Laser. At room temperature, two substates of carboxymyoglobin (Mb-CO), denoted A0 and A1, yielded lifetimes of 26.6 ± 1 and 18.2 ± 1 ps in a poly(vinyl alcohol) matrix. In glycerol:water solution, the A1-state lifetime of Mb-CO was 17.4 ± 1 ps. These lifetimes do not depend much on temperature in the 20–300 K range. The lifetime of the bare Fe:porphyrin was 17 ± 3 ps. Results obtained on these and other heme–CO systems are used to show that vibrational relaxation is slower with CO whose frequency is close to the ~1970 cm⁻¹ value characteristic of proteins and model compounds with CO nearly perpendicular to the heme plane, and faster with CO with lower frequencies characteristic of hindered CO. It is also shown that different conformational substates of the same protein can have different vibrational relaxation rates at the active site and that different substituents on the perimeter of the porphyrin may significantly affect the vibrational relaxation.

I. Introduction

Carboxymyoglobin (Mb-CO) consists of an ≈18 kDa protein, a chromophoric prosthetic group, protoheme (Ph, also denoted protoporphyrin-IX), and a CO ligand bound to Fe at the active site of the protein (see Figure 1a,b). Spectroscopic studies of the CO stretching vibration have proven to be an important window to protein dynamics at the active site. Bound CO is termed the A state. Photolyzed CO in the protein pocket is termed the B state. Both A and B states have been observed via relatively intense mid-IR absorptions near 5.1 and 4.7 μm, respectively.

Until very recently, mid-IR studies of Mb-CO could be divided into two types: (1) analyses of the absorption spectrum of CO and (2) time-resolved studies of photoinduced CO dissociation and rebinding, probed using weak mid-IR light. A new method now exists to investigate vibrational dynamics of CO bound at the active site of Mb or other heme systems using an IR pump–probe technique which measures the loss of vibrational energy from the CO stretching vibration following its excitation by an intense picosecond mid-IR pulse. Unlike the older methods, which needed only weak probe light in the mid-IR, the pump–probe technique requires an apparatus which can generate intense, ultrashort tunable mid-IR pump pulses.

In this work, experiments are performed on CO bound to spectroscopically distinct sites of Mb and on CO bound to a water-soluble model heme compound with no protein, Fe tetraphenylporphyrin sulfate (Fe:TPPS; see Figure 1c) using pulses generated by the Stanford Free Electron Laser (FEL). This technique provides a direct probe of vibrational energy transfer at the active site of the protein, which occurs on a time scale readily accessible to molecular dynamics calculations (typically 0–0.1 ns).

Some relevant results from prior studies of Mb-CO are as follows:

Figure 1. (a) Schematic diagram of myoglobin-CO (Mb-CO). (b) Structure of protoheme (Ph), the prosthetic group in Mb. Key: M = CH1, V = CH = CH2, PR = CH2CH2CO2H. (c) Structure of Fe tetraphenylporphyrin sulfate (Fe:TPPS).
(a) The mid-IR absorption of Mb-bound CO consists of at least four distinct bands, denoted A₀ to A₃, in order of decreasing frequency. These bands evidence inhomogeneous broadening and can be fit by Voigt line shapes, i.e., the convolution of a Gaussian and a Lorentzian function.

(b) The distinct mid-IR absorption bands of bound CO apparently occur due to the coexistence of different protein conformational substates. The frequency shifts of bound CO in different protein conformations have been attributed by various authors to steric-induced bending of the Fe-CO bond (e.g., ref 15) or electrostatic effects arising from interactions between the CO dipole and differing charge distributions in the protein pocket (e.g., ref 16). A more recent detailed study and discussion attributes frequency shifts to differing distal polar interactions,17 arguing that the protein does not generate large enough steric effects to tilt the CO, and it suggests the following picture: in A₀, protonation of the distal histidine imidazole causes it to swing out of the heme pocket, leaving an unhindered CO almost normal to the heme plane, a conformation similar to that found in bare porphyrins such as Ph-CO;4,5,17 in A₁-₃, electrostatic interactions between unprotonated distal histidine and the π* orbital of CO induce bending and frequency lowering.

(c) The spectral peak centers, relative intensities, line widths, and oscillator strengths of these A states are detectably influenced by environment, specifically solvent, pH, the conformation of the protein matrix, and temperature. In Mb at pH = 7.0 in a solid matrix of poly(vinyl alcohol) (PVA), the A₁ and A₀ states have about equal intensities.

(d) The properties listed above have a relatively weak dependence on temperature in the 50–300 K range. In glycerol-water, there is almost no temperature dependence below 180 K. Some properties such as the mid-IR line width show an abrupt change near 180 K, whereas other properties such as the peak frequency shift show a gradual change in the 300–180 K region. These dependences were interpreted to arise from a solvent glass-transition at T_g ≈ 180 K, which in turn induces a transition in the protein matrix termed a “slaved glass transition”. In PVA, a solid throughout the 50–300 K range, almost no temperature dependence is observed in this range.

(e) Intercconversion among A states is possible, even in the absence of light which can photolyze Mb-CO. The interconversion rate in glycerol-water at 300 K is estimated at k ≈ 10⁷ s⁻¹. The rate decreases with increasing T, and interconversion is not observed below 180 K. In PVA, a solid at room temperature, interconversion is not seen at 300 K or below.

Hochstrasser and co-workers recently gave a quite brief report of picosecond pump-probe relaxation times for the A₁ state of Mb, hemoglobin-CO (Hb-CO), and Ph-CO in D₂O solution at ambient temperature to be 18, 18, and 31 ps, respectively. In the present work, we report pump-probe data on Mb-CO in glycerol-water and in PVA, where more than one A state can be studied, and on Fe:TPPS-CO. In addition, we report detailed temperature-dependent data on Mb-CO. These results are used to investigate the mechanisms of molecular vibrational energy transfer at the active site of proteins, and the relationships between molecular structures and the rates of energy transfer.

II. Experimental Section

Preparation of the Mb-CO sample follows the general procedure outlined previously. To maximize the ratio of bound CO absorbance to background, a high protein concentration and a small optical path length were used. The glycerol-water samples used horse heart Mb (Sigma) at ~30 mM concentration in glycerol-water (60:40), buffered to pH = 7.0 with sodium phosphate. The use of 60:40 glycerol-water instead of the more typical 75:25 glycerol-water allowed us to approximately double the protein concentration to roughly 30 mM. The samples were held in a 0.1 mm path cell with 1 mm thick sapphire windows. The optical cell could be mounted in a closed-cycle He refrigerator with CaF₂ optical windows. The PVA samples were prepared as above except instead of glycerol-water, a solution of 10 wt % PVA dissolved in 1 mM phosphate buffer at pH = 7.0 was used. The Mb-CO in PVA solution was spread onto a sapphire window and allowed to dry and harden under 1 atm of CO. Assuming that most of the water evaporated during drying, the concentration of Mb-CO in the dried PVA film was estimated at 30 mM, and the concentration of phosphate buffer after drying should be similar to that used above. The thickness of the film varied considerably over the area of the sapphire window, and the PVA film scattered more IR light than the glycerol-water samples.

Mid-IR spectra of Mb-CO A states in glycerol-water and in PVA are shown in Figure 2. Because the IR beam is several millimeters in diameter, the PVA spectrum represents an average over regions of considerably varying thickness. The ~100 µm diameter spots chosen for pump–probe experiments probably had optical densities comparable to the glycerol-water samples. The locations of the absorption maxima are within apparatus resolution (0.2 cm⁻¹) identical to those reported previously despite minor differences in sample preparation (e.g., horseheart Mb at pH = 7.0 rather than sperm whale Mb at pH = 6.8). Fe:TPPS is an Fe-porphyrin with excellent water solubility. Fe:TPPS was synthesized from tetraphenylporphyrin by addition of H₂SO₄, followed by metallation. The Fe:TPPS-CO sample consisted of 30 mM Fe:TPPS in glycerol-water (75:25) at pH = 10.0. The pH was adjusted by adding NaOH. The IR spectrum of Fe:TPPS is shown in Figure 3. The substantial background in the spectra in Figures 2 and 3 is caused by window reflection and solvent and protein absorption.

The Stanford superconducting linear accelerator pumped picosecond free-electron laser (FEL) emits a 2 ms duration...
macropulse at a 10 Hz repetition rate. Each macropulse consists of \(\sim 2.3 \times 10^6 \) micropulses of \(\sim 0.5 \mu J \) energy, at a micropulse repetition rate of 11.7 MHz. The micropulses were measured to be Gaussian \(\sim 2 \) ps transform limited pulses (spectral bandwidth \(\sim 7.3 \) cm\(^{-1}\) fwhm) by autocorrelation in a AgGaSe\(_2\) crystal\(^{18,19}\). The FEL output pulse spectra used in these experiments, measured over a ~60 s interval using a 1 m scanning spectrometer and a mid-IR sensitive optical detector, are also shown as dashed curves in the absorption spectra of Figures 2 and 3. The FEL center wavelength was stable to within an accuracy of 0.2 cm\(^{-1}\) during these experiments. At the sample, the pump pulse was 150 nJ, and the probe pulse was 15 nJ. The micropulse repetition rate was reduced to 50 kHz by a germanium acousto-optic single pulse selector\(^{12,20}\). The effective experimental repetition rate is 1000 pulses/s. A dual beam geometry was used with two HgCdTe detectors, two gated integrators, and computer with 16-bit analog-to-digital converter to measure intensities of probe and reference pulses. The probe intensity was divided by the reference intensity to normalize intensity fluctuations. The pump beam was chopped with a second pulse selector, so pump pulses arrived at the sample at 25 kHz and probe pulses at 50 kHz. On adjacent chopped and unchopped pulses, normalized probe signals were divided and the log taken, to yield the shot-normalized pump-induced absorbance change. A stepper-motor-driven retroreflector varied the delay between pump and probe pulses. An autocorrelator and mid-IR optical spectrometer continuously monitored the FEL pulse duration and pulse spectrum.

III. Results

A. Spectroscopy of A-States. The mid-IR spectroscopy of Fe:TPPS-CO in glycerol:water had not been studied previously. Figure 3 shows a single Fe:TPPS-CO absorption band, which is almost frequency-coincident with the \(\tilde{A}_0 \) state of Mb-CO. The Fe:TPPS-CO absorption band can be accurately fit to a Gaussian line shape centered at 1963.7 cm\(^{-1}\) with a fwhm of 27 cm\(^{-1}\), more than double the fwhm of the \(\tilde{A}_1 \) state of Mb-CO.

Gaussian line shapes are frequently indicative of inhomogeneous broadening of a spectral line. In a liquid such as the glycerol:water mixture used as the solvent for Fe:TPPS-CO, on some time scale any solute molecule will sample all possible solvent configurations. For the line to appear inhomogeneously broadened, it is only necessary that the homogeneous line width be small compared to the spread of transition energies associated with different solvent environments. The Gaussian line shape for Fe:TPPS-CO is consistent with inhomogeneous broadening that can arise from the wide variety of local solvent structures which exist in hydrogen-bonding solvents. The substantially narrower absorption line width of Mb-CO relative to Fe:TPPS-CO, and the appearance of an Mb-CO absorption line shape which cannot be fit by a simple Gaussian\(^4\), both of which result from effects of the protein matrix, suggest the protein yields a more limited number of local environments, or a set of local environments which induces a smaller spread of transition energies compared to the solvent environment of a bare Fe-heme.

B. Lifetimes of CO Stretches in Mb-CO and Fe:TPPS-CO. The FEL was used to measure the lifetimes of bound CO stretching vibrations in Mb and Fe:TPPS, as shown in Figures 4 and 5. When the FEL was tuned off the absorption peaks, no absorption transients were observed, because the off-resonant background is caused by a high concentration of absorbers which cannot be optically saturated due to their smaller absorption cross-sections. The bound CO absorptions can be appreciably saturated due to their far larger cross sections, e.g., in the Mb-CO \(\tilde{A}_1 \) state in glycerol:water, \(\sigma \approx 8 \times 10^{-17} \) cm\(^2\). With the FEL tuned to either the \(\tilde{A}_0 \) or \(\tilde{A}_1 \) state absorption maxima of Mb-CO PVA samples, the pump--probe signals (absorption transients) shown in Figure 4 were measured. With PVA, the samples were translated through the FEL beam to find spots which gave minimum light scattering and optimal signal to noise. At these spots, the peak absorbance changes were \(AA = 3-4 \) mOD. The two A-states gave noticeably different time dependences, as shown in Figure 4. The decays were determined by least-squares fitting to be exponential over at least
In all these experiments, the time-dependent recovery of mid-IR absorption is attributed, as in previous works, to vibrational energy relaxation of the excited CO stretching mode. Ambient temperature decay constants measured in this work and by Hochstrasser et al. are summarized in Table 1.

C. Temperature Dependence of Mb-CO Vibrational Lifetime. Pump-probe data were obtained at different temperatures in the 20–300 K region. The measured temperature-dependent decay times are plotted in Figure 6. The broken horizontal lines are visual guides. The estimated error bars on the data (1 standard deviation) are smaller than the points used to represent the data. Within experimental error, no dependence on temperature was observed for the PVA samples. The A1 state of Mb-CO in glycerol:water did evidence some temperature dependence in cooling the sample from 300 to ~200 K. The decay time constant gradually increased from 17.4 to ~21 ps in this range, and this increase, although small, is clearly discernible with our apparatus. Below ~200 K, the decay time constant is independent of temperature.

IV. Discussion

A. Pump–Probe Experiments and Optical Line Shapes. The pump–probe experiment measures the time-dependent recovery of mid-IR absorption following a bleaching induced by the pump pulse. The recoveries in Mb-CO and Fe:TPPS-CO appear to be single exponentials. Our interpretation of this effect follows that of Heilweil et al. and other recent work on the vibrational lifetimes of CO bound to metals in liquid solution. The CO vibration can be treated as a saturable two-level system because of the significant frequency mismatch between the \(\nu = 0 \rightarrow \nu = 1 \) and the \(\nu = 1 \rightarrow \nu = 2 \) transitions, which for heme-CO is about 25 cm\(^{-1}\). Care was taken to make sure that with the powers and bandwidths used in the experiments reported here, only the \(\nu = 0 \rightarrow \nu = 1 \) transition was excited. Absorption recovery mechanisms involving significant contributions from spectral diffusion to other A states or within the inhomogeneously broadened A1 transition seem highly unlikely because interconversion in PVA does not occur, and in glycerol:water, the decays at ambient temperature are hardly different from decays below 180 K, where interconversion among various A states ceases and other spectral contributions are negligible.

TABLE 1: Vibrational Lifetimes of CO Bound to Various Hemes

<table>
<thead>
<tr>
<th>molecule</th>
<th>solvent</th>
<th>freq (cm(^{-1}))</th>
<th>lifetime (T_1) (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>protoporphyrin-IX Mb-A1</td>
<td>glycerol:water 60:40, pH = 7.0</td>
<td>1943</td>
<td>17.4 ± 1</td>
</tr>
<tr>
<td>protoporphyrin-IX Mb-A1</td>
<td>D(_2)O</td>
<td>1944(^a)</td>
<td>18(^a)</td>
</tr>
<tr>
<td>protoporphyrin-IX Mb-A1</td>
<td>poly(vinyl alcohol) (PVA), pH = 7.0</td>
<td>1946</td>
<td>18.2 ± 1</td>
</tr>
<tr>
<td>protoporphyrin-IX Mb-A1</td>
<td>poly(vinyl alcohol) (PVA), pH = 7.0</td>
<td>1967</td>
<td>26.6 ± 1</td>
</tr>
<tr>
<td>protoporphyrin-IX Mb-A1</td>
<td>D(_2)O</td>
<td>1951(^a)</td>
<td>18(^a)</td>
</tr>
<tr>
<td>protoporphyrin-IX Mb-A1</td>
<td>D(_2)O</td>
<td>1977(^b)</td>
<td>31(^a)</td>
</tr>
<tr>
<td>Fe tetraphenylporphyrin sulfate</td>
<td>glycerol:water 60:40, pH = 10.0</td>
<td>1964</td>
<td>17 ± 3</td>
</tr>
</tbody>
</table>

\(^a\) Reference 10. \(^b\) Reference 2.
diffusion mechanisms should slow. We thus identify the exponential time constant, τ, as characterizing the time-dependent flow of vibrational energy out of the ensemble of vibrationally excited CO molecules. (In the discussion below, VR is used to denote vibrational energy relaxation. Some authors use VR to denote vibrational phase relaxation.)

The exponential time constants measured here, on the order of $\tau = 15-30$ ps, correspond to frequency-domain Lorentzian line widths 21 of $\Delta \nu = 0.1-0.3 \text{ cm}^{-1}$. Therefore, the contribution of VR to the broad vibrational line shapes seen in Figures 2 and 3 is negligible. The substantial Lorentzian component of the Mb-CO vibrational absorption line 4 cannot be explained by VR. It can be attributed to either pure dephasing processes 21 or a temperature-dependent Lorentzian inhomogeneous broadening mechanism. 22

B. Mechanisms of Vibrational Relaxation (VR). Previous work shows that VR does not involve electronic degrees of freedom of the metal atom, but rather occurs via mechanical energy transfer between excited CO and other vibrations in the system. 12,13 Our interpretation of the mechanisms of VR in heme-CO systems is based on two significant facts: (1) the frequency of the excited vibration, $\nu \sim 1950 \text{ cm}^{-1}$, is far above the threshold energy for efficient intramolecular vibrational redistribution (IVR) in gas-phase porphyrin, which is known 23 to be about 700 cm^{-1}, and (2) the dependence of the VR rate of Mb-CO on temperature is small in glycerol: water and negligible in PVA.

In an isolated molecule, the density of internal vibration states increases with increasing energy. Lower energy vibrational excitations cannot undergo IVR due to the impossibility of finding relaxation pathways which conserve energy. The IVR threshold denotes an approximate level of excess vibrational energy where the density of internal states becomes large enough to permit efficient irreversible decay of energy from an initially prepared state. Ordinarily IVR is viewed as the relaxation of an excited anharmonic local mode oscillator coupled to a set of doorway states which open up the remainder of the molecule for the vibrational energy. 24,25 Condensed matter molecular systems are quite different due to the presence of a bath. In condensed matter, VR can occur even in the lowest energy vibrations due to anharmonic coupling between molecular vibrations and the bath. 26

In the present case of heme-CO, the pump pulse excites an ensemble of excitations which are essentially localized on CO. A large density of states must be present at the $\sim 1950 \text{ cm}^{-1}$ energy of the CO excitation because the observed decay is fast, irreversible, and exponential in time. The VR process may involve several steps, such as sequential loss of CO excitation to the doorway vibrations followed by loss of energy from the doorway vibrations into the bath.

As seen in Figure 1, in Mb (and in Hb) CO is covalently bound to Fe, which has five other ligands, four equatorial ligands donated by the tetradentate porphyrin, and one axial ligand being the proximal histidine residue of the protein. Thus, likely candidates for doorway modes are vibrational motions which involve larger amplitude oscillations of Fe-C and Fe-N bonds. Resonance Raman spectroscopy 17,27,28 reveals the presence of many Ph vibrations in the 100-1700 cm^{-1} range, including the Fe-CO stretch at $\sim 510 \text{ cm}^{-1}$, the Fe-C-O bond at $\sim 575 \text{ cm}^{-1}$, and the Fe-His stretch at $\sim 210 \text{ cm}^{-1}$. The bath states can be identified as being nondoorway vibrations of the porphyrin, solvent vibrations, the lower frequency continuum of instantaneous normal modes (phonons) of the solvent, 13,20 protein vibrations, lower frequency collective protein modes, $^{30-31}$ etc.

Lowering the temperature reduces the rates of any VR processes which are thermally activated by excited vibrations of energy $\leq kT$. The rate of vibrational energy loss from CO will be activated by thermal excitations of the significant doorway modes. The lack of much temperature dependence in Figure 6 therefore indicates that no doorway modes are becoming excited in the 20-300 K range. We conclude the doorway modes involved in CO vibrational relaxation must be higher in energy than $\sim 400 \text{ cm}^{-1}$, or else their effects would have been seen in Figure 6. This observations rules out the Fe-His stretching mode, solvent phonons, or collective protein modes as being important doorway states.

C. Vibrational Relaxation and Protein Function. Our observation that different A states in Mb-CO can have different VR decay constants is highly significant. It shows unambiguously that different conformational substates of the same protein can have different rates of vibrational energy transfer at the active site. Another way of putting this conclusion is to say that different conformations of the same protein can influence the rates of energy transfer at the active site.

It is interesting to compare our vibrational energy transfer measurements to what is known about protein function. Experiments which monitor the rebinding of CO to Mb in glycerol: water following flash photolysis below 180 K (i.e., in the regime where interconversion between A states does not occur) show that different A states rebind CO with different kinetics 4 and that the rebinding of CO to individual A-states is nonexponential in time. 3 Several models have been advanced to explain this nonexponential rebinding. In a bit of oversimplification appropriate here, these models may be classed as either inhomogeneous or homogeneous. In an inhomogeneous model proposed by Frauenfelder et al., functionally different proteins coexist (e.g., ref 4 and references therein). Mb exists below 180 K in a static distribution of hierarchical conformational substates. 32 The highest tier of substates, denoted CS9, is composed of the A states, i.e., states characterized by discernibly different heme-CO stretching bands. A lower tier CS1, consisting of different protein conformations, at least some of which rebind CO at different rates, has been postulated to explain the nonexponential rebinding. In homogeneous models, all proteins are assumed to be functionally identical. Nonexponential rebinding is then explained by various models (e.g., refs 33-35, among others), including a time-dependent relaxation process subsequent to photolysis 35 or the existence of many independent pathways for ligand rebinding within a single protein. $^{34-35}$ When we perform a pump-probe experiment on an A state, we observe an exponential decay, proving that all the proteins excited by the laser pulse (as shown in Figures 2 and 3, our laser pulse spectrum is somewhat narrower than the A-state spectrum) have indistinguishable VR kinetics. In terms of the two classes of models described above, this observation shows that either the ensemble of proteins which compose a particular A-state are homogeneous, or if inhomogeneous, the different CS1 substates of a particular substate of CS9 do not have significantly different VR rates.

D. Vibrational Relaxation and Molecular Structure. Using the data in Table 1, we have plotted VR decay rate constants versus vibrational frequency, as shown in Figure 7. In Figure 7, all the compounds which contain Phe lie on a line also shown in the figure. The correlation coefficient of the least-squares fitted line is $R = 0.982$. The TPPS point, which is from the only compound with a differently structured porphyrin, lies well off this line. Figure 7 immediately suggests two conclusions: (1) the VR rate constant apparently shows no significant dependence on the nature or viscosity of the solvent;
Effects of porphyrin structure on VR rates may be explained in two possible ways: either Fe:TPPS increases the rate of energy transfer from excited CO to the doorway modes, or Fe:TPPS increases the rate of energy flow from the doorway modes into the bath. We favor the latter explanation. Both compounds have identical structures in the vicinity of the Fe-CO group, but differ at the molecular perimeter. Protoheme is a pyrrolic-substituted porphyrin, whereas Fe:TPPS is a meso-substituted porphyrin. The combined masses of the four sulfoxyphenyl groups on TPPS (MW = 624) is ~2.4 times greater than the combined masses of the protoheme substituent groups (MW = 260). The effects of these heavier substituents seem unlikely to exert significant influences on the doorway vibrations which are those strongly coupled to motions of the Fe-CO moiety, but very likely to greatly increase the density of intramolecular states which provide a bath for irreversible decay of excited doorway vibrations.

V. Concluding Remarks

We have made direct measurements of molecular energy transfer at the active site of a protein using intense tunable mid-IR pulses from an FEL to measure the loss of vibrational energy from CO bound to a bare water-soluble heme and CO bound to the active sites of different conformational substates of a heme protein. We have determined that different conformational substates of the same protein, Mb, have different energy transfer rates at the active sites. By examining data obtained on a variety of systems containing protoheme (Ph), we have found that increasing the CO stretching frequency decreases the VR rate, which indicates that VR of excited CO becomes more efficient as external influences cause the CO stretching frequency to be lowered from the ~1970 cm⁻¹ value observed in compounds where CO lies nearly perpendicular to the heme plane. This observation suggests the intriguing possibility of controlling or tuning the vibrational relaxation rate by changing the molecular architecture through genetic engineering of the surrounding protein.

The CO vibrational lifetime measurements should be of particular importance in investigating the accuracy of molecular dynamics simulations of heme proteins. Unlike previously studied picosecond time scale processes occurring at the heme, such as ligand rebinding, photodissociation, and vibrational cooling, simulating the VR of the CO ligand does not require assumptions about transitions between different heme electronic states (e.g., refs 31, 37, and 38). The VR of excited CO occurs on the time scale readily accessible to molecular dynamics calculations (0–0.1 ns), and the entire process occurs on the ground electronic potential surface. Because the VR rate is sensitive to protein conformation, molecular dynamics studies of VR at the active site of different heme proteins, providing a range of heme pocket structures, could be an important method to understand the detailed relationships between protein structure and dynamical behavior.

Acknowledgment. We thank Prof. Alan Schwettman and Prof. Todd Smith and their research groups for making it possible to perform the experiments at the Stanford Free Electron Laser Center. Support was provided by the Medical Free Electron Laser program through the Office of Naval Research by Grant N00014-91-C-0170. M.D.F., A.T., B.S., and D.Z. acknowledge additional support from National Science Foundation Grant DMR-90-22675. B.S. thanks the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship. D.D.D.